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We extend for the first time the applicability of the Optimal Homotopy Asymptotic Method (OHAM) to find approximate solution
of a system of two-point boundary-value problems (BVPs). The OHAM provides us with a very simple way to control and adjust
the convergence of the series solution using the auxiliary constants which are optimally determined. Comparisons made show the
effectiveness and reliability of the method.

1. Introduction

Many real-world problems can be modelled by nonlinear
differential equations. For example, fluid flow problems can
give rise to boundary-value problems (BVPs) or systems
of BVPs with conditions specified at two or more different
points. Finding a reliable method for solving BVPs is of great
interest. Noor andMohyud-Din [1–3] presented approximate
solutions of some classes of BVPs by using the variational
iteration method (VIM), homotopy perturbation method
(HPM), and variational iteration decomposition method
(VIDM). Herisanu et al. [4] developed the so-called Opti-
mal Homotopy Asymptotic Method (OHAM) for solving
nonlinear problems. OHAM provides us with a very simple
way to control and adjust the convergence of the series
solution using the auxiliary constants which are optimally
determined. Several promising applications of OHAM to
problems in fluid dynamics have been presented [5–12]. Ali
et al. [13, 14] solved several two-point and multipoint BVPs
by OHAM. Very recently, Hashmi et al. [15] applied OHAM
for finding the approximate solutions of a class of Volterra
integral equations with weakly singular kernels.

The laminar fully developed combined free and forced
magnetoconvection in a vertical channel with symmetric and
asymmetric boundary heatings in the presence of viscous and

Joulean dissipations was studied byUmavathi andMalashetty
[16]. The mathematical model describing the channel flow
problem is governed by a system of nonlinear BVPs. Uma-
vathi andMalashetty [16] employed the classical perturbation
technique to solve the system of BVPs.The aim of the present
work is thus to propose an accurate approach to the channel
flow problem using an analytical technique, namely, OHAM.
The efficiency of the procedure is based on the construction
and determination of the auxiliary functions combined with
a convenient way to optimally control the convergence of the
solution.

2. The Model Equation

The system of BVPs modelling the channel flow problem as
given in [16] is
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where the parameter𝑅
𝑇
becomes one for asymmetric heating

and zero for symmetric heating. The special case 𝐵𝑟 = 0 was
solved exactly byUmavathi andMalashetty [16], and the exact
solutions are
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48

𝑀2
(1 −

cosh (𝑀𝑦)

cosh (𝑀/4)
)

+
2𝐺𝑅 𝑅

𝑇

𝑀2
(𝑦 −

sinh (𝑀𝑦)

4 sinh (𝑀/4)
) ,

𝜃 = 2𝑅
𝑇
𝑦.

(3)

Furthermore, when 𝐺𝑅 = 0, solutions of (1)-(2) become

𝑢 =
48

𝑀2
(1 −

cosh (𝑀𝑦)

cosh (𝑀/4)
) ,

𝜃 = 𝐴(𝑦
2
−

1

16
) + 𝐵 [cosh (2𝑀𝑦) − cosh (

𝑀

2
)]

+ 𝐶 [cosh (𝑀𝑦) − cosh (
𝑀

4
)] + 2𝑅

𝑇
𝑦,

(4)

where

𝐴 = −
1152𝐵𝑟

𝑀2
,

𝐵 = −
576𝐵𝑟

𝑀4cosh2 (𝑀/4)
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We remark that the general case of both 𝐵𝑟 ̸= 0 and 𝐺𝑅 ̸= 0

is very difficult to solve exactly. For this case, Umavathi
and Malashetty [16] have given the standard perturbation
solutions by assuming 𝜀 = 𝐵𝑟𝐺𝑅 to be the small parameter
in the expansion.

3. Basic Idea of OHAM

Consider the following differential equations:

𝐿 (𝑢 (𝑦)) + 𝑔 (𝑦) + 𝑁 (𝑢 (𝑦)) = 0,

𝐵 (𝑢,
𝑑𝑢

𝑑𝑦
) = 0,

(6)
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Figure 1: Plots of 𝑢 and versus 𝑦 in the case of asymmetric heating
for different values of 𝐺𝑅 and 𝐵𝑟 = 0, 𝑀 = 2.

where 𝐿 is a linear operator,𝑁 is a nonlinear operator, 𝑢(𝑦) is
an unknown function, 𝑦 denotes independent variable, 𝑔(𝑦)

is a known function, and 𝐵 is a boundary operator.
According to the basic idea ofOHAM [4–6], we construct

a homotopy ℎ(V(𝑦, 𝑝), 𝑝) : 𝑅 × [0, 1] → 𝑅 which satisfies

(1 − 𝑝) [𝐿 (V (𝑦, 𝑝)) + 𝑔 (𝑦)]

= 𝐻 (𝑝) [𝐿 (V (𝑦, 𝑝)) + 𝑔 (𝑦) + 𝑁 (V (𝑦, 𝑝))] ,
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where 𝑦 ∈ 𝑅 and 𝑝 ∈ [0, 1] is an embedding parameter,𝐻(𝑝)

is a nonzero auxiliary function for𝑝 ̸= 0,𝐻(0) = 0 and V(𝑦, 𝑝)

is an unknown function. Obviously, when 𝑝 = 0 and 𝑝 = 1

it holds that V(𝑦, 0) = 𝑢
0
(𝑦) and V(𝑦, 1) = 𝑢(𝑦), respectively.

Thus, as 𝑝 varies from 0 to 1, the solution V(𝑦, 𝑝) approaches
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Next, we choose auxiliary function 𝐻(𝑝) in the form
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𝐻(𝑝) can be expressed in many forms as reported in [4–7].
To get an approximate solution, we expand V(𝑦, 𝑝, 𝐶

𝑖
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Taylor’s series about 𝑝 in the following manner:
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Substituting (11) into (7) and equating the coefficient of the
like powers of 𝑝, we obtain the following linear equations.
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The zeroth-order problem is given by (9), and the first- and
second-order problems are given as
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It has been observed that the convergence of the series (11)
depends upon the auxiliary constants 𝐶

1
, 𝐶
2
, 𝐶
3
, . . .. If the

series is convergent at 𝑝 = 1, one has

V (𝑦, 𝐶
𝑖
) = 𝑢
0
(𝑦) +

∞

∑

𝑘=1

𝑢
𝑘
(𝑦, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) . (15)

The results of the 𝑚th-order approximations are
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Substituting (16) into (6) it results the following residual:
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Figure 2: Plots of 𝜃 versus 𝑦 in the case of asymmetric heating for
different values of 𝐵𝑟 and 𝐺𝑅 = 0, 𝑀 = 2.

If 𝑅 = 0, then �̃�will be the exact solution. Generally this does
not happen, especially in nonlinear problems. In order to find
the optimal values of 𝐶

𝑖
, 𝑖 = 1, 2, 3, . . ., we first construct the
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and then minimizing it, we have
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where 𝑎 and 𝑏 are in the domain of the problem. With these
constants known, the approximate solution (of order 𝑚) is
well determined.

3.1. Application of OHAM. In this section, we apply OHAM
for solving the nonlinear system of two-point BVP (1)-(2). By
applying the proposedmethod, the zeroth-order deformation
equation is
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Table 1: Optimal values of 𝐶
𝑖
for the case 𝑀 = 2 and different values of 𝐺𝑅 and 𝐵𝑟.

Br GR 𝐶
1

𝐶
2

𝐶
3

0 400 −0.96436 −0.00133 0.00005

8/100 100 −1.11947 −0.01693 −0.00181

0 0 −0.96436 −0.00133 0.00005

8/500 500 −1.19429 −0.07113 −0.01860

1 0 −0.96439 −0.00133 0.00005

8/100 −100 −0.80026 −0.02050 0.00140

0 ±100 −0.95976 −0.00116 0.00003

0 ±500 −0.95976 −0.00116 0.00003

8/500 −500 −0.79213 −0.02725 0.00383
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Figure 3: Plots of (a) 𝑢 and (b) 𝜃 versus 𝑦 in the case of asymmetric heating for different values of 𝐵𝑟 and 𝐺𝑅.

Using the framework of OHAM the 𝑚th-order
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Figure 4: Plots of (a) 𝑢 and (b) 𝜃 versus 𝑦 in the case of symmetric heating for different values of 𝐵𝑟 and 𝐺𝑅.
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𝑀 = 2.
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The second-order problem is
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𝑢
2
(−

1

4
) = 0, 𝑢

2
(
1

4
) = 0,

𝑢


2
(−

1

4
) = 0, 𝑢



2
(
1

4
) = 0,

𝜃
2
(−

1

4
) = 0, 𝜃

2
(
1

4
) = 0.

(31)



6 Mathematical Problems in Engineering

−0.06

0.04

0.02

0

−0.02

−0.04

𝑢

0 0.1 0.2−0.1−0.2

𝑦

𝐺𝑅 = 100

𝐵𝑟 = 8/100

𝑀 = 2

(a)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 0.1 0.2−0.1−0.2

𝑦

𝜃

𝐵𝑟 = 8/100

𝐺𝑅 = 100

𝑀 = 2

(b)

Figure 6: Plots of residual errors for (a) 𝑢 and (b) 𝜃 in the case of asymmetric heating for 𝐺𝑅 = 100, 𝐵𝑟 = 8/100 and 𝑀 = 2.

The third-order problem is
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Using the solution of (25)–(32) we obtain the following
four-term approximate solutions for 𝑢 and 𝜃 by OHAM
taking 𝑝 = 1:
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(34)

The explicit expressions for the individual terms of the
approximate solutions are not given here for brevity. Taking
the residual errors
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(35)

the optimal values of𝐶
𝑖
’s can be obtained. Table 1 shows some

optimal values of 𝐶
𝑖
for different values of 𝐺𝑅 and 𝐵𝑟.

In Figure 1 we compare our approximate four-term solu-
tions (34) against the exact solutions (3) for the special
case 𝐵𝑟 = 0 and 𝑀 = 2 for several values of 𝐺𝑅. The
comparison of the special case 𝐺𝑅 = 0 is shown in Figure 2
for 𝑀 = 2 and several values of 𝐵𝑟. It is observed that
our four-term OHAM solutions agree very well with the
exact solutions. The general case of both 𝐵𝑟 ̸= 0 and 𝐺𝑅 ̸= 0

admits no explicit analytical solution. So, in Figures 3 and
4 we plot the four-term approximate OHAM solutions for
several values of 𝐵𝑟 and 𝐺𝑅 in the case 𝑀 = 2 for both the
asymmetric and symmetric heating conditions, respectively.
The residual errors corresponding to selected cases of the
solutions depicted in Figures 1 and 2 are presented in Figures
5(a) and 5(b), respectively. Finally, the residual errors for a
selected case of Figure 3 are shown in Figure 6. Clearly, all
the residual error plots suggest that the OHAM approximate
solutions are accurate enough.

4. Conclusion

In this paper we have extended the applicability of OHAM
for the first time to solve a nonlinear system of two-point
BVPs that arise in a fluid flow problem. OHAM is relatively
simple to apply. It was shown that, with a few terms, the
OHAM is capable of giving sufficient accuracy. OHAM can
be a promising tool for solving strongly nonlinear systems of
equations.
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