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The frictionless contact problem for an elastic layer resting on an elastic half plane is considered. The problem is solved by using
the theory of elasticity and integral transformation technique. The compressive loads P and Q (per unit thickness in 𝑧 direction)
are applied to the layer through three rigid flat punches. The elastic layer is also subjected to uniform vertical body force due to
effect of gravity. The contact along the interface between elastic layer and half plane is continuous, if the value of the load factor, 𝜆,
is less than a critical value, 𝜆cr. In this case, initial separation loads, 𝜆cr and initial separation points, 𝑥cr are determined. Also the
required distance between the punches to avoid any separation between the punches and the elastic layer is studied and the limit
distance between punches that ends interaction of punches is investigated for various dimensionless quantities. However, if tensile
tractions are not allowed on the interface, for 𝜆 > 𝜆cr the layer separates from the interface along a certain finite region. Numerical
results for distance determining the separation area, vertical displacement in the separation zone, contact stress distribution along
the interface between elastic layer and half plane are given for this discontinuous contact case.

1. Introduction

Contact between deformable bodies abounds in industry
and everyday life. Because of the industrial importance of
the physical processes that take place during contact, a
considerable effort has beenmade in theirmodeling, analysis,
and numerical simulations.

The range of application in contact mechanics starts
with problems like foundations in civil engineering, where
the lift off the foundation from soil due to eccentric forces
acting on a building, railway ballasts, foundation grillages,
continuous foundation beams, runaways, liquid tanks resting
on the ground, and grain silos is considered. Furthermore,
foundation including piles as supporting members or the
driving of piles into the soil is of interest. Also classical
bearing problem of steel constructions and the connection
of structural members by bolts or screws are areas in which
contact analysis enters the design process in civil engineering
[1].

A complete analysis of the interaction problem for elastic
bodies generally requires the determination of stresses and
strain within the individual bodies in contact, together with

information regarding the distribution of displacements and
stresses at the contact regions.

The contact problem for an elastic layer has attracted
considerable attention in the past because of its possible
application to a variety of structures of practical interest.
The layer usually rests on a foundation which may be either
elastic or rigid and the body force due to gravity may be
neglected [2–27] or effect of gravitymay be taken into account
[28–35]. Studies regarding the frictionless contact along the
interface may be found in [2–15]. Also contact region may
exhibit frictional characteristics, giving rise to normal and
shear traction at the contact surface [16–27].

While initial contact is determined by the geometric
features of the bodies, the extent of the contact generally
changes not only by the particular loads applied to the bodies
but also with the elastic constants of the materials. Due to
the bending of the layer under local compressive loads, in
the absence of gravity effects, the contact area would decrease
to a finite size which is independent of the magnitude of
the applied load [2–7]. If the effect of gravity was taken into
account, the normal stress along the layer subspace interface
will be compressive and the contact is maintained through
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Figure 1: Elastic layer resting on an elastic half plane loaded by
means of three rigid flat punches.

the frictionless interface unless the compressive applied load
exceeds a certain critical value. When the magnitude of the
compressive external load exceeds a certain value, a separa-
tion will take place between the layer and the foundation.The
length of separation region along the interface is unknown,
and the problem becomes a discontinuous contact problem
[28–35].

Interaction between an elastic medium and a rigid punch
forms another group of contact problems. Rigid punches
may be structural elements such as foundations, beams, and
plates of finite or infinite extent resting on idealized linearly
deformable elastic media. Here, the shape of the contact
region may be known a priori and remains constant, or con-
tact region may be changed due to the shape of punch profile
[8–27]. The problem of flat-ended rigid punch has important
applications in soil mechanics, particularly in estimating the
safety of foundations. The application of the three punches
for an elastic layer resting on an elastic half plane in soil
mechanics is obvious; for example, the punches can be taken
as foundations placed on layered soil. When the foundations
are placed on soil, there is a possibility of pressure isobars
of adjacent foundations overlapping each other. The soil is
highly stressed in the zones of overlapping, or the difference
of settlement between two adjacent foundations, commonly
referred to as differential settlement may cause damage to
the structure. It is possible to avoid overlapping of pressures
or differential settlement by installing the foundations at
considerable distance apart from each other.

In this study, contact problem of the three punches for
an elastic layer resting on an elastic half plane is considered
according to the theory of elasticity with integral transfor-
mation technique. The compressive loads 𝑃 and 𝑄 (per unit
thickness in 𝑧 direction) are applied to the layer through
three rigid flat punches. The width of midmost punch can
be different from the other two punches and thickness of the
layer is constant, ℎ. The layer is subjected to homogeneous
vertical body force due to gravity, 𝜌

1
𝑔. All surfaces are

frictionless. The layer remains in contact with the elastic
half plane where the magnitude of the load factor 𝜆 is less
than a critical value, 𝜆cr (𝜆 = 𝑃/𝜌

1
𝑔ℎ
2
). If 𝜆 > 𝜆cr,

the contact is discontinuous and a separation takes place
between the layer and the half plane. A numerical integration

procedure is performed for the solution of the problems, and
different parameters are researched for various dimensionless
quantities for both continuous and discontinuous contact
cases. Finally, numerical results are analyzed and conclusions
are drawn.

2. General Expressions for Stresses and
Displacements

Consider a frictionless elastic layer of thickness h lying on an
elastic half plane. The geometry and coordinate system are
shown in Figure 1. The governing equations are

𝜇
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∇
2
𝑢
𝑘
+

2𝜇
𝑘

(𝜅
𝑘
− 1)

𝜕

𝜕𝑥

(

𝜕𝑢
𝑘

𝜕𝑥

+

𝜕V
𝑘

𝜕𝑦

) = 0, (1a)
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(1b)

where 𝜌
𝑘
𝑔 is the intensity of the body force acting vertically in

which 𝜌
𝑘
and 𝑔 are mass density and gravity acceleration. 𝑢

𝑘

and V
𝑘
are the𝑥 and𝑦 components of the displacement vector,

𝜇
𝑘
and 𝜅
𝑘
represent shear modulus and elastic constant of the

layer and the half plane, respectively. 𝜅
𝑘
= (3 − 𝛾

𝑘
)/(1 + 𝛾

𝑘
)

for plane stress and 𝜅
𝑘
= (3 − 4𝛾

𝑘
) for plane strain. 𝛾

𝑘
is the

Poisson ratio (𝑘 = 1, 2). Subscript 1 indicates the elastic layer
and subscript 2 indicates the elastic half plane.

𝑢
𝑝
and V

𝑝
represent the displacements for the case in

which gravity forces are considered. 𝑢
ℎ
and V

ℎ
are the

displacements when the gravity forces are ignored, and total
field of displacements may be expressed as

𝑢 = 𝑢
𝑝
+ 𝑢
ℎ
, (2a)

V = V
𝑝
+ V
ℎ
. (2b)

Observing that𝑥 = 0 is a plane of symmetry, it is sufficient
to consider the problem in the region 0 ≤ 𝑥 ≤ ∞ only. Using
the symmetry consideration, the following expressions may
be written:
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V
1
(𝑥, 𝑦) = V

1
(−𝑥, 𝑦) , (3b)
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where 𝜙
1
and Ψ

1
functions are inverse Fourier transforms

of 𝑢
1
and V
1
respectively. Taking necessary derivatives of (3c)

and (3d), substituting them into (1a) and (1b), and solving the
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second-order differential equations, the following equations
may be obtained for displacements:

𝑢
1ℎ
(𝑥, 𝑦) =

2

𝜋

∫

∞

0

[(𝐴 + 𝐵𝑦) 𝑒
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(4a)
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(4b)

Using Hooke’s law and (4a) and (4b), stress components
which do not include the gravity force may be expressed as
follows:
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For the case in which gravity force exist, particular part
of the displacement components corresponding to 𝜌

1
𝑔, the

following expressions are obtained, that is, special solution of
the Navier equations for a layer with a height ℎ:
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𝜏
𝑥𝑦1𝑝

= 0. (6e)

Considering the orthogonal axes shown in Figure 1,
displacements will be zero for 𝑦 = −∞, and if 𝜇

2
, ]
2
are the

elastic constants of the half plane, then the homogenous field
of displacements and stresses of the elastic half plane may be
obtained as
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subscript 2 indicates the elastic half plane. Note that the body
force acting in the foundation is neglected since it does not
disturb the contact pressure distribution. A, B, C, D, E, and F
are the unknown constants, which will be determined from
the boundary and continuity conditions at 𝑦 = 0 and 𝑦 = ℎ.

3. Case of Continuous Contact

An elastic layer with a height of ℎ resting on an elastic half
plane, shown in Figure 1, is analyzed for unit thickness in
𝑧 direction. Widths of punches at both sides are similar,
(𝑐−𝑏)/ℎ, and each of these punches transmits a concentrated
load of 𝑄 to the elastic layer. The width of the midmost
punch is different, 2𝑎/ℎ and it is subjected to a concen-
trated load, 𝑃. All surfaces are frictionless. Particularly, the
initial separation load (𝜆cr) and point (𝑥cr) where the layer
separated from the elastic half plane and the variation of
the stress distribution between elastic layer and elastic half
plane is examined depending on material properties, width
of punches, and magnitude of the external loads, 𝑃 and 𝑄.
Due to the different settlement of punches, a separation takes
place between punch I and elastic layer, if punches are close
enough. Therefore, the critical distance between the punches
indicating the initiation of separation between the punch I
and the elastic layer is researched and also limit distance
between the punches where the interaction of punches ends
is investigated.

If load factor (𝜆) is sufficiently small, then the contact
along the layer-subspace, 𝑦 = 0, 0 < 𝑥 < ∞, will be
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continuous, andA, B, C, D, E, and Fmust be determined from
the following boundary and continuity conditions:

𝜎
𝑦1
(𝑥, ℎ) =

{
{

{
{

{

−𝑃 (𝑥) , 0 < 𝑥 < 𝑎

−𝑄 (𝑥) , 𝑏 < 𝑥 < 𝑐

0, 𝑎 < 𝑥 < 𝑏, 𝑐 < 𝑥 < ∞,

(8a)

𝜏
𝑥𝑦1
(𝑥, ℎ) = 0, 0 < 𝑥 < ∞, (8b)

𝜏
𝑥𝑦1
(𝑥, 0) = 0, 0 < 𝑥 < ∞, (8c)
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𝑥𝑦2
(𝑥, 0) = 0, 0 < 𝑥 < ∞, (8d)
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(𝑥, 0) , 0 < 𝑥 < ∞, (8e)
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2
(𝑥, 0) − V

1
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(𝑥, ℎ)] = 0, 0 < 𝑥 < 𝑎, (8g)
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[V
1
(𝑥, ℎ)] = 0, 𝑏 < 𝑥 < 𝑐, (8h)

in which subscripts 1 and 2 indicate relation to the elastic
layer and the elastic half plane, respectively. 𝑃(𝑥) is the
unknown contact pressure under punch I and 𝑄(𝑥) is the
unknown contact pressure under punch II, which have not
been determined yet. If a separation occurs between the
elastic layer and elastic half plane, this will give rise to a
discontinuous contact position and the following results for
former solution will no longer be valid and new solution will
be attained for the latter case.

Equilibrium conditions of the problem may be expressed
as

∫

𝑎
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𝑃 (𝑥) 𝑑𝑥 =

𝑃

2

, (9a)

∫

𝑐

𝑏

𝑄 (𝑥) 𝑑𝑥 = 𝑄. (9b)

Displacement and stress expressions (4a), (4b), (5a)–
(5c), (6a)–(6e), and (7a)–(7e) are substituted into boundary
conditions (8a)–(8f), and unknown constants A, B, C, D, E,
and F are determined in terms of unknown functions 𝑃(𝑥)
and 𝑄(𝑥). By making use of (8g) and (8h), after some simple
manipulations, onemay obtain the following singular integral
equations for 𝑃(𝑥) and 𝑄(𝑥) [36, 37]:
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}
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in which
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𝜇
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1
)
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.

(12)

If evaluated values of A, B, C, and D in terms of 𝑃(𝑥) and
𝑄(𝑥) are substituted into (5b), the expression of the contact
stress between elastic layer and half plane may be obtained as

𝜎
𝑦1
(𝑥, 0) =− 𝜌

1
𝑔ℎ −
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(13)
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in which 𝜌
1
and 𝑔 are mass density and gravity acceleration,

respectively, where

𝑘
2
(𝑥, 𝑡) = ∫

∞

0

{

𝛼
3
𝜇
2

𝜇
1
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1
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(14)

To simplify the numerical analysis, the following dimen-
sionless quantities are introduced:

𝑥
1
= 𝑎𝑟
1
, (15a)

𝑡
1
= 𝑎𝑠
1
, (15b)

𝑥
2
=

𝑐 − 𝑏

2

𝑟
2
+

𝑐 + 𝑏

2

, (15c)

𝑡
2
=

𝑐 − 𝑏

2

𝑠
2
+

𝑐 + 𝑏

2

, (15d)

𝑔
1
(𝑠
1
) =

𝑃 (𝑎𝑠
1
)

𝑃/ℎ

, (15e)

𝑔
2
(𝑠
2
) =

𝑄 (((𝑐 − 𝑏) /2) 𝑠
2
+ (𝑐 + 𝑏) /2)

𝑃/ℎ

, (15f)

𝛼 = 𝑤ℎ, (15g)

𝜆 =

𝑃

𝜌
1
𝑔ℎ
2
. (15h)

Substituting from (15a)–(15h), (9a), (9b) and (10a), (10b) may
be expressed as

∫

1

0

𝑔
1
(𝑠
1
)

𝑎

ℎ

𝑑𝑠
1
=

1

2

, (16a)

∫

1

−1

𝑔
2
(𝑠
2
)

𝑐 − 𝑏

2ℎ

𝑑𝑠
2
=

𝑄

𝑃

, (16b)

−

1

𝜋

∫

1

0

𝑔
1
(𝑠
1
)

𝑎

ℎ

𝑑𝑠
1
[𝑚
1
(𝑟
1
, 𝑠
1
) +

(1 + 𝜅
1
)

4

× (

1

𝑎 (𝑠
1
+ 𝑟
1
)

−

1

𝑎 (𝑠
1
− 𝑟
1
)

)]

−

1

𝜋

∫

1

−1

𝑔
2
(𝑠
2
)

𝑐 − 𝑏

2ℎ

𝑑𝑠
2

× [𝑚
2
(𝑟
1
, 𝑠
2
) +

(1 + 𝜅
1
)

4

× (

1

(((𝑐 − 𝑏) /2) 𝑠
2
+ (𝑐 + 𝑏) /2) + 𝑎𝑟

1

−

1

(((𝑐 − 𝑏) /2) 𝑠
2
+(𝑐 + 𝑏) /2) − 𝑎𝑟

1

)]= 0,

0 < 𝑟
1
< 1,

(16c)

−

1

𝜋

∫

1

0

𝑔
1
(𝑠
1
)

𝑎

ℎ

𝑑𝑠
1

× [𝑚
3
(𝑟
2
, 𝑠
1
) +

(1 + 𝜅
1
)

4

× (

1

𝑎𝑠
1
+ (((𝑐 − 𝑏) /2) 𝑟

2
+ (𝑐 + 𝑏) /2)

−

1

𝑎𝑠
1
− (((𝑐 − 𝑏) /2) 𝑟

2
+ (𝑐 + 𝑏) /2)

)]

−

1

𝜋

∫

1

−1

𝑔
2
(𝑠
2
)

𝑐 − 𝑏

2

𝑑𝑠
2

× [𝑚
4
(𝑟
2
, 𝑠
2
) +

(1 + 𝜅
1
)

4

× (

1

((𝑐 − 𝑏) /2) (𝑠
2
+ 𝑟
2
) + (𝑐 + 𝑏)

−

1

((𝑐 − 𝑏) /2) (𝑠
2
− 𝑟
2
)

)] = 0,

− 1 < 𝑟
2
< 1,

(16d)

𝜎
𝑦1
(𝑥, 0)

𝑃/ℎ

= −

1

𝜆

−

1

𝜋

∫

1

0

𝑚
5
(𝑟
1
, 𝑠
1
) 𝑔
1
(𝑠
1
)

𝑎

ℎ

𝑑𝑠
1

−

1

𝜋

∫

1

−1

𝑚
6
(𝑟
2
, 𝑠
2
) 𝑔
2
(𝑠
2
)

𝑐 − 𝑏

2ℎ

𝑑𝑠
2
,

(16e)

where

𝑚
1
(𝑟
1
, 𝑠
1
) = 𝑘
1
(𝑥
1
, 𝑡
1
) , (17a)

𝑚
2
(𝑟
1
, 𝑠
2
) = 𝑘
1
(𝑥
1
, 𝑡
2
) , (17b)

𝑚
3
(𝑟
2
, 𝑠
1
) = 𝑘
1
(𝑥
2
, 𝑡
1
) , (17c)

𝑚
4
(𝑟
2
, 𝑠
2
) = 𝑘
1
(𝑥
2
, 𝑡
2
) , (17d)

𝑚
5
(𝑟
1
, 𝑠
1
) = 𝑘
2
(𝑥
1
, 𝑡
1
) , (17e)

𝑚
6
(𝑟
2
, 𝑠
2
) = 𝑘
2
(𝑥
2
, 𝑡
2
) . (17f)

The index of the integral equations in (16a)–(16e) is +1;
so the functions 𝑔

1
(𝑠
1
) and 𝑔

2
(𝑠
2
) may be expressed in the

following forms:

𝑔
1
(𝑠
1
) = 𝐺
1
(𝑠
1
) (1 − 𝑠

2

1
)

−1/2

, (0 < 𝑠
1
< 1) , (18a)

𝑔
2
(𝑠
2
) = 𝐺
2
(𝑠
2
) (1 − 𝑠

2

2
)

−1/2

, (−1 < 𝑠
2
< 1) , (18b)

where 𝐺
1
(𝑠
1
) is bounded in [0, 1] and 𝐺

2
(𝑠
2
) is bounded in

[−1, 1].Then using appropriate Gauss-Chebyshev integration
formula given in [36], (16a)–(16d) are replaced by the follow-
ing algebraic equations:

𝑛

∑

𝑖=1

𝜋𝑊
𝑖

𝑎

ℎ

𝐺
1
(𝑠
1𝑖
) =

1

2

, (19a)
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𝑛

∑

𝑖=1

𝜋𝑊
𝑖

𝑐 − 𝑏

2ℎ

𝐺
2
(𝑠
2𝑖
) =

𝑄

𝑃

, (19b)

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
1
(𝑠
1𝑖
)

𝑎

ℎ

[

[

𝑚
1
(𝑟
1𝑗
, 𝑠
1𝑖
) +

(1 + 𝜅
1
)

4

× (

1

𝑎 (𝑠
1𝑖
+ 𝑟
1𝑗
)

−

1

𝑎 (𝑠
1𝑖
− 𝑟
1𝑗
)

)]

]

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
2
(𝑠
2𝑖
)

𝑐 − 𝑏

2ℎ

× [

[

𝑚
2
(𝑟
1𝑗
, 𝑠
2𝑖
) +

(1 + 𝜅
1
)

4

× (

1

(((𝑐 − 𝑏) /2) 𝑠
2𝑖
+ (𝑐 + 𝑏) /2) + 𝑎𝑟

1𝑗

−

1

(((𝑐 − 𝑏) /2) 𝑠
2𝑖
+(𝑐 + 𝑏) /2) − 𝑎𝑟

1𝑗

)]

]

= 0,

(𝑗 = 1, . . . , 𝑛 − 1) ,

(19c)

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
1
(𝑠
1𝑖
)

𝑎

ℎ

× [

[

𝑚
3
(𝑟
2𝑗
, 𝑠
1𝑖
) +

(1 + 𝜅
1
)

4

× (

1

𝑎𝑠
1𝑖
+ (((𝑐 − 𝑏) /2) 𝑟

2𝑗
+ (𝑐 + 𝑏) /2)

−

1

𝑎𝑠
1𝑖
− (((𝑐 − 𝑏) /2) 𝑟

2𝑗
+ (𝑐 + 𝑏) /2)

)]

]

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
2
(𝑠
2𝑖
)

𝑐 − 𝑏

2ℎ

× [

[

𝑚
4
(𝑟
2𝑗
, 𝑠
2𝑖
) +

(1 + 𝜅
1
)

4

× (

1

((𝑐 − 𝑏) /2) (𝑠
2𝑖
+ 𝑟
2𝑗
) + (𝑐 + 𝑏)

−

1

((𝑐 − 𝑏) /2) (𝑠
2𝑖
− 𝑟
2𝑗
)

)]

]

= 0,

(𝑗 = 1, . . . , 𝑛 − 1) ,

(19d)

𝑊
1
= 𝑊
𝑛
=

1

2𝑛 − 2

, 𝑊
𝑖
=

1

𝑛 − 1

,

(𝑖 = 2, . . . , 𝑛 − 1) ,

(19e)

𝑠
1𝑖
= cos( 𝑖 − 1

2𝑛 − 1

𝜋) , 𝑠
2𝑖
= cos( 𝑖 − 1

𝑛 − 1

𝜋) ,

(𝑖 = 1, . . . , 𝑛) ,

(19f)

𝑟
1𝑗
= cos(

2𝑗 − 1

4𝑛 − 2

𝜋) , 𝑟
2𝑗
= cos(

2𝑗 − 1

2𝑛 − 2

𝜋) ,

(𝑗 = 1, . . . , 𝑛 − 1) .

(19g)

The unknowns𝐺
1
(𝑠
1𝑖
) and𝐺

2
(𝑠
2𝑖
) (𝑖 = 1, . . . , 𝑛) are deter-

mined from the system (19a)–(19d). By using (18a), (18b), sub-
stituting the results into (16e), and using Gauss-Chebyshev
integration formula, the contact stress 𝜎

𝑦1
(𝑥, 0)ℎ/𝑃 is evalu-

ated. It should be observed that the integral equations (16c)
and (16d) are valid provided the contact stress 𝜎

𝑦1
(𝑥, 0)ℎ/𝑃

is compressive everywhere; that is, 0 < 𝑥 < ∞. The critical
load factor, 𝜆cr and the corresponding location of interface
separation, 𝑥cr can be determined through the use of the
following condition for various dimensionless quantities:

𝜎
𝑦1
(𝑥, 0)

𝑃/ℎ

= 0. (20)

4. Case of Discontinuous Contact

Since the interface cannot carry tensile tractions for 𝜆 > 𝜆cr,
there will be separation between the elastic layer and the
elastic half plane in the neighborhood of 𝑥 = 𝑥cr on the
contact plane 𝑦 = 0, as shown in Figure 1. Assuming that
the separation region is described by 𝑑 < 𝑥 < 𝑒, 𝑦 = 0,
where 𝑑 and 𝑒 are unknowns and functions of 𝜆, boundary
and continuity conditions for the discontinuous contact case
are defined as follows:

𝜎
𝑦1
(𝑥, ℎ) =

{
{

{
{

{

−𝑃 (𝑥) , 0 < 𝑥 < 𝑎

−𝑄 (𝑥) , 𝑏 < 𝑥 < 𝑐

0, 𝑎 < 𝑥 < 𝑏, 𝑐 < 𝑥 < ∞,

(21a)

𝜏
𝑥𝑦1
(𝑥, ℎ) = 0, 0 < 𝑥 < ∞, (21b)

𝜏
𝑥𝑦1
(𝑥, 0) = 0, 0 < 𝑥 < ∞, (21c)

𝜏
𝑥𝑦2
(𝑥, 0) = 0, 0 < 𝑥 < ∞, (21d)

𝜎
𝑦1
(𝑥, 0) = 𝜎

𝑦2
(𝑥, 0) , 0 < 𝑥 < ∞, (21e)

𝜕

𝜕𝑥

[V
2
(𝑥, 0) − V

1
(𝑥, 0)] = {

𝜑 (𝑥) , 𝑑 < 𝑥 < 𝑒

0, 0 < 𝑥 < 𝑑, 𝑒 < 𝑥 < ∞,

(21f)

𝜎
𝑦1
(𝑥, 0) = 𝜎

𝑦2
(𝑥, 0) = 0, 𝑑 < 𝑥 < 𝑒, (21g)
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𝜕

𝜕𝑥

[V
1
(𝑥, ℎ)] = 0, 0 < 𝑥 < 𝑎, (21h)

𝜕

𝜕𝑥

[V
1
(𝑥, ℎ)] = 0, 𝑐 < 𝑥 < 𝑏. (21i)

After utilizing the boundary and continuity conditions
defined in (21a)–(21f), new values for the constantsA, B, C, D,
E, and F which appear in (4a), (4b), (5a)–(5c), and (7a)–(7e)
may be obtained in terms of new unknown functions 𝑃(𝑥),
𝑄(𝑥), and 𝜑(𝑥). Unknown functions are then determined
from the conditions (21h)-(21i) which have not yet been
satisfied. These conditions give the following system of
singular integral equations:

−

1

𝜋𝜇
1

∫

𝑎

0

[𝑘
1
(𝑥, 𝑡) +

(1 + 𝜅
1
)

4

(

1

𝑡 + 𝑥

−

1

𝑡 − 𝑥

)]𝑃 (𝑡) 𝑑𝑡

−

1

𝜋𝜇
1

∫

𝑐

𝑏

[𝑘
1
(𝑥, 𝑡) +

(1 + 𝜅
1
)

4

(

1

𝑡 + 𝑥

−

1

𝑡 − 𝑥

)]𝑄 (𝑡) 𝑑𝑡

+

1

𝜋

∫

𝑒

𝑑

𝑘
2
(𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡 = 0, 0 < 𝑥 < 𝑎,

(22a)

−

1

𝜋𝜇
1

∫

𝑎

0

[𝑘
1
(𝑥, 𝑡) +

(1 + 𝜅
1
)

4

(

1

𝑡 + 𝑥

−

1

𝑡 − 𝑥

)]𝑃 (𝑡) 𝑑𝑡

−

1

𝜋𝜇
1

∫

𝑐

𝑏

[𝑘
1
(𝑥, 𝑡) +

(1 + 𝜅
1
)

4

(

1

𝑡 + 𝑥

−

1

𝑡 − 𝑥

)]𝑄 (𝑡) 𝑑𝑡

+

1

𝜋

∫

𝑒

𝑑

𝑘
2
(𝑥, 𝑡) 𝜑 (𝑡) 𝑑𝑡 = 0, 𝑏 < 𝑥 < 𝑐,

(22b)

1

𝜋

∫

𝑎

0

𝑘
2
(𝑥, 𝑡) 𝑃 (𝑡) 𝑑𝑡 +

1

𝜋

∫

𝑐

𝑏

𝑘
2
(𝑥, 𝑡) 𝑄 (𝑡) 𝑑𝑡

−

𝜇
1

𝜋

∫

𝑒

𝑑

[𝑘
3
(𝑥, 𝑡) −

4𝜇
2
/𝜇
1

(1 + 𝜅
2
) + 𝜇
2
/𝜇
1
(1 + 𝜅

1
)

× (

1

𝑡 + 𝑥

+

1

𝑡 − 𝑥

)]𝜑 (𝑡) 𝑑𝑡 − 𝜌
1
𝑔ℎ = 0,

𝑑 < 𝑥 < 𝑒,

(22c)

where kernels 𝑘
1
(𝑥, 𝑡) and 𝑘

2
(𝑥, 𝑡) are given by (11) and (14)

and

𝑘
3
(𝑥, 𝑡) = ∫

∞

0

{{−

2𝛼
3
𝜇
2

𝜇
1

{𝑒
−2𝛼ℎ

(2 + 4𝛼
2
ℎ
2
) − 𝑒
−4𝛼ℎ

− 1}}

× (Δ)
−1
+

4𝜇
2
/𝜇
1

(1 + 𝜅
2
) + 𝜇
2
/𝜇
1
(1 + 𝜅

1
)

}

× {sin𝛼 (𝑡 + 𝑥) + sin𝛼 (𝑡 − 𝑥)} 𝑑𝛼,
(23)

in which Δ is given by (12).
The index of integral equations (22a) and (22b) is +1. On

the other hand, the index of the singular integral equation
(22c) is −1 due to the physical requirement of smooth contact

at the end points 𝑑 and 𝑒 [37]. Thus, in solving the problem
the two conditions which would account for the unknowns 𝑑
and 𝑒 are the consistency condition of integral equation (22c)
and the single-valuedness condition

∫

𝑒

𝑑

𝜑 (𝑥) 𝑑𝑥 = 0. (24)

Defining the following dimensionless quantities

𝑥
3
=

𝑒 − 𝑑

2

𝑟
3
+

𝑒 + 𝑑

2

, 𝑡
3
=

𝑒 − 𝑑

2

𝑠
3
+

𝑒 + 𝑑

2

, (25a)

𝑔
3
(𝑠
3
) =

𝜇
1
𝜑 (((𝑒 − 𝑑) /2) 𝑠

3
+ (𝑒 + 𝑑) /2)

𝑃/ℎ

; (25b)

by making use of (15a)–(15h), the integral equations (22a)–
(22c) may be expressed as follows:

−

1

𝜋

∫

1

0

𝑔
1
(𝑠
1
)

𝑎

ℎ

𝑑𝑠
1
[𝑚
∗

1
(𝑟
1
, 𝑠
1
) +

(1 + 𝜅
1
)

4

× (

1

𝑎 (𝑠
1
+ 𝑟
1
)

−

1

𝑎 (𝑠
1
− 𝑟
1
)

)]

−

1

𝜋

∫

1

−1

𝑔
2
(𝑠
2
)

𝑐 − 𝑏

2ℎ

𝑑𝑠
2

× [𝑚
∗

2
(𝑟
1
, 𝑠
2
) +

(1 + 𝜅
1
)

4

× (

1

(((𝑐 − 𝑏) /2) 𝑠
2
+ (𝑐 + 𝑏) /2) + 𝑎𝑟

1

−

1

(((𝑐 − 𝑏) /2) 𝑠
2
+ (𝑐 + 𝑏) /2) − 𝑎𝑟

1

)]

+

1

𝜋

∫

1

−1

𝑔
3
(𝑠
3
)𝑚
∗

3
(𝑟
1
, 𝑠
3
)

𝑒 − 𝑑

2ℎ

𝑑𝑠
3
= 0,

0 < 𝑟
1
< 1,

(26a)

−

1

𝜋

∫

1

−1

𝑔
1
(𝑠
1
)

𝑎

ℎ

𝑑𝑠
1

× [𝑚
∗

4
(𝑟
2
, 𝑠
1
) +

(1 + 𝜅
1
)

4

× (

1

𝑎𝑠
1
+ (((𝑐 − 𝑏) /2) 𝑟

2
+ (𝑐 + 𝑏) /2)

−

1

𝑎𝑠
1
− (((𝑐 − 𝑏) /2) 𝑟

2
+ (𝑐 + 𝑏) /2)

)]

−

1

𝜋

∫

1

−1

𝑔
2
(𝑠
2
)

𝑐 − 𝑏

2ℎ

𝑑𝑠
2
[𝑚
∗

5
(𝑟
2
, 𝑠
2
) +

(1 + 𝜅
1
)

4

× (

1

((𝑐−𝑏) /2) (𝑠
2
+𝑟
2
)+(𝑐+𝑏)

−

1

((𝑐 − 𝑏) /2) (𝑠
2
− 𝑟
2
)

)]

+

1

𝜋

∫

1

−1

𝑔
3
(𝑠
3
)𝑚
∗

6
(𝑟
2
, 𝑠
3
)

𝑒 − 𝑑

2ℎ

𝑑𝑠
3
= 0,

− 1 < 𝑟
2
< 1,

(26b)
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−

1

𝜋

∫

1

−1

𝑔
1
(𝑠
1
)𝑚
∗

7
(𝑟
3
, 𝑠
1
)

𝑎

ℎ

𝑑𝑠
1

−

1

𝜋

∫

1

−1

𝑔
2
(𝑠
2
)𝑚
∗

8
(𝑟
3
, 𝑠
2
)

𝑐 − 𝑏

2ℎ

𝑑𝑠
2

−

1

𝜋

∫

1

−1

𝑔
3
(𝑠
3
)

𝑒 − 𝑑

2ℎ

𝑑𝑠
3

× [𝑚
∗

9
(𝑟
3
, 𝑠
3
) −

4𝜇
2
/𝜇
1

(1 + 𝜅
2
) + 𝜇
2
/𝜇
1
(1 + 𝜅

1
)

× (

1

((𝑒 − 𝑑) /2) (𝑠
3
+ 𝑟
3
) + (𝑒 + 𝑑)

+

1

((𝑒 − 𝑑) /2) (𝑠
3
− 𝑟
3
)

)] −

1

𝜆

= 0,

− 1 < 𝑟
3
< 1,

(26c)

where

𝑚
∗

1
(𝑟
1
, 𝑠
1
) = 𝑘
1
(𝑥
1
, 𝑡
1
) , (27a)

𝑚
∗

2
(𝑟
1
, 𝑠
2
) = 𝑘
1
(𝑥
1
, 𝑡
2
) , (27b)

𝑚
∗

3
(𝑟
1
, 𝑠
3
) = 𝑘
2
(𝑥
1
, 𝑡
3
) , (27c)

𝑚
∗

4
(𝑟
2
, 𝑠
1
) = 𝑘
1
(𝑥
2
, 𝑡
1
) , (27d)

𝑚
∗

5
(𝑟
2
, 𝑠
2
) = 𝑘
1
(𝑥
2
, 𝑡
2
) , (27e)

𝑚
∗

6
(𝑟
2
, 𝑠
3
) = 𝑘
2
(𝑥
2
, 𝑡
3
) , (27f)

𝑚
∗

7
(𝑟
3
, 𝑠
1
) = 𝑘
2
(𝑥
3
, 𝑡
1
) , (27g)

𝑚
∗

8
(𝑟
3
, 𝑠
2
) = 𝑘
2
(𝑥
3
, 𝑡
2
) , (27h)

𝑚
∗

9
(𝑟
3
, 𝑠
3
) = 𝑘
3
(𝑥
3
, 𝑡
3
) . (27i)

Similar to (16a), (16b), additional condition (24) may be
expressed as

∫

1

−1

𝑔
3
(𝑠
3
) 𝑑𝑠
3
= 0. (28)

To solve the system of integral equations, it is found to
be more convenient to assume that (26c) as well as (26a) and
(26b) has an index +1 [29]; consequently, the function 𝑔

𝑖
(𝑠
𝑖
)

(𝑖 = 1, . . . , 3)may be expressed in the form

𝑔
1
(𝑠
1
) = 𝐺
1
(𝑠
1
) (1 − 𝑠

2

1
)

−1/2

, 0 < 𝑠
1
< 1, (29a)

𝑔
𝑖
(𝑠
𝑖
) = 𝐺
𝑖
(𝑠
𝑖
) (1 − 𝑠

2

𝑖
)

−1/2

,

− 1 < 𝑠
𝑖
< 1, (𝑖 = 2, 3) ,

(29b)

where𝐺
𝑖
(𝑠
𝑖
) is a bounded function. In order to insure smooth

contact at the end points of the separation region, we then
impose the following conditions on 𝐺

3
(𝑠
3
):

𝐺
3
(−1) = 0, 𝐺

3
(1) = 0. (30)

Equations (26a)–(26c), (16a), (16b), and (28) can easily be
reduced to the following system of linear algebraic equations
by employing the appropriate Gauss-Chebyshev integration
formula [36]:

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
1
(𝑠
1𝑖
)

𝑎

ℎ

[

[

𝑚
∗

1
(𝑟
1𝑗
, 𝑠
1𝑖
) +

(1 + 𝜅
1
)

4

×

1

𝑎 (𝑠
1𝑖
+ 𝑟
1𝑗
)

−

1

𝑎 (𝑠
1𝑖
− 𝑟
1𝑗
)

]

]

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
2
(𝑠
2𝑖
)

𝑐 − 𝑏

2ℎ

× [

[

𝑚
∗

2
(𝑟
1𝑗
, 𝑠
2𝑖
) +

(1 + 𝜅
1
)

4

× (

1

(((𝑐 − 𝑏) /2) 𝑠
2𝑖
+ (𝑐 + 𝑏) /2) + 𝑎𝑟

1𝑗

−

1

(((𝑐 − 𝑏) /2) 𝑠
2𝑖
+ (𝑐 + 𝑏) /2) − 𝑎𝑟

1𝑗

)]

]

+

𝑛−1

∑

𝑖=2

𝑊
𝑖
𝐺
3
(𝑠
3𝑖
)

𝑒 − 𝑑

2ℎ

𝑚
∗

3
(𝑟
1𝑗
, 𝑠
3𝑖
) = 0,

(𝑗 = 1, . . . , 𝑛 − 1) ,

(31a)

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
1
(𝑠
1𝑖
)

𝑎

ℎ

× [

[

𝑚
∗

4
(𝑟
2𝑗
, 𝑠
1𝑖
) +

(1 + 𝜅
1
)

4

× (

1

𝑎𝑠
1𝑖
+ (((𝑐 − 𝑏) /2) 𝑟

2𝑗
+ (𝑐 + 𝑏) /2)

−

1

𝑎𝑠
1𝑖
− (((𝑐 − 𝑏) /2) 𝑟

2𝑗
+ (𝑐 + 𝑏) /2)

)]

]

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
2
(𝑠
2𝑖
)

𝑐 − 𝑏

2ℎ

[

[

𝑚
∗

5
(𝑟
2𝑗
, 𝑠
2𝑖
) +

(1 + 𝜅
1
)

4

× (

1

((𝑐−𝑏) /2) (𝑠
2𝑖
−𝑟
2𝑗
)+(𝑐+𝑏)

±

1

((𝑐 − 𝑏) /2) (𝑠
2𝑖
− 𝑟
2𝑗
)

)]

]

+

𝑛−1

∑

𝑖=2

𝑊
𝑖
𝐺
3
(𝑠
3𝑖
)

𝑒 − 𝑑

2ℎ

𝑚
∗

6
(𝑟
2𝑗
, 𝑠
3𝑖
) = 0

(𝑗 = 1, . . . , 𝑛 − 1) ,

(31b)
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−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
1
(𝑠
1𝑖
)

𝑎

ℎ

𝑚
∗

7
(𝑟
3𝑗
, 𝑠
1𝑖
)

−

𝑛

∑

𝑖=1

𝑊
𝑖
𝐺
2
(𝑠
2𝑖
)

𝑐 − 𝑏

2ℎ

𝑚
∗

8
(𝑟
3𝑗
, 𝑠
2𝑖
)

−

𝑛−1

∑

𝑖=2

𝑊
𝑖
𝐺
3
(𝑠
3𝑖
)

𝑒 − 𝑑

2ℎ

× [

[

𝑚
∗

9
(𝑟
3𝑗
, 𝑠
3𝑖
) −

4𝜇
2
/𝜇
1

(1 + 𝜅
2
) + 𝜇
2
/𝜇
1
(1 + 𝜅

1
)

× (

1

((𝑒 − 𝑑) /2) (𝑠
3𝑖
− 𝑟
3𝑗
) + (𝑒 + 𝑑)

+

1

((𝑒 − 𝑑) /2) (𝑠
3𝑖
− 𝑟
3𝑗
)

)]

]

−

1

𝜆

= 0,

(𝑗 = 1, . . . , 𝑛 − 1) ,

(31c)

𝑛

∑

𝑖=1

𝜋𝑊
𝑖

𝑎

ℎ

𝐺
1
(𝑠
1𝑖
) =

1

2

, (31d)

𝑛

∑

𝑖=1

𝜋𝑊
𝑖

𝑐 − 𝑏

2ℎ

𝐺
2
(𝑠
2𝑖
) =

𝑄

𝑃

, (31e)

𝑛−1

∑

𝑖=2

𝜋𝑊
𝑖
𝐺
3
(𝑠
3𝑖
) = 0, (31f)

where 𝑊
𝑖
, 𝑠
𝑖
, and 𝑟

𝑗
are given by (19e)–(19g) (𝑟

2
= 𝑟
3
, 𝑠
2
=

𝑠
3
). It was shown in [36] that the consistency condition is

automatically satisfied if the Gauss-Chebyshev integration
formula is used for solving integral equations. Thus, (31a)–
(31d) and (31e)-(31f) give 3𝑛 equation for 3𝑛 unknowns𝐺

1
(𝑠
𝑖
),

𝐺
2
(𝑠
𝑖
), 𝐺
3
(𝑠
𝑗
) (𝑖 = 1, . . . , 𝑛), (𝑗 = 2, . . . , 𝑛 − 1), 𝑑 and 𝑒. The

equation system is nonlinear in 𝑑 and 𝑒; so an interpolation
scheme is required for the solution. Selected values of 𝑑 and
𝑒 are substituted into (31a)–(31d), and 𝐺

1
(𝑠), 𝐺
2
(𝑠), and 𝐺

3
(𝑠)

are obtained which must satisfy (31e), (31f) at the same time
for known 𝜆 > 𝜆cr. If (31e), (31f) are not satisfied, then
solution must be repeated with new values of 𝑑 and 𝑒 until
the (31e), (31f) are satisfied at the same time.

It should be noted that (22c) gives the 𝜎
𝑦1
(𝑥, 0)ℎ/𝑃

outside as well as inside the separation region (𝑒, 𝑓). Thus,
once the functions 𝐺

1
(𝑠), 𝐺
2
(𝑠), and 𝐺

3
(𝑠) and the constants

𝑑 and 𝑒 are determined, contact stress 𝜎
𝑦1
(𝑥, 0)ℎ/𝑃 may be

easily evaluated.The displacement component V∗(𝑥, 0) in the
separation region (𝑑, 𝑒), referring to (21f) and (25b), may be
obtained from

V
∗
(𝑥, 0) = V

2
(𝑥, 0) − V

1
(𝑥, 0) = ∫

𝑥

𝑑

𝑔
3
(𝑡) 𝑑𝑡,

𝑑 < 𝑥 < 𝑒

(32a)

Table 1: Variation of minimum value of distance between two
punches (𝑏 − 𝑎)/ℎ to avoid separation under first punch with 𝑎/ℎ
and (𝑐 − 𝑏)/ℎ for various values of 𝑄/𝑃 (𝜇

2
/𝜇
1
= 6.48).

(𝑐 − 𝑏)/ℎ 𝑎/ℎ
(𝑏 − 𝑎)/ℎ

2𝑃 4𝑃 6𝑃 8𝑃 10𝑃 12𝑃

0.25
0.5 0.2773 0.5465 0.7263 0.8564 0.9569 1.0383
0.75 0.4645 0.7676 0.9485 1.075 1.1716 1.250
1.0 0.603 0.9107 1.089 1.2138 1.3105 1.3893

0.5
0.5 0.185 0.4403 0.617 0.7466 0.8474 0.9291
0.75 0.3617 0.6597 0.8405 0.9675 1.065 1.144
1.0 0.4983 0.8035 0.983 1.1086 1.206 1.2856

0.75
0.5 0.108 0.3432 0.516 0.645 0.746 0.8285
0.75 0.2715 0.5613 0.742 0.8699 0.9685 1.0485
1.0 0.4045 0.7073 0.8875 1.015 1.1134 1.4445

1.0
0.5 0.0357 0.2504 0.4195 0.548 0.6497 0.7332
0.75 0.191 0.4694 0.6502 0.7797 0.8798 0.9613
1.0 0.320 0.6188 0.8005 0.930 1.030 1.1123

or

𝜇
1

𝑃/ℎ

V
∗
(𝑥, 0) =

𝑒 − 𝑑

2ℎ

∫

𝑟3

−1

𝐺
3
(𝑠
3
) 𝑑𝑠
3
,

− 1 < 𝑟
3
< 1,

(32b)

where

𝑥 =

𝑒 − 𝑑

2

𝑟
3
+

𝑒 + 𝑑

2

. (32c)

Also using appropriate Gauss-Chebyshev integration for-
mula and taking +1 as the index of (32b), the following
expressionmay be written for the vertical displacement in the
separation region:

𝜇
1

𝑃/ℎ

V
∗
(𝑥, 0) =

𝑒 − 𝑑

2ℎ

𝑘−1

∑

𝑖=2

𝑊
𝑖
𝐺
3
(𝑠
3𝑖
) ,

(𝑘 = 2, . . . , 𝑛 − 1) ,

(33)

where𝑊
𝑖
and 𝑠
𝑖
are given by (19e)–(19g).

5. Results and Discussion

Some of the calculated results obtained from the solution
of the continuous and discontinuous contact problems for
various dimensionless quantities such as 𝜇

2
/𝜇
1
, 𝑎/ℎ, (𝑐−𝑏)/ℎ,

𝑄/𝑃, 𝜆, and (𝑏 − 𝑎)/ℎ are presented in Figures 2, 3, 4, 5, and
6 and Tables 1, 2, 3, 4, and 5. First separation point between
elastic layer and elastic half plane is determined and first sep-
aration region is investigated. Contact pressure𝜎

𝑦1
(𝑥, 0)ℎ/𝑃 is

presented. Depending on load factor 𝜆, possibilities of other
separation regions between elastic layer and elastic half plane
are determined. Also possibility of separation between first
punch and elastic layer is researched. Besides, the distance
(𝑏 −𝑎)/ℎ, that ends the interaction of punches is examined. It
is assumed that 𝑄/ℎ ≥ 𝑃/ℎ.
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Table 2: Variation of distance between two punches (𝑏 − 𝑎)/ℎ that ends interaction of punches with 𝑄/𝑃 (𝜇
2
/𝜇
1
= 2.75, 𝑎/ℎ = 0.25, and

(𝑐 − 𝑏)/ℎ = 0.5).

𝑄 (𝑏 − 𝑎)/ℎ
Punch I Punch II

𝜆crright (𝑥crright − 𝑎)/ℎ 𝜆crleft = 𝜆crright (𝑏 − 𝑥crleft )/ℎ = (𝑥crright − 𝑐)/ℎ

𝑃 10.5585 96.6748 2.091 96.6175 2.092
2𝑃 9.5874 96.0544 2.091 48.3612 2.092
4𝑃 8.6032 94.2026 2.094 24.1974 2.092
6𝑃 8.1313 91.6959 2.100 16.1360 2.092
8𝑃 7.8582 88.6769 2.111 12.1037 2.091
10𝑃 7.6742 85.2495 2.128 9.6838 2.091
12𝑃 7.5378 81.4924 2.153 8.0704 2.091
14𝑃 7.4308 81.4924 2.192 6.9178 2.090

Table 3: Variation of distance between two punches (𝑏 − 𝑎)/ℎ that ends interaction of punches with 𝜇
2
/𝜇
1
(𝑄 = 6𝑃, 𝑎/ℎ = 0.25, and

(𝑐 − 𝑏)/ℎ = 0.5).

𝜇
2
/𝜇
1

(𝑏 − 𝑎)/ℎ
Punch I Punch II

𝜆crright (𝑥crright − 𝑎)/ℎ 𝜆crleft = 𝜆crright (𝑏 − 𝑥crleft )/ℎ = (𝑥crright − 𝑐)/ℎ

0.15 14.8404 164.5971 5.309 36.6977 4.795
0.36 12.1858 156.6651 3.678 30.6651 3.596
0.61 10.8897 143.5372 3.066 26.8566 3.027
1.65 9.2688 114.5372 2.418 20.5185 2.402
2.75 8.1313 91.6959 2.100 16.1360 2.092
6.48 6.4981 65.5235 1.812 11.4136 1.793

Figure 2 shows limit distance between punches that initi-
ates separation under first punch for various values of mate-
rial constant,𝜇

2
/𝜇
1
with𝑄/𝑃.Thedistance (𝑏−𝑎)/ℎ increases,

maintaining continuous contact between first punch and
elastic layer with 𝑄/𝑃. Besides, for bigger values of 𝜇

2
/𝜇
1
,

limit distance that initiates separation under first punch
decreases. In such a case, elastic half plane gets stiffer and it
becomes easy to separate first punch from the elastic layer.

Variation of critical distance between punches with 𝑎/ℎ
and (𝑐 − 𝑏)/ℎ for various values of 𝑄/𝑃 is presented in
Table 1. For fixed values of second punch width, (𝑐 − 𝑏)/ℎ,
an increase in first punch width requires longer distance
between punches to avoid separation under first punch. On
the contrary, for fixed values of first punch width, 𝑎/ℎ,
an increase in second punch width decreases (𝑏 − 𝑎)/ℎ

and punches can be placed closer to each other without
separation.

Interaction between punches ends for a definite value of
(𝑏 − 𝑎)/ℎ. Tables 2–4 show the critical value of the distance
that ends interaction between punches with dimensionless
quantities 𝜇

2
/𝜇
1
, 𝑎/ℎ, (𝑐 − 𝑏)/ℎ, and 𝑄/𝑃. In such a case,

there is no need to consider punches together. Also these
tables show the values of the load factor that cause separation
between elastic layer and elastic half plane, 𝜆cr. For 𝜆 = 𝜆cr,
𝜎
𝑦1
(𝑥, 0)ℎ/𝑃 is zero. Contact between punches and elastic

layer is continuous.
Table 3 shows the critical distance between punches that

ends interaction of punches with elastic constant, 𝜇
2
/𝜇
1
. For

small values of 𝜇
2
/𝜇
1
; that is, it is easy to bend elastic layer,

interaction between punches ends in a longer distance. Initial
separation point 𝑥cr between elastic layer and elastic half
plane from the origin 𝑥 = 0 decreases with an increase in
𝜇
2
/𝜇
1
. Critical load factor also decreases in this situation.

Distance (𝑏−𝑎)/ℎ that ends interaction between punches
increases with a decrease in second punch width while first
punch width is fixed. If both first and second widths are
increased, interaction of punches ends in a shorter distance.
This situation is presented in Table 4. In this case, critical load
factor, 𝜆cr increases but initial separation point, 𝑥cr decreases
with increment in punchwidths. Separation also occurs at the
right-hand side of the second punch.

For fixed values of 𝑎/ℎ = 0.5, (𝑐 − 𝑏)/ℎ = 1, 𝑄 = 2𝑃,
and 𝜇

2
/𝜇
1
= 1.65, variations of critical load factor, 𝜆cr and

initial separation point, 𝑥cr are given in Table 5. For small
values of (𝑏 − 𝑎)/ℎ, initial separation point between elastic
layer and elastic half plane appears at the right-hand side of
second punch. If (𝑏 − 𝑎)/ℎ increases, in this case separation
takes place between two punches. Keeping on increasing,
the distance (𝑏 − 𝑎)/ℎ ends the interaction of punches. For
(𝑏 − 𝑎)/ℎ = 7.9446, there is no need to consider punches
together.

In Figures 3–5, the normalized contact stress distribution
𝜎
𝑦1
(𝑥, 0)ℎ/𝑃 at the interface of elastic layer and elastic half

plane is given for the problems described in Section 3, and
Section 4. Different scales have been used for continuous and
discontinuous contact cases in order to include the entire
pressure distribution and to give sufficient details in compact
forms.
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Table 4: Variation of distance between two punches (𝑏−𝑎)/ℎ that ends interaction of punches with 𝑎/ℎ and (𝑐−𝑏)/ℎ (𝑄 = 4𝑃, 𝜇
2
/𝜇
1
= 0.36).

𝑎/ℎ (𝑐 − 𝑏)/ℎ (𝑏 − 𝑎)/ℎ
Punch I Punch II

𝜆crright (𝑥crright − 𝑎)/ℎ 𝜆crleft = 𝜆crright (𝑏 − 𝑥crleft )/ℎ = (𝑥crright − 𝑐)/ℎ

0.25 1.5 10.8345 150.2590 3.775 54.1240 3.3816
0.25 1.0 11.8775 164.4214 3.655 49.0259 3.4495
0.25 0.5 12.7008 169.3000 3.628 45.9626 3.5968
0.50 1.0 11.6754 173.4645 3.523 49.0235 3.4494
0.75 1.5 10.4960 176.6011 3.421 54.1289 3.3810
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Figure 2: Variation of minimum value of distance between two
punches (𝑏 − 𝑎)/ℎ to avoid separation under first punch with 𝑄/𝑃
for various values of 𝜇

2
/𝜇
1
(𝑎/ℎ = 0.5, (𝑐 − 𝑏)/ℎ = 1).

Table 5: Variation of load factor values with distance between two
punches (𝑏 − 𝑎)/ℎ (𝑄 = 2𝑃, 𝜇

2
/𝜇
1
= 1.65, 𝑎/ℎ = 0.5, and (𝑐 − 𝑏)/ℎ =

1).

(𝑏 − 𝑎)/ℎ
Punch I Punch II

𝜆crright 𝑥crright 𝜆crleft 𝑥crleft 𝜆crright 𝑥crright

0.5 30.6814 4.294
1 32.4279 4.806
3 34.0783 6.808
5 28.4331 3.167 28.4331 3.167 34.2756 8.803
6 32.0727 4.184 32.0727 4.184 34.3055 9.801
7 33.8531 5.211 33.8531 5.211 34.3175 10.800
7.9446 123.1714 2.835 34.3182 6.148 34.3182 11.743

Variation of the contact stress distribution 𝜎
𝑦1
(𝑥, 0)ℎ/𝑃

with load factor 𝜆 = 𝑃/𝜌
1
𝑔ℎ
2 for fixed values of 𝑄 = 2𝑃,
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(3) (3) 
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(3) 𝜆 = 20 < 𝜆cr
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/(
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Figure 3: Contact stress distribution between elastic layer and
elastic half plane for the cases of continuous (𝜆 < 𝜆cr) and
discontinuous contact (𝜆 > 𝜆cr) (𝑄 = 2𝑃, 𝜇

2
/𝜇
1
= 2.75, 𝑎/ℎ = 0.25,

(𝑏 − 𝑎)/ℎ = 1.5, and (𝑐 − 𝑏)/ℎ = 0.5).

𝜇
2
/𝜇
1
= 2.75, 𝑎/ℎ = 0.25, (𝑏−𝑎)/ℎ = 1.5, and (𝑐−𝑏)/ℎ = 0.5 is

presented in Figure 3, 𝜆 < 𝜆cr and 𝜆 > 𝜆cr show contact stress
distribution for the continuous and discontinuous contact
cases, respectively. It can be seen from the figure that another
separation region is possible if distance between punches
(𝑏 − 𝑎)/ℎ or load factor 𝜆 is increased. Contact pressure has
peaks around the edges of the rigid punches.

In Figure 4, the variation of the normalized contact stress
𝜎
𝑦1
(𝑥, 0)ℎ/𝑃 with 𝑄/𝑃 is given for the discontinuous contact

case (𝜆 = 75 > 𝜆cr). Figure 4 shows that both contact stress
and separation zone (𝑒 − 𝑑)/ℎ increase with an increase in
𝑄/𝑃. Variation of the normalized contact stress 𝜎

𝑦1
(𝑥, 0)ℎ/𝑃

for the discontinuous contact case shows three different
regions between elastic layer and elastic half plane. These
are continuous contact region, separation zone, and also
continuous contact region, where the effects of external load
𝑄/ℎ and 𝑃/ℎ decrease and disappear infinitely.

Variation of contact stress 𝜎
𝑦1
(𝑥, 0)ℎ/𝑃 with 𝜇

2
/𝜇
1
= 1.65

is shown in Figure 5. Separation zone increases as elastic half
plane gets stiffer than the elastic layer. In this case, peak value
of the contact stress also increases.
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Figure 4: Contact stress distribution between elastic layer and
elastic half plane for the case of discontinuous contact (𝜇

2
/𝜇
1
= 0.36,

𝑎/ℎ = 0.125, (𝑏 − 𝑎)/ℎ = 0.5, (𝑐 − 𝑏)/ℎ = 0.5, and 𝜆 = 75 > 𝜆cr).

Results calculated from (33) giving the displacement
V∗(𝑥, 0) in the separation region 𝑑 < 𝑥 < 𝑒 as a function
of 𝑥 are shown in Figure 6. Also results are compared with
those of [35]. It is seen that separation region 𝑑 < 𝑥 < 𝑒 and
displacement values increase with an increase in𝑄/𝑃 ratio as
this is the case in [35]. Separation zone is nearly the same, but
displacement values are smaller than those of [35] for fixed
values of 𝜇

2
/𝜇
1
= 6.48, 𝑎/ℎ = 0.75, (𝑏 − 𝑎)/ℎ = 1, and

(𝑐 − 𝑏)/ℎ = 1.5.

6. Conclusion

In this paper, continuous and discontinuous contact prob-
lems for an elastic layer resting on an elastic half plane
loaded by means of three rigid flat punches are considered.
Numerical procedures developed in this study can be used
to find approximate solutions to problems of engineering
interest.

Numerical results show that the punch widths, elastic
constants, external loads, distance between punches play a
very important role in the formation of the continuous and
discontinuous contact areas, initial separation point and load,
separation displacement, limit distance that ends the interac-
tion of punches, critical distance that causes separation under
first punch, and the contact pressure distribution.

From the study, the following conclusions may be drawn:

(i) it is easy to separate first punch from elastic layer if
𝑄/𝑃 or 𝑎/ℎ increases. This results also decrease in
𝜇
2
/𝜇
1
or (𝑐 − 𝑏)/ℎ.

(3) 

(2) 
(3) (2) 

(3) 

(2) 

(1) 

(1) 

(1) (3) 
0 2 4 6 8 10 12 14 16

0
−0.01

−0.31

−0.46

−0.61

−0.76

−0.92

−1.07

−1.22

(1) 𝜇2/𝜇1 = 0.36
(2) 𝜇2/𝜇1 = 0.61
(3) 𝜇2/𝜇1 = 1.65

(𝑑ℎ = 6.498, 𝑒/ℎ = 7.612)
(𝑑ℎ = 5.869, 𝑒/ℎ = 7.299)
(𝑑ℎ = 5.175, 𝑒/ℎ = 7.003)

𝑥/ℎ

(𝜎
𝑦
1
(𝑥
,0
))
/(
𝑃
/ℎ
)

Figure 5: Contact stress distribution between elastic layer and
elastic half plane for the case of discontinuous contact (𝑄 = 2𝑃,
𝑎/ℎ = 0.5, (𝑏 − 𝑎)/ℎ = 2, (𝑐 − 𝑏)/ℎ = 1, and 𝜆 = 100 > 𝜆cr).
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Figure 6: Separation displacement V∗(𝑥, 0) between elastic layer and
elastic half space as a function of 𝑥 for various values of second
punch load𝑄 (𝜇

2
/𝜇
1
= 6.48, 𝑎/ℎ = 0.75, (𝑏−𝑎)/ℎ = 1, (𝑐−𝑏)/ℎ = 1.5,

and 𝜆 = 50 > 𝜆cr), (∗: [35]).
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(ii) Increment in 𝑄/𝑃, 𝑎/ℎ or (𝑐 − 𝑏)/ℎ ends interaction
of punches in a shorter distance. Also an increase in
𝜇
2
/𝜇
1
causes the same result.

(iii) First separation between elastic layer and elastic half
plane occurs between punches or in the region 𝑐 <

𝑥 < ∞ depending on 𝜆. If (𝑏 − 𝑎)/ℎ is big enough,
interaction of punches disappears.

(iv) Size of separation region is not affected much with
𝑄/𝑃, but separation displacement is increasedwith an
increase in 𝑄/𝑃.

Nomenclature

𝑃: Compressive load per unit thickness in 𝑧
direction on punch I, (N/m)

𝑄: Compressive load per unit thickness in 𝑧
direction on punch II and punch III,
(N/m)

ℎ: Thickness of the layer, (m)
𝜆: Load factor
𝑢: 𝑥-component of the displacement, (m)
V: 𝑦-component of the displacement, (m)
𝜌
𝑘
: Mass density, (kg/m3)

𝑔: Gravity acceleration, (m/sn2)
𝜇: Shear modulus, (Pa)
𝜅: Elastic constant
𝛾: Poisson’s ratio
(𝑐 − 𝑏): Width of punch II and punch III, (m)
𝑎: Half width of punch I, (m)
𝑃(𝑥): Contact pressure under punch I, (Pa)
𝑄(𝑥): Contact pressure under punch II and

punch III, (Pa)
(𝑒 − 𝑑): Separation length, (m).
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