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An analysis has been carried out for the flow and heat transfer of an incompressible laminar and viscous fluid in a rectangular
domain bounded by two moving porous walls which enable the fluid to enter or exit during successive expansions or contractions.
The basic equations governing the flow are reduced to the ordinary differential equations using Lie-group analysis. Effects of the
permeation Reynolds number 𝑅

𝑒
, porosity 𝑅, and the dimensionless wall dilation rate 𝛼 on the self-axial velocity are studied both

analytically and numerically.The solutions are represented graphically.The analytical procedure is based on double perturbation in
the permeation Reynolds number 𝑅

𝑒
and the wall expansion ratio 𝛼, whereas the numerical solution is obtained using Runge-Kutta

method with shooting technique. Results are correlated and compared for some values of the physical parameters. Lastly, we look
at the temperature distribution.

1. Introduction

The studies on the boundary layer flow and heat transfer over
a stretching surface have become more and more prominent
in a number of engineering applications. For instance, during
extrusion of a polymer sheet, the reduction of both thickness
andwidth takes place in a cooling bath.Thequality of the final
product depends upon the heat transfer rate at the stretching
surface. In the past, many experimental and theoretical at-
tempts on this topic have been made. Such studies have been
presented under the various assumptions of small Reynolds
number 𝑅

𝑒
, intermediate 𝑅

𝑒
, large 𝑅

𝑒
, and arbitrary 𝑅

𝑒
. The

steady flow in a channel with stationarywalls and small𝑅
𝑒
has

been studied by Berman [1]. Dauenhauer and Majdalani [2]
numerically discussed the two-dimensional viscous flow in a
deformable channel when −50 < 𝑅

𝑒
< 200 and −100 < 𝛼 <

100 (𝛼 denotes the wall expansion ratio). Majdalani et al. [3]
analyzed the channel flow of slowly expanding-contracting
walls which leads to the transport of biological fluids. They
first derived the analytic solution for small 𝑅

𝑒
and 𝛼 and then

compared it with the numerical solution.

The flow problem given in study [3] has been analytically
solved by Boutros et al. [4] when 𝑅

𝑒
and 𝛼 vary in the ranges

−5 < 𝑅
𝑒

< 5 and −1 < 𝛼 < 1. They used the Lie-group
method in this study. Mahmood et al. [5] discussed the
homotopy perturbation and numerical solutions for viscous
flow in a deformable channel with porous medium. Asghar
et al. [6] computed exact solution for the flow of viscous
fluid through expanding-contracting channels. They used
symmetry methods and conservation laws.

The flow and heat transfer in square domain have been
studied by Noor et al. [7]. Our main aim is to study the heat
transfer in a rectangular domain. In this study, symmetry
methods are applied to a natural convection boundary layer
problem. The main advantage of such a method is that it can
successfully be applied to a nonlinear differential equation.
The symmetries of differential equations are those groups
of transformation under which the differential equation
remains invariant, that is, a symmetry group maps any solu-
tion to any other solutions.The symmetry solutions are quite
popular because they result in reductions of independent
variable of the problem.
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The purpose of this paper is to generalize the flow analy-
sis and heat distribution of [4]. The salient features have
been taken into account when the fluid saturates the porous
medium. Like in [4], the analytic solution for the arising
nonlinear flow problem is given by employing the Lie-group
method (with 𝑅

𝑒
and 𝛼 as the perturbation quantities).

Finally, the graphs of velocity and temperature are plotted and
discussed.

2. Mathematical Formulation of the Problem

Let us consider a rectangular domain bounded by twowalls of
equal permeability that enable the fluid to enter or exit during
successive expansions or contractions. The walls expand
or contract uniformly at the time-dependent rate ℎ̇. The
continuous sheet aligned with the 𝑥-axis at 𝑦 = 0 means
that the wall is impulsively stretched with the velocity 𝑈

𝑤

along the 𝑥-axis and 𝑇
𝑤
(𝑥, 𝑡) as our surface temperature. At

𝑦 = ℎ(𝑡), it is assumed that the fluid inflow velocity 𝑉
𝑤
is

independent of the position. A thin fluid film with uniform
thickness ℎ(𝑡) rests on the horizontal wall. The governing
time-dependent equations for mass, momentum, and energy
are given by

𝜕𝑢

𝜕𝑥
+

𝜕V

𝜕𝑦
= 0, (1)

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ ][

𝜕
2

𝑢

𝜕𝑥
2
+

𝜕
2

𝑢

𝜕𝑦
2
] −

]𝜙

𝑘
𝑢, (2)

𝜕V

𝜕𝑡
+ 𝑢

𝜕V

𝜕𝑥
+ V

𝜕V

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ ][

𝜕
2V

𝜕𝑥
2
+

𝜕
2V

𝜕𝑦
2
]

−
]𝜙

𝑘
V + 𝑔𝛽 (𝑇 − 𝑇

𝑤
) ,

(3)

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
= 𝛼[

𝜕
2

𝑇

𝜕𝑥
2
+

𝜕
2

𝑇

𝜕𝑦
2
] , (4)

where 𝑢 and V are the velocity components in the 𝑥 and 𝑦

directions, respectively, and𝑇 is temperature.We assume that
the fluid properties are constant. Here, 𝜌 is the fluid density,
𝜇 is the dynamic viscosity, and 𝑘 is the thermal conductivity
of an incompressible fluid. Thus, the kinematic viscosity is
] = 𝜇/𝜌,𝑔 is the acceleration due to gravity,𝛽 is the coefficient
of the thermal expansion, and the thermal diffusivity is 𝛼 =

𝑘/𝜌𝑐
𝑝
, where 𝑐

𝑝
is the specific heat, 𝑃 is the pressure, 𝑡 is

time, and 𝜙 and 𝑘 are the porosity and permeability of porous
medium, respectively.

The appropriate boundary conditions are

(i) 𝑢 = 0, V = −𝑉
𝑤
, 𝑇 = 𝑇

𝑤
at 𝑦 = ℎ (𝑡) ,

(ii) 𝜕𝑢

𝜕𝑦
= 0, V = 0,

𝜕𝑇

𝜕𝑦
= 0 at 𝑦 = 0,

(iii) 𝑢 = 0 at 𝑥 = 0,

(5)

where ℎ(𝑡) is the film thickness. The boundary condition
reflects that the fluid motion within the liquid film is caused

by the viscous shear arising from the stretching of the elastic
wall.

Now we will express the axial velocity, normal velocity,
and boundary conditions in terms of the stream function Ψ.
From the continuity Equation (1), there exists a dimensional
stream function Ψ(𝑥, 𝑦, 𝑡) such that

𝑢 =
𝜕Ψ

𝜕𝑦
, V = −

𝜕Ψ

𝜕𝑥
, (6)

which satisfies (1) identically.
Introducing the dimensionless normal coordinate 𝑦 =

𝑦/ℎ(𝑡), (6) becomes

𝑢 =
1

ℎ

𝜕Ψ

𝜕𝑦
, V = −

𝜕Ψ

𝜕𝑥
. (7)

Substituting (7) into (2)–(4), we obtain

ℎ
2

Ψ
𝑦𝑡

− ℎℎ̇𝑦Ψ
𝑦𝑦

− ℎℎ̇Ψ
𝑦
+ ℎΨ
𝑦
Ψ
𝑥𝑦

− ℎΨ
𝑥
Ψ
𝑦𝑦

= −
ℎ
3

𝜌
𝑃
𝑥
+ ] [ℎ2Ψ

𝑥𝑥𝑦
+ Ψ
𝑦𝑦𝑦

] −
ℎ
2]𝜙

𝑘
Ψ
𝑦
,

− ℎ
2

Ψ
𝑥𝑡

+ ℎℎ̇𝑦Ψ
𝑥𝑦

− ℎΨ
𝑦
Ψ
𝑥𝑥

+ ℎΨ
𝑥
Ψ
𝑥𝑦

= −
ℎ

𝜌
𝑃
𝑦
+ ] [−ℎ2Ψ

𝑥𝑥𝑥
− Ψ
𝑥𝑦𝑦

]

+
ℎ
2]𝜙

𝑘
Ψ
𝑥
+ 𝑔𝛽 (𝑇 − 𝑇

𝑤
) ℎ
2

,

𝜕𝑇

𝜕𝑡
+

1

ℎ
Ψ
𝑦

𝜕𝑇

𝜕𝑥
− Ψ
𝑥

𝜕𝑇

𝜕𝑦
= 𝛼[

𝜕
2

𝑇

𝜕𝑥
2
+

𝜕
2

𝑇

𝜕𝑦
2
] ,

(8)

where a dot denotes the derivative with respect to 𝑡.
The variables in (8) are dimensionless according to

𝑢 =
𝑢

𝑉
𝑤

, V =
𝑢

𝑉
𝑤

, 𝑥 =
𝑥

ℎ (𝑡)
,

𝑦 =
𝑦

ℎ (𝑡)
, Ψ =

Ψ

ℎ𝑉
𝑤

, 𝑃 =
𝑃

𝜌𝑉2
𝑤

,

𝑡 =
𝑡

ℎ𝑉
𝑤

, 𝛼 =
ℎℎ̇

]
, 𝜃 =

𝑇 − 𝑇
ℎ

𝑇
𝑤
− 𝑇
ℎ

,
1

𝑅
=

]𝜙𝑎

𝑘𝑉
𝑤

.

(9)

Substituting (9) into (8), we have

Ψ
𝑦𝑡

+ Ψ
𝑦
Ψ
𝑥𝑦

− Ψ
𝑥
Ψ
𝑦𝑦

+ 𝑃
𝑥

−
1

𝑅
𝑒

[𝛼Ψ
𝑦
+ 𝛼𝑦Ψ

𝑦𝑦
+ Ψ
𝑥𝑥𝑦

+ Ψ
𝑦𝑦𝑦

] −
1

𝑅
Ψ
𝑦
= 0,

(10)

Ψ
𝑥𝑡

+ Ψ
𝑦
Ψ
𝑥𝑥

− Ψ
𝑥
Ψ
𝑥𝑦

− 𝑃
𝑦

−
1

𝑅
𝑒

[𝛼𝑦Ψ
𝑥𝑦

+ Ψ
𝑥𝑦𝑦

+ Ψ
𝑥𝑥𝑥

] +
1

𝑅
Ψ
𝑥
+

1

ℎ2
𝐺
𝑟
𝜃 = 0,

(11)

𝜕𝜃

𝜕𝑡
+ Ψ
𝑦

𝜕𝜃

𝜕𝑥
− Ψ
𝑥

𝜕𝜃

𝜕𝑦
=

1

𝑃
𝑟
𝑅
𝑒

[
𝜕
2

𝜃

𝜕𝑥2
+

𝜕
2

𝜃

𝜕𝑦2
] , (12)

in which 𝑅
𝑒

= ℎ𝑉
𝑤
/] is the permeation Reynolds number,
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𝐺
𝑟
= 𝑔𝛽(𝑇

𝑤
− 𝑇
ℎ
)ℎ
3

/V2 is the Grashof number, 𝑃
𝑟
= ]/𝛼 is

the Prandtl number, and ℎ̇ = 𝛼]/ℎ.
Through (7) and (9), we have

𝑢 =
𝜕Ψ

𝜕𝑦
, V = −

𝜕Ψ

𝜕𝑥
, (13)

and, thus, the boundary conditions take the following forms:

Ψ
𝑦
= 0, Ψ

𝑥
= 1, 𝜃 = 1 at 𝑦 = 1, (14a)

Ψ
𝑦𝑦

= 0, Ψ
𝑥
= 0, 𝜃

𝑦
= 0 at 𝑦 = 0, (14b)

Ψ
𝑦
= 0 at 𝑥 = 0. (14c)

3. Solution of the Problem

This section derives the similarity solutions using Lie-group
method under which (10)–(12) are invariant.

3.1. Lie Symmetry Analysis. We consider the one-parameter
(𝜀) Lie group of infinitesimal transformation in (𝑥, 𝑦, 𝑡, Ψ,

𝑃, 𝜃) given by

𝑥
∗

= 𝑥 + 𝜀𝜙 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝑦
∗

= 𝑦 + 𝜀𝜁 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝑡
∗

= 𝑡 + 𝜀𝐹 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

Ψ
∗

= Ψ + 𝜀𝜂 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝑃
∗

= 𝑃 + 𝜀𝑔 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝜃
∗

= 𝜃 + 𝜀𝐻 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

(15)

with 𝜀 as a small parameter.
In view of Lie’s algorithm, the vector field is

𝑋 = 𝜙
𝜕

𝜕𝑥
+ 𝜁

𝜕

𝜕𝑦
+ 𝐹

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕Ψ
+ 𝑔

𝜕

𝜕𝑃
+ 𝐻

𝜕

𝜕𝜃
, (16)

if it is left variant by the transformation (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) →

(𝑥
∗

, 𝑦
∗

, 𝑡
∗

, Ψ
∗

, 𝑃
∗

, 𝜃
∗

).
The solutions Ψ = Ψ(𝑥, 𝑦, 𝑡), 𝑃 = 𝑃(𝑥, 𝑦, 𝑡) and 𝜃 = 𝜃(𝑥,

𝑦, 𝑡) are invariant under the symmetry (16) if

Φ
Ψ

= 𝑋 (Ψ − Ψ (𝑥, 𝑦, 𝑡)) = 0, where Ψ = Ψ (𝑥, 𝑦, 𝑡) ,

Φ
𝑃
= 𝑋 (𝑃 − 𝑃 (𝑥, 𝑦, 𝑡)) = 0, where 𝑃 = 𝑃 (𝑥, 𝑦, 𝑡) ,

Φ
𝜃
= 𝑋 (𝜃 − 𝜃 (𝑥, 𝑦, 𝑡)) = 0, where 𝜃 = 𝜃 (𝑥, 𝑦, 𝑡) .

(17)

We set

Δ
1
= Ψ
𝑦𝑡

+ Ψ
𝑦
Ψ
𝑥𝑦

− Ψ
𝑥
Ψ
𝑦𝑦

+ 𝑃
𝑥

−
1

𝑅
𝑒

[𝛼Ψ
𝑦
+ 𝛼𝑦Ψ

𝑦𝑦
+ Ψ
𝑥𝑥𝑦

+ Ψ
𝑦𝑦𝑦

] −
1

𝑅
Ψ
𝑦
,

Δ
2
= Ψ
𝑥𝑡

+ Ψ
𝑦
Ψ
𝑥𝑥

− Ψ
𝑥
Ψ
𝑥𝑦

− 𝑃
𝑦

−
1

𝑅
𝑒

[𝛼𝑦Ψ
𝑥𝑦

+ Ψ
𝑥𝑦𝑦

+ Ψ
𝑥𝑥𝑥

] +
1

𝑅
Ψ
𝑥
+

1

ℎ2
𝐺
𝑟
𝜃,

Δ
3
=

𝜕𝜃

𝜕𝑡
+ Ψ
𝑦

𝜕𝜃

𝜕𝑥
− Ψ
𝑥

𝜕𝜃

𝜕𝑦
−

1

𝑃
𝑟
𝑅
𝑒

[
𝜕
2

𝜃

𝜕𝑥2
+

𝜕
2

𝜃

𝜕𝑦2
] .

(18)

The vector field 𝑋 given by (16) is a symmetry generator of
(10)–(12) if and only if

𝑋
[3]

(Δ
𝑗
)
Δ 𝑗=0

= 0, 𝑗 = 1, 2, 3, (19)

in which

𝑋
[3]

= 𝜙
𝜕

𝜕𝑥
+ 𝜁

𝜕

𝜕𝑦
+ 𝐹

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕Ψ
+ 𝑔

𝜕

𝜕𝑃
+ 𝐻

𝜕

𝜕𝜃

+ 𝜂
𝑥

𝜕

𝜕Ψ
𝑥

+ 𝜂
𝑦

𝜕

𝜕Ψ
𝑦

+ 𝑔
𝑥

𝜕

𝜕𝑃
𝑥

+ 𝑔
𝑦

𝜕

𝜕𝑃
𝑦

+ 𝐻
𝑥

𝜕

𝜕𝜃
𝑥

+ 𝐻
𝑦

𝜕

𝜕𝜃
𝑦

+ 𝐻
𝑡
𝜕

𝜕𝜃
𝑡

+ 𝜂
𝑥𝑦

𝜕

𝜕Ψ
𝑥𝑦

+ 𝜂
𝑥𝑡

𝜕

𝜕Ψ
𝑥𝑡

+ 𝜂
𝑦𝑡

𝜕

𝜕Ψ
𝑦𝑡

+ 𝜂
𝑥𝑥

𝜕

𝜕Ψ
𝑥𝑥

+ 𝜂
𝑦𝑦

𝜕

𝜕Ψ
𝑦𝑦

+ 𝐻
𝑥𝑥

𝜕

𝜕𝜃
𝑥𝑥

+ 𝐻
𝑦𝑦

𝜕

𝜕𝜃
𝑦𝑦

+ 𝜂
𝑥𝑥𝑦

𝜕

𝜕Ψ
𝑥𝑥𝑦

+ 𝜂
𝑥𝑦𝑦

𝜕

𝜕Ψ
𝑥𝑦𝑦

+ 𝜂
𝑥𝑥𝑥

𝜕

𝜕Ψ
𝑥𝑥𝑥

+ 𝜂
𝑦𝑦𝑦

𝜕

𝜕Ψ
𝑦𝑦𝑦

(20)

is the third prolongation of𝑋.
We now introduce the total derivatives by differentiating

(15) with respect to 𝑥, 𝑦, and 𝑡 and construct

𝐷
𝑥
= 𝜕
𝑥
+ Ψ
𝑥
𝜕
Ψ
+ 𝑃
𝑥
𝜕
𝑝
+ 𝜃
𝑥
𝜕
𝜃
+ Ψ
𝑥𝑥

𝜕
Ψ𝑥

+ 𝑃
𝑥𝑥

𝜕
𝑃𝑥

+ 𝜃
𝑥𝑥

𝜕
𝜃𝑥

+ Ψ
𝑥𝑦
𝜕
Ψ𝑦

+ 𝜃
𝑥𝑦
𝜕
𝜃𝑦

+ ⋅ ⋅ ⋅ ,

𝐷
𝑦
= 𝜕
𝑦
+ Ψ
𝑦
𝜕
Ψ
+ 𝑃
𝑦
𝜕
𝑃
+ 𝜃
𝑦
𝜕
𝜃
+ Ψ
𝑦𝑦

𝜕
Ψ𝑦

+ 𝑃
𝑦𝑦

𝜕
𝑃𝑦

+ 𝜃
𝑦𝑦

𝜕
𝜃𝑦

+ Ψ
𝑥𝑦
𝜕
Ψ𝑥

+ 𝜃
𝑥𝑦
𝜕
𝜃𝑥

+ ⋅ ⋅ ⋅ ,

𝐷
𝑡
= 𝜕
𝑡
+ Ψ
𝑡
𝜕
Ψ
+ 𝑃
𝑡
𝜕
𝑃
+ 𝜃
𝑡
𝜕
𝜃
+ Ψ
𝑡𝑡
𝜕
Ψ𝑡

+ 𝑃
𝑡𝑡
𝜕
𝑃𝑡

+ 𝜃
𝑡𝑡
𝜕
𝜃 𝑡

+ Ψ
𝑥𝑡
𝜕
Ψ𝑥

+ 𝜃
𝑥𝑡
𝜕
𝜃𝑥

+ ⋅ ⋅ ⋅ .

(21)
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Choosing small𝐺
𝑟
when𝑇

ℎ
≈ 𝑇
𝑤
, the system of (10)–(12) has

the six parameter Lie-group points of symmetries generated
by

𝑋
1
=

𝜕

𝜕𝑡
, 𝑋
2
= 𝜃

𝜕

𝜕𝑡
, 𝑋
3
=

𝜕

𝜕𝜃
, 𝑋
4
=

𝜕

𝜕Ψ
,

𝑋
5
= 𝐹
2
(𝑡)

𝜕

𝜕𝑦
, 𝑋

6
= 𝐹
1
(𝑡)

𝜕

𝜕𝑥
.

(22)

3.2. Invariant Solution. When calculating invariant solutions
under the group generators 𝑋

3
and 𝑋

4
, we found that there

are no invariant solutions. Then 𝑋
5
and 𝑋

6
give solutions of

(1)–(3) and this contradicts the boundary conditions.
For 𝑋

1
and 𝑋

2
, the characteristic Φ = (Φ

Ψ
, Φ
𝑃
, Φ
𝜃
) has

the following components:

Φ
Ψ

= −Ψ
𝑡
, Φ
𝑃
= −𝑃
𝑡
, Φ
𝜃
= −𝜃
𝑡
. (23)

The general solutions of invariant surface conditions (17) are
given by

Ψ = ℎ (𝑦)𝐻 (𝑥, y) , 𝑃 = Γ (𝑥, 𝑦) , 𝜃 = 𝜏 (𝑥, 𝑦) . (24)

Invoking (24) into (10), we have

− 𝐾
𝑑
3

ℎ

𝑑𝑦3
+ [−𝛼𝐾𝑦 − ℎ𝐾

1
− 3𝐾𝐾

2
]
𝑑
2

ℎ

𝑑𝑦2

+ [ − 𝛼𝐾 − 2𝛼𝐾𝑦𝐾
2
− ℎ𝐾
3

+ ℎ𝐾
4
−𝐾𝐾
5
− 3𝐾𝐾

6
+

1

𝑅
]
𝑑ℎ

𝑑𝑦
,

𝐾
1
(
𝑑ℎ

𝑑𝑦
)

2

+ [−𝛼𝐾𝐾
2
+

1

𝑅
𝐾
2
− 𝛼𝐾𝐾

6
𝑦 − 𝐾𝐾

9
− 𝐾𝐾

10
] ℎ

+ [𝐾
7
− 𝐾
8
] ℎ
2

+
1

𝐻

𝑑Γ

𝑑𝑥
,

(25)

𝐾
1
= 𝐻
𝑥
, 𝐾
2
=

𝐻
𝑦

𝐻
, 𝐾
3
=

𝐻
𝑥
𝐻
𝑦

𝐻
,

𝐾
4
= 𝐻
𝑥𝑦
, 𝐾
5
=

𝐻
𝑥𝑥

𝐻
, 𝐾
6
=

𝐻
𝑦𝑦

𝐻
,

𝐾
7
=

𝐻
𝑦
𝐻
𝑥𝑦

𝐻
, 𝐾
8
=

𝐻
𝑥
𝐻
𝑦𝑦

𝐻
, 𝐾
9
=

𝐻
𝑥𝑥𝑦

𝐻
,

𝐾
10

=

𝐻
𝑦𝑦𝑦

𝐻
, 𝐾 = 𝑅

𝑒
.

(26)

Integration of 𝐻
𝑥

= 𝐾
1
from (26) leads to the following ex-

pression:

𝐻(𝑥, 𝑦) = 𝑥𝐾
1
(𝑦) + 𝐾

11
(𝑦) . (27)

The above equation when used into Ψ = ℎ(𝑦)𝐻(𝑥, 𝑦) (from
(24)) gives

Ψ = (𝑥𝐾
1
(𝑦) + 𝐾

11
(𝑦)) ℎ (𝑦) , (28)

which after differentiating with respect to 𝑦 and using (14c)
yields

𝐾
11

(𝑦) ℎ (𝑦) = 𝐾
12
, (29)

where𝐾
12
is a constant of integration and hence (28) reads

Ψ = 𝑥𝐺 (𝑦) + 𝐾
12

(30)

with 𝐺(𝑦) = 𝐾
1
(𝑦)ℎ(𝑦).

Putting 𝑃 = Γ(𝑥, 𝑦) from (24) and (27) into the last term
of (25) yields

𝐾
11

= 0. (31)

With the help of (27) and (31), one obtains

𝐻(𝑥, 𝑦) = 𝑥𝐾
1
(𝑦) , (32)

while (29)–(31) yield

Ψ = 𝑥𝐺 (𝑦) . (33)

Due to (13) and (33), one may write

𝑢 = 𝑥
𝑑𝐺

𝑑𝑦
, V = −𝐺. (34)

Using (33) in (11) and then differentiating with respect to 𝑥,
one arrives at the following result:

𝑃
𝑥𝑦

=
1

ℎ2
𝐺
𝑟
𝜃
𝑥
. (35)

Putting (33) into (10), differentiating with respect to 𝑦, and
then using (35), we obtain

𝑑
4

𝐺

𝑑𝑦4
𝑥 + 𝛼[𝑦

𝑑
3

𝐺

𝑑𝑦3
+ 2

𝑑
2

𝐺

𝑑𝑦2
]𝑥 + 𝑅

𝑒
𝐺
𝑑
3

𝐺

𝑑𝑦3
𝑥

− 𝑅
𝑒

𝑑𝐺

𝑑𝑦

𝑑
2

𝐺

𝑑𝑦2
𝑥 − 𝑅
𝑒

𝑑
2

𝐺

𝑑𝑦2

1

𝑅
𝑥 +

1

ℎ2
𝐺
𝑟
𝜃
𝑥
= 0.

(36)

Using (33) and 𝜃 = 𝜏(𝑥, 𝑦) from (24) in (12), we can write

𝑥
𝑑𝐺

𝑑𝑦

𝜕𝜏

𝜕𝑥
− 𝐺

𝜕𝜏

𝜕𝑦
−

1

𝑃
𝑟
𝑅
𝑒

[
𝜕
2

𝜏

𝜕𝑥2
+

𝜕
2

𝜏

𝜕𝑦2
] = 0, (37)

and the boundary conditions (14a), (14b), and (14c) become

(i) 𝑑𝐺 (1)

𝑑𝑦
= 0, (ii) 𝐺 (1) = 1, (iii) 𝑑

2

𝐺 (0)

𝑑𝑦2
= 0,

(iv) 𝐺 (0) = 0, (v) 𝜏 (𝑥, 1) = 0, (vi) 𝜏 (𝑥, 0) = 1.

(38)

Using 𝜃 = 𝜏(𝑥, 𝑦) and equating-like powers of ℎ, (36) helps in
writing the following equations:

𝑑
4

𝐺

𝑑𝑦4
+ 𝛼[𝑦

𝑑
3

𝐺

𝑑𝑦3
+ 2

𝑑
2

𝐺

𝑑𝑦2
] + 𝑅
𝑒
𝐺
𝑑
3

𝐺

𝑑𝑦3
− 𝑅
𝑒

𝑑𝐺

𝑑𝑦

𝑑
2

𝐺

𝑑𝑦2

− 𝑅
𝑒

𝑑
2

𝐺

𝑑𝑦2

1

𝑅
= 0,

𝐺
𝑟
𝜏
𝑥
= 0.

(39)
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The above equation implies that 𝜏 = 𝐸(𝑦) and 𝐺
𝑟
= 0 which

satisfy our assumption that 𝐺
𝑟
is very small. Now (36)–(38)

yield

𝑑
4

𝐺

𝑑𝑦4
+ 𝛼[𝑦

𝑑
3

𝐺

𝑑𝑦3
+ 2

𝑑
2

𝐺

𝑑𝑦2
] + 𝑅
𝑒
𝐺
𝑑
3

𝐺

𝑑𝑦3

− 𝑅
𝑒

𝑑𝐺

𝑑𝑦

𝑑
2

𝐺

𝑑𝑦2
− 𝑅
𝑒

𝑑
2

𝐺

𝑑𝑦2

1

𝑅
= 0,

(40)

𝐺 (𝑦)
𝜕𝐸

𝜕𝑦
+

1

𝑃
𝑟
𝑅
𝑒

[
𝜕
2

𝐸

𝜕𝑦2
] = 0, (41)

(i) 𝑑𝐺 (1)

𝑑𝑦
= 0, (ii) 𝐺 (1) = 1, (iii) 𝑑

2

𝐺 (0)

𝑑𝑦2
= 0,

(iv) 𝐺 (0) = 0, (v) 𝐸 (1) = 1, (vi) 𝐸


(0) = 0.

(42)

3.3. Analytical Solution. The aim of this section is to find the
solutions of (40)–(42) using double perturbation [3, 4]. For
small 𝑅

𝑒
and 𝛼, we expand

𝐺 = 𝐺
1
+ 𝑅
𝑒
𝐺
2
+ 𝑂 (𝑅

2

𝑒
) ,

𝐺
1
= 𝐺
10

+ 𝛼𝐺
11

+ 𝑂 (𝛼
2

) ,

𝐺
2
= 𝐺
20

+ 𝛼𝐺
21

+ 𝑂 (𝛼
2

) .

(43)

Using (43) into (40)–(42) and then solving the resulting prob-
lems for small 𝑅

𝑒
and 𝛼, we obtain

𝐺
10

(𝑦) = −
1

2
𝑦
3

+
3

2
𝑦,

𝐺
11

(𝑦) =
3

40
𝑦
5

−
3

20
𝑦
3

+
3

40
𝑦,

𝐺
20

(𝑦) =
1

280
𝑦
7

−
3

280
𝑦
3

+
1

140
𝑦

+
1

𝑅
(−

1

40
𝑦
5

+
1

20
𝑦
3

−
1

40
𝑦) ,

𝐺
21

(𝑦) = −
13

20160
𝑦
9

−
9

2800
𝑦
7

+
9

5600
𝑦
5

+
227

25200
𝑦
3

+
227

33600
𝑦

+
1

𝑅
(

1

210
𝑦
7

−
3

200
𝑦
5

+
11

700
𝑦
3

−
23

4200
𝑦) ,

𝐺
1
(𝑦) = −

1

2
𝑦
3

+
3

2
𝑦 + 𝛼 [

3

40
𝑦
5

−
3

20
𝑦
3

+
3

40
𝑦] ,

𝐺
2
(𝑦) =

1

280
𝑦
7

−
3

280
𝑦
3

+
1

140
𝑦

+
1

𝑅
(−

1

40
𝑦
5

+
1

20
𝑦
3

−
1

40
𝑦)

+ 𝛼 [−
13

20160
𝑦
9

−
9

2800
𝑦
7

+
9

5600
𝑦
5

+
227

25200
𝑦
3

−
227

33600
𝑦

+
1

𝑅
(

1

210
𝑦
7

−
3

200
𝑦
5

+
11

700
𝑦
3

−
23

4200
𝑦)] ,

(44)

𝐺 (𝑦) = (−
1

2
𝑦
3

+
3

2
𝑦 + 𝛼 [

3

40
𝑦
5

−
3

20
𝑦
3

+
3

40
𝑦])

+ 𝑅
𝑒
(

1

280
𝑦
7

−
3

280
𝑦
3

+
1

140
𝑦

+
1

𝑅
(−

1

40
𝑦
5

+
1

20
𝑦
3

−
1

40
𝑦)

+ 𝛼 [ −
13

20160
𝑦
9

−
9

2800
𝑦
7

+
9

5600
𝑦
5

+
227

25200
𝑦
3

−
227

33600
𝑦

+
1

𝑅
(

1

210
𝑦
7

−
3

200
𝑦
5

+
11

700
𝑦
3

−
23

4200
𝑦)] ) .

(45)

It is noted that for 𝑅 → ∞, the expression of 𝐺(𝑦) in [4] is
recovered.

Let

𝐸 = 𝐸
1
+ 𝑅
𝑒
𝐸
2
+ 𝑂 (𝑅

2

𝑒
) . (46)

From (41), (45), and (46), we obtain

𝑑
2

𝐸
1

𝑑𝑦2
= 0, 𝐸

1
(1) = 1, 𝐸



1
(0) = 0,

𝑃
𝑟
𝐺 (𝑦)

𝑑𝐸
1
(𝑦)

𝑑𝑦
+

𝑑
2

𝐸
2
(𝑦)

𝑑𝑦2
, 𝐸
2
(1) = 0, 𝐸



2
(0) = 0.

(47)

Solving the above problems and using (46), one obtains

𝐸 (𝑦) = 1. (48)

3.4. Numerical Solution. Now the numerical solution of
(40)–(42) has been obtained using shooting method with
Runge-Kutta scheme.

4. Results and Discussion

Figures 1, 2, 3, and 4 illustrate the behaviour of self-axial
velocity over a range of 𝑅 with 𝑅

𝑒
and 𝛼 fixed.

Figures 1 and 2 illustrate the behaviour of self-axial veloc-
ity 𝑢/𝑥 for permeation Reynolds number 𝑅

𝑒
= 1 (injection)

and 𝛼 = 0.5, −0.5 (expansion and contraction, resp.) over
a range of porosity parameter𝑅. For𝑅 > 0, these figures show
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Figure 1: Self-axial velocity profiles over a range of 𝑅, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= 1 and 𝛼 = 0.5.
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Figure 2: Self-axial velocity profiles over a range of 𝑅, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= 1 and 𝛼 = −0.5.

that the higher porosity 𝑅 leads to higher self-axial velocity
near the center and lower near the wall. The results for 𝑅 < 0

are quite opposite to that of 𝑅 > 0. A comparative study of
these figures further indicates that the self-axial velocity near
the center in case of injection with expanding wall and high
porosity is higher than injection with contracting wall and
high porosity.

The plots of self-axial velocity 𝑢/𝑥 for permeation
Reynolds number 𝑅

𝑒
= −1 (suction) and 𝛼 = 0.5, −0.5

(expansion and contraction, resp.) over a range of 𝑅 have
been displayed in Figures 3 and 4. In case of 𝑅 > 0, these
graphs depict that the higher porosity 𝑅 leads to lower self-
axial velocity near the center and higher near the wall. For
𝑅 < 0, these figures depict that the lower porosity 𝑅 leads to
higher self-axial velocity near the center and lower near the
wall. By comparing Figures 3 and 4, we note that the self-axial
velocity near the center in case of suctionwith expandingwall
and high porosity is higher than suctionwith contractingwall
and high porosity.

The behaviour of the self-axial velocity 𝑢/𝑥 for wall
dilation rate 𝛼 = −0.5 (contraction) and 𝑅

𝑒
= 1, −1 (injection

and suction) over a range of 𝑅 has been displayed in Figures 2
and 3. For 𝑅 > 0, Figure 3 shows that the higher the porosity
𝑅, the lower the self-axial velocity at the center and higher
near the wall. Figure 2 shows that the higher the porosity 𝑅,

−0.5−1 0 0.5 1

y

2

1

0

−1

−2

u
/x

Figure 3: Self-axial velocity profiles over a range of 𝑅 where blue =

1, pink = 0.5, yellow = −0.5 and green = −1 at 𝑅
𝑒
= −1 and 𝛼 =

−0.5.

−0.5−1 0 0.5 1
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Figure 4: Self-axial velocity profiles over a range of 𝑅, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= −1 and 𝛼 = 0.5.

the higher the self-axial velocity at the center and lower near
the wall. When 𝑅 < 0, Figure 3 elucidates that the lower
porosity 𝑅 gives a higher self-axial velocity near the center
and a lower one near the wall. Figure 2 elucidates that the
lower porosity 𝑅 gives a lower self-axial velocity near the
center and a higher one near the wall. A comparative study
of Figures 2 and 3 indicates that the self-axial velocity near
the center in case of injection with contracting wall and high
porosity is higher than suctionwith contractingwall and high
porosity.

The variations of self-axial velocity 𝑢/𝑥 for wall dilation
rate 𝛼 = 0.5 (expansion) and 𝑅

𝑒
= 1, −1 (injection and suc-

tion) over a range of 𝑅 have been plotted in Figures 1 and 4.
When 𝑅 > 0, then Figure 1 shows that the higher the porosity
𝑅, the higher the self-axial velocity at the center and lower
near the wall. Figure 4 shows that the higher the porosity
𝑅, the lower the self-axial velocity at the center and higher
near the wall. When 𝑅 < 0, Figure 1 describes that the
lower porosity𝑅 gives lower self-axial velocity near the center
and higher near the wall. Figure 4 provides that the lower
porosity𝑅 yields higher self-axial velocity near the center and
lower near the wall. Comparison of Figures 1 and 4 leads to
the conclusion that the self-axial velocity near the center for
suction with expanding wall and high porosity is higher than
injection with expanding wall and high porosity.
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Figure 5: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= 1 and 𝑅 = 0.5.
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Figure 6: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at𝑅
𝑒
= −1 and𝑅 = 0.5.

Tables 1, 2, 3, and 4 depict that the percentage error
decreases when 𝑅 increases.

Figures 5, 6, 7, and 8 plot the behaviour of self-axial
velocity over a range of 𝛼 with fixed 𝑅

𝑒
and 𝑅.

For 𝛼 > 0, Figures 5–8 witness that the greater 𝛼 leads
to higher self-axial velocity at the center and lower near the
wall. For 𝛼 < 0, these figures show that an increase in
contraction ratio leads to lower self-axial velocity near the
center and higher near the wall. By comparing Figures 5
and 6, we note that the self-axial velocity near the center
in case of suction with expanding wall and high porosity is
higher than injection with expanding wall and high porosity.

Comparison of Figures 5 and 8 shows that the self-axial
velocity near the center in case of injection with expanding
wall and low porosity is higher than injection with expanding
wall and high porosity. Comparative study of Figures 6 and 7
reveals that the self-axial velocity near the center in case of
suction with expanding wall and high porosity is higher than
suction with expanding wall and low porosity. By comparing
Figures 7 and 8, the self-axial velocity near the center in case
of injection with expanding wall and low porosity is higher
than suction with expanding wall and low porosity.

Tables 5, 6, 7, and 8 indicate that the percentage error is
an increasing function of 𝛼.
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Figure 7: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= −1 and 𝑅 =

−0.5.
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Figure 8: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at𝑅
𝑒
= 1 and𝑅 = −0.5.

Figures 9, 10, 11, and 12 illustrate the behaviour of self-axial
velocity over a range of 𝑅

𝑒
with fixed 𝛼 and 𝑅.

The self-axial velocity 𝑢/𝑥 for porosity parameter 𝑅 = 0.5

(high porosity) andwall dilation rate𝛼 = 0.5, −0.5 (expansion
and contraction, resp.) over a range of 𝑅

𝑒
has been sketched

in Figures 9 and 10. For 𝑅
𝑒

> 0, we found that increasing
injection 𝑅

𝑒
leads to a lower self-axial velocity at the center

and a higher one near the wall. When 𝑅
𝑒

< 0, Figures
9 and 10 indicate that increasing suction ratio leads to a
higher self-axial velocity near the center and a lower one
near the wall. Comparison of Figures 9 and 10 shows that
the self-axial velocity near the center in case of injection with
expanding wall and high porosity is higher than injection
with contracting wall and high porosity.

Figures 11 and 12 provide the variation of self-axial veloc-
ity 𝑢/𝑥 for porosity parameter 𝑅 = −0.5 (low porosity) and
wall dilation rate 𝛼 = 0.5, −0.5 (expansion and contraction,
resp.) over a range of 𝑅

𝑒
. In case of 𝑅

𝑒
> 0, Figures 11 and

12 show that increasing injection leads to a higher self-axial
velocity near the center and a lower one near the wall. For
𝑅
𝑒
< 0, Figures 11 and 12 show that increasing suction ratio

leads to a lower self-axial velocity at the center and a higher
one near the wall. A comparison between Figures 11 and 12
shows that the self-axial velocity near the center in case of
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Figure 9: Self-axial velocity profiles over a range of𝑅
𝑒
, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = 0.5 and 𝑅 = 0.5.
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Figure 10: Self-axial velocity profiles over a range of 𝑅
𝑒
, where

blue = 1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = −0.5 and
𝑅 = 0.5.

Table 1: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅

𝑒
= 1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.549755 1.549040 0.046138
𝑅 = −0.5 1.575774 1.576305 0.033691
𝑅 = 0.5 1.471699 1.480956 0.625085
𝑅 = 1 1.497718 1.501653 0.262055

Table 2: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1. for 𝑅

𝑒
= 1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.480690 1.480513 0.012005
𝑅 = −0.5 1.501697 1.503207 0.100457
𝑅 = 0.5 1.417671 1.423694 0.423027
𝑅 = 1 1.438678 1.440991 0.160530

injection with expanding wall and low porosity is higher than
injection with contracting wall and low porosity.
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Figure 11: Self-axial velocity profiles over a range of𝑅
𝑒
, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = −0.5 and
𝑅 = −0.5.
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Figure 12: Self-axial velocity profiles over a range of 𝑅
𝑒
, where

blue = 1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = 0.5

and 𝑅 = −0.5.

Table 3: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅

𝑒
= −1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.490782 1.490460 0.012660
𝑅 = −0.5 1.464764 1.466093 0.090696
𝑅 = 0.5 1.568838 1.583640 0.934648
𝑅 = 1 1.542820 1.548592 0.372749

Table 4: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅

𝑒
= −1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.418772 1.419039 0.018778
𝑅 = −0.5 1.397766 1.399917 0.153681
𝑅 = 0.5 1.481791 1.491195 0.630644
𝑅 = 1 1.460785 1.464232 0.235434

The self-axial velocity 𝑢/𝑥 for porosity parameter 𝑅 =

−0.5, 0.5 (low and high porosity, resp.,) and wall dilation rate
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Table 5: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝑅

𝑒
= 1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.409157 1.412797 0.257641
𝛼 = −0.5 1.438678 1.440991 0.160530
𝛼 = 0.5 1.497718 1.501653 0.262055
𝛼 = 1 1.527238 1.534003 0.440984

Table 6: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝑅

𝑒
= −1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.419768 1.426770 0.490778
𝛼 = −0.5 1.460785 1.464232 0.235434
𝛼 = 0.5 1.542820 1.548592 0.372749
𝛼 = 1 1.583837 1.595620 0.738487

Table 7: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝑅

𝑒
= −1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.382767 1.387131 0.314608
𝛼 = −0.5 1.418772 1.419039 0.018778
𝛼 = 0.5 1.490782 1.490460 0.021660
𝛼 = 1 1.526788 1.530071 0.214601

Table 8: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝑅

𝑒
= 1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.446158 1.448653 0.172244
𝛼 = −0.5 1.480690 1.480513 0.012005
𝛼 = 0.5 1.549755 1.549040 0.046138
𝛼 = 1 1.584287 1.585538 0.078889

𝛼 = −0.5 (contraction) over a range of 𝑅
𝑒
has been explained

in Figures 10 and 11. When 𝑅
𝑒

> 0, Figure 10 shows that
increasing injection leads to a lower self-axial velocity near
the center and a higher one near the wall. Figure 11 shows that
increasing injection leads to a higher self-axial velocity near
the center and a lower one near the wall. In case of 𝑅

𝑒
< 0,

Figure 10 shows that increasing suction ratio leads to a higher
self-axial velocity at the center and a lower one near the wall.
Increasing suction ratio leads to a lower self-axial velocity
at the center and a higher one near the wall (Figure 11). A
comparison shows that the self-axial velocity near the center
in case of injection with contracting wall and low porosity is
higher than injection with contracting wall and high porosity
(Figures 10 and 11).

Figures 9 and 12 indicate the behaviour of self-axial
velocity 𝑢/𝑥 for porosity parameter 𝑅 = −0.5, 0.5 (low
and high porosity, resp.) and wall dilation rate 𝛼 = 0.5

Table 9: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.460785 1.464232 0.235434

𝑅
𝑒
= −0.5 1.455288 1.456930 0.114768

𝑅
𝑒
= 0.5 1.444204 1.445507 0.090102

𝑅
𝑒
= 1 1.438678 1.440991 0.160530

Table 10: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.542820 10548592 0.372749

𝑅
𝑒
= −0.5 1.531544 1.533740 0.143138

𝑅
𝑒
= 0.5 1.508993 1.510721 0.114334

𝑅
𝑒
= 1 1.497718 1.501653 0.262055

Table 11: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.418772 1.419039 0.018778

𝑅
𝑒
= −0.5 1.434252 1.435114 0.060097

𝑅
𝑒
= 0.5 1.465211 1.465912 0.048020

𝑅
𝑒
= 1 1.480690 1.480513 0.012005

Table 12: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.490782 1.490460 0.021660

𝑅
𝑒
= −0.5 1.505526 1.506243 0.047638

𝑅
𝑒
= 0.5 1.535012 1.535561 0.035738

𝑅
𝑒
= 1 1.523217 1.524206 0.046138

(expansion) over a range of 𝑅
𝑒
. In case of 𝑅

𝑒
> 0, Figure 9

shows that increasing injection leads to a lower self-axial
velocity near the center and a higher one near the wall.
Figure 12 shows that increasing injection leads to a higher
self-axial velocity near the center and a lower one near the
wall. In case of 𝑅

𝑒
< 0, Figure 9 depicts that increasing

suction ratio leads to a higher self-axial velocity at the center
and a lower one near the wall. Figure 12 shows that increasing
suction ratio leads to a lower self-axial velocity at the center
and a higher one near the wall. By comparing Figures 9 and
12, the self-axial velocity near the center in case of injection
with expansion wall and low porosity is higher than injection
with expansion wall and large porosity.

Tables 9, 10, 11, and 12 show the percentage error decrease
for a small 𝑅

𝑒
.

The plots in Figure 13 elucidate that the temperature
distribution is constant throughout and it is independent of
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Figure 13: Temperature distribution profile.

physical parameter. Numerical solution for temperature is
similar to our analytical solution, and therefore, temperature
distribution has no error.

5. Conclusions

In this paper, we have generalized the flow analysis of [4] with
the influence of porous medium and heat transfer. Analytical
solution for the arising nonlinear problem is obtained by
using Lie symmetry technique in conjunction with a second-
order double perturbation method. We have studied the
effects of porous medium (𝑅), permeation Reynolds 𝑅

𝑒
, and

wall dilation rate 𝛼 on the self-axial velocity and temperature
distribution within the fluid. We compared the analytical
solution with the numerical solution for self-axial velocity for
the different values of 𝑅, 𝑅

𝑒
, and 𝛼.

It was found that the temperature distribution has no
error since analytical solution is similar to numerical solution
and both are equal to one. We also found that as 𝑅 increases,
the percentage error decreases and that temperature distri-
bution is constant throughout. Here, we have noticed that
the obtained analytical results match quite well with the
numerical results for a good range of these parameters. We
also noticed that in all cases, the self-axial velocity has similar
trend as in [4], that is, the self-axial velocity approaches a
cosine profile. Finally, we observed that when 𝑅 approaches
infinity, our problem reduces to the problem in [4] and our
results (analytical and numerical) also reduce to the results
in [4].
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