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The exponential stability problem is considered in this paper for discrete-time switched BAM neural networks with time delay.
The average dwell time method is introduced to deal with the exponential stability analysis of the systems for the first time. By
constructing a new switching-dependent Lyapunov-Krasovskii functional, somenewdelay-dependent criteria are developed,which
guarantee the exponential stability. A numerical example is provided to demonstrate the potential and effectiveness of the proposed
algorithms.

1. Introduction

It is well known that bidirectional associative memory
(BAM) neural networks have been proposed by Kosko
[1, 2], which include two layers: the 𝑋-layer and the 𝑌-layer.
The neurons in one layer are fully interconnected to the
neurons in another layer. Recently, the dynamics analysis for
BAM neural networks has received much attention due to
their extensive applications in pattern recognition, solving
optimization, automatic control engineering, and so forth. It
is known that time delay, which will inevitably occur in the
communication owing to the unavoidable finite switching
speed of amplifiers, is the main cause of instability and
poor performance of neural networks. Hence, it is of great
importance to study the stability of BAM neural networks
with time delay. Many asymptotic or exponential stability
conditions for BAM neural networks with time delay were
developed, see, for example [3–10] and the references therein.

On the other hand, switched systems are an important
class of hybrid dynamical systems which consist of a family
of continuous-time or discrete-time subsystems and a rule
that orchestrates the switching among them. Switched sys-
tems provide a natural and convenient unified framework
for mathematical modeling of many physical phenomena
and practical applications such as autonomous transmission

systems, computer disc driver, room temperature control,
power electronics, and chaos generators, to name a few.
Lots of valuable results concerning the stability analysis and
stabilization for linear or nonlinear hybrid and switched
systems were established, see, for example [11–14] and the
references cited therein.

Recently, the switched neural networks, whose individual
subsystems are a set of neural networks, have found their
applications in the field of high-speed signal processing and
artificial intelligence. Many researchers have been devoted
to studying the stability issues for switched neural networks;
see, for example, [15–17]. In [15], by using switched Lyapunov
function method and a generalized Halanay inequality tech-
nique, the authors illustrated the asymptotic and exponen-
tial stability conditions for hybrid impulsive and switching
Hopfield neural networks. While the switched Hopfield
neural networks with time-varying delay were considered
in [16], a robust stability condition was proposed based on
the Lyapunov-Krasovskii functional approach. By combining
Cohen-Grossberg neural networks with an arbitrary switch-
ing rule, the model of the switched Cohen-Grossberg neural
networks with mixed time-varying delays was established
in [17], and the robust stability criteria were established for
these systems. However, all these results are related to the
continuous-time switched neural networks. To the best of
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the authors’ knowledge, stability issues of the discrete-time
switched neural networks have not been fully investigated
to date. Particularly for the exponential stability analysis of
the discrete-time switched BAMneural networks under some
constrained switching, few results have been available in the
literature so far, which motivates us to carry out the present
study.

In this paper, the exponential stability analysis of discrete-
time switched BAM neural networks with time delay is
considered. To begin with, the mathematical model of the
discrete-time switched BAM neural networks with time
delay is established. Then by constructing a new switching-
dependent Lyapunov-Krasovskii functional, some sufficient
criteria are developed to guarantee the discrete-time switched
BAM neural networks to be exponentially stable based on
the average dwell time approach and finite sum inequality
technology. Finally, A numerical example is provided to
demonstrate the potential and effectiveness of the proposed
algorithms.

Notations. In this paper, we use 𝐴 > 0 (𝐴 < 0) to denote
a positive- (negative-) definite matrix 𝐴; 𝐴𝑇 represents the
transpose of matrix 𝐴; 𝜆

𝑀
(⋅) (resp., 𝜆

𝑚
(⋅)) means the max-

imum (resp., minimum) eigenvalue of (⋅). Let R denote the
set of real numbers;R𝑛 denotes the 𝑛-dimensional Euclidean
space;R𝑛×𝑚 is the set of all 𝑛×𝑚 realmatrices;R+ denotes the
set of {0, 1, 2, . . .}. N = {1, 2, . . . , 𝑁} means a set of positive
integers; N = {1, 2, . . . , 𝑛}. The notation diag(⋅) denotes a
diagonal matrix. For given 𝜏 > 0 and 𝜃 ∈ [−𝜏, 0], ‖𝑥(𝑡)‖
denotes vector norm defined by ‖𝑥(𝑡)‖ = sup

−𝜏≤𝜃≤0
‖𝑥(𝑡 +

𝜃)‖. Matrices, if their dimensions are not explicitly stated,
are assumed to have compatible dimensions for algebraic
operations.

2. Problem Formulation and Preliminaries

In this section, firstly, we will establish the model of discrete-
time switched BAM neural networks. Consider the following
discrete-time BAM neural networks with time delay (Σ

1
):

𝑥
𝑝 (𝑘 + 1)

= 𝑎
𝑝
𝑥
𝑝 (𝑘) +

𝑛

∑

𝑞=1

𝑤
𝑞𝑝
𝑓
𝑞
(𝑦
𝑞 (𝑘 − 𝑑)) + 𝐼

𝑝
, 𝑝 ∈ N,

𝑦
𝑞 (𝑘 + 1)

= 𝑏
𝑞
𝑦
𝑞 (𝑘) +

𝑛

∑

𝑝=1

V
𝑝𝑞
𝑔
𝑝
(𝑥
𝑝 (𝑘 − 𝜏)) + 𝐽

𝑞
, 𝑞 ∈ N,

(1)

where 𝑥
𝑝
(𝑘), 𝑦

𝑞
(𝑘) are states of the 𝑝th neuron from the neu-

ral field𝐹
𝑋
and the 𝑞th neuron from the neural field𝐹

𝑌
at time

𝑘, respectively. 𝑎
𝑝
, 𝑏
𝑞
∈ (0, 1) describe the stability of internal

neuron processes on the𝑋-layer and the𝑌-layer, respectively.
𝑤
𝑞𝑝
, V
𝑝𝑞

are constants and denote the synaptic connection
weights. 𝑓

𝑞
(⋅) and 𝑔

𝑝
(⋅) denote the activation functions of the

𝑞th neuron from the neural field 𝐹
𝑌
and the 𝑝th neuron from

the neural field 𝐹
𝑋
, respectively. 𝐼

𝑝
and 𝐽
𝑞
are the external

constant inputs from outside of the network acting on the𝑝th

neuron from the neural field 𝐹
𝑋
and the 𝑞th neuron from the

neural field 𝐹
𝑌
, respectively. 𝑑 and 𝜏 are constant delays.

The system (Σ
1
) can be rewritten as the vector form (Σ

2
):

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑊
𝑇
𝑓 (𝑦 (𝑘 − 𝑑)) + 𝐼,

𝑦 (𝑘 + 1) = 𝐵𝑦 (𝑘) + 𝑉
𝑇
𝑔 (𝑥 (𝑘 − 𝜏)) + 𝐽,

(2)

where

𝑥 (𝑘) = [𝑥
1 (𝑘) , 𝑥2 (𝑘) , . . . , 𝑥𝑛 (𝑘)]

𝑇
,

𝑦 (𝑘) = [𝑦
1 (𝑘) , 𝑦2 (𝑘) , . . . , 𝑦𝑛 (𝑘)]

𝑇
,

𝐴 = diag (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ,

𝐵 = diag (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) ,

𝑊 = (𝑤
𝑞𝑝
)
𝑛×𝑛

, 𝑉 = (V
𝑝𝑞
)
𝑛×𝑛

,

𝑓 (𝑦 (𝑘))

= [𝑓
1
(𝑦
1 (𝑘)) , 𝑓2 (𝑦2 (𝑘)) , . . . , 𝑓𝑛 (𝑦𝑛 (𝑘))]

𝑇

,

𝑔 (𝑥 (𝑘))

= [𝑔
1
(𝑥
1 (𝑘)) , 𝑔2 (𝑥2 (𝑘)) , . . . , 𝑔𝑛 (𝑥𝑛 (𝑘))]

𝑇
,

𝐼 = [𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
] , 𝐽 = [𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
] .

(3)

Throughout this paper, we always assume the following.

(G
1
) The neurons activation functions 𝑓

𝑞
(⋅) and

𝑔
𝑝
(⋅) (𝑝, 𝑞 ∈ N) are bounded on R.

(G
2
) There exist constants ℓ(1)

𝑞
> 0 and ℓ

(2)

𝑝
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑞
(𝜉
1
) − 𝑓
𝑞
(𝜉
2
)
󵄨󵄨󵄨󵄨󵄨
≤ ℓ
(1)

𝑞

󵄨󵄨󵄨󵄨𝜉1 − 𝜉
2

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑝
(𝜉
1
) − 𝑔
𝑝
(𝜉
2
)
󵄨󵄨󵄨󵄨󵄨
≤ ℓ
(2)

𝑝

󵄨󵄨󵄨󵄨𝜉1 − 𝜉
2

󵄨󵄨󵄨󵄨 ,

∀𝜉
1
, 𝜉
2
∈ R, 𝑝, 𝑞 ∈ N.

(4)

Then, under the assumptions (G
1
) and (G

2
), system (Σ

2
) has

at least one equilibrium.
Now, we shift equilibrium point 𝑥∗ = [𝑥

∗

1
𝑥
∗

2
. . .

𝑥
∗

𝑛
], 𝑦∗ = [𝑦

∗

1
𝑦
∗

2
⋅ ⋅ ⋅ 𝑦

∗

𝑛
] of system (Σ

2
) to the origin.

Let 𝑥(𝑘) = 𝑥(𝑘) − 𝑥
∗, 𝑦(𝑘) = 𝑦(𝑘) − 𝑦

∗; then the system (Σ
2
)

can be transformed to the following system (Σ
3
):

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑊
𝑇
𝑓 (𝑦 (𝑘 − 𝑑)) ,

𝑦 (𝑘 + 1) = 𝐵𝑦 (𝑘) + 𝑉
𝑇
𝑔 (𝑥 (𝑘 − 𝜏)) ,

(5)
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where

𝑥 (𝑘) = [𝑥
1 (𝑘) , 𝑥2 (𝑘) , . . . , 𝑥𝑛 (𝑘)]

𝑇
,

𝑦 (𝑘) = [𝑦
1 (𝑘) , 𝑦2 (𝑘) , . . . , 𝑦𝑛 (𝑘)]

𝑇
,

𝑓 (𝑦 (𝑘)) = [𝑓
1
(𝑦
1 (𝑘)) , 𝑓2 (𝑦2 (𝑘)) , . . . , 𝑓𝑛 (𝑦𝑛 (𝑘))]

𝑇
,

𝑔 (𝑥 (𝑘)) = [𝑔
1
(𝑥
1 (𝑘)) , 𝑔2 (𝑥2 (𝑘)) , . . . , 𝑔𝑛 (𝑥𝑛 (𝑘))]

𝑇
,

𝑓
𝑞
(𝑦
𝑞 (𝑘)) = 𝑓

𝑞
(𝑦
𝑞 (𝑘)) − 𝑓

𝑞
(𝑦
∗

𝑞
) , 𝑞 ∈ N,

𝑔
𝑝
(𝑥
𝑝 (𝑘)) = 𝑔

𝑝
(𝑥
𝑝 (𝑘)) − 𝑔

𝑝
(𝑔
∗

𝑝
) , 𝑝 ∈ N.

(6)

Obviously, the activation functions 𝑓
𝑞
(⋅) and 𝑔

𝑝
(⋅) satisfy the

following conditions.

(G
3
) There exist constants ℓ(1)

𝑞
> 0 and ℓ

(2)

𝑝
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑞 (𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ ℓ
(1)

𝑞

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑝 (𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ ℓ
(2)

𝑝

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

∀𝜉 ∈ R, 𝑝, 𝑞 ∈ N.

(7)

With the rapid development of intelligent control, hybrid
systems have been investigated due to their extensive applica-
tions. In recent years, considerable efforts have been focused
on analysis and design of switched systems. The discrete-
time switched system can be characterized by the following
difference equation (Σ

4
):

𝑥 (𝑘 + 1) = Γ
𝜎(𝑘)

𝑥 (𝑘) , (8)

where 𝜎(𝑘) is a switching signal which takes its values in the
finite setN = {1, 2, . . . , 𝑁}. Γ

𝜎(𝑘)
= Γ
𝑖
, when 𝜎(𝑘) = 𝑖, are the

functions of the switching signals.
Combining the theories of switched systems and discrete-

time BAM neural networks, the discrete-time switched BAM
neural networks can be formulated as the following system
(Σ):

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝑊
𝑇

𝜎(𝑘)
𝑓 (𝑦 (𝑘 − 𝑑)) ,

𝑦 (𝑘 + 1) = 𝐵
𝜎(𝑘)

𝑦 (𝑘) + 𝑉
𝑇

𝜎(𝑘)
𝑔 (𝑥 (𝑘 − 𝜏)) ,

(9)

where 𝜎(𝑘) is a switching signal which takes its values in the
finite setN = {1, 2, . . . , 𝑁}.

For the discrete-time switched BAMneural networks (Σ),
we have the following assumptions.
(H
1
) The initial value is 𝑥(𝑠) = 𝜙(𝑠), 𝑦(𝑠) = 𝜓(𝑠), 𝑠 ∈

[−ℎ, 0], where ℎ = max{𝑑, 𝜏}.
(H
2
) There exist matrices 𝐿

1
> 0 and 𝐿

2
> 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐿
1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑔 (𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐿
2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 , ∀𝜉 ∈ R, (10)

where 𝐿
1

= diag(ℓ(1)
1
, ℓ
(1)

2
, . . . , ℓ

(1)

𝑛
) and 𝐿

2
=

diag(ℓ(2)
1
, ℓ
(2)

2
, . . . , ℓ

(2)

𝑛
).

(H
3
) Switching sequence is defined as 𝜁 = {[𝑥

𝑘0
𝑦
𝑘0
]
𝑇
;

(𝑖
0
, 𝑘
0
), (𝑖
1
, 𝑘
1
), . . . , (𝑖

𝑚
, 𝑘
𝑚
), . . . , |𝑖

𝑚
∈ N, 𝑚 ∈ R+}.

When 𝑘 ∈ [𝑘
𝑚
, 𝑘
𝑚+1

), the 𝑘
𝑚
th subsystem is activated

and the states of system (Σ) do not jump when switch
occurs.

Remark 1. By combining the switched systems theory and the
discrete-timeBAMneural networksmodel, themathematical
model of discrete-time switched BAM neural networks is
introduced as above. A set of discrete-time BAM neural
networks with time delay are used as the subsystems, and
an arbitrary switching rule is assumed to coordinate the
switching between these neural networks.

To present the main results of this paper more precisely,
the following definitions and lemmas are introduced, which
will be essential for the later development.

Definition 2 (see [12]). For any 𝑘 ≥ 𝑘
0
and any switched signal

𝜎(𝜍), 𝑘
0
≤ 𝜍 < 𝑘, let𝑁

𝜎
denote the switching numbers of 𝜎(𝜍)

during the interval [𝑘
0
, 𝑘]. If there exist 𝑁

0
≥ 0 and 𝑇

𝑎
> 0

such that 𝑁
𝜎
(𝑘
0
, 𝑘) ≤ 𝑁

0
+ (𝑘 − 𝑘

0
)/𝑇
𝑎
, then 𝑇

𝑎
and 𝑁

0
are

called average dwell time and the chatter bound, respectively.

Definition 3. The discrete-time switched BAM neural net-
work (Σ) is said to be exponentially stable if its solution satis-
fies

‖𝑥 (𝑘)‖
2
+
󵄩󵄩󵄩󵄩𝑦 (𝑘)

󵄩󵄩󵄩󵄩

2
≤ 𝐾 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩

2

𝐿
) 𝜆
−(𝑘−𝑘0), ∀𝑘 ≥ 𝑘

0
,

(11)

for any initial condition (𝑘
0
, 𝜙) ∈ R+ × 𝐶

𝑛 and (𝑘
0
, 𝜓) ∈

R+ × 𝐶
𝑛

⋅ ‖𝜙‖
𝐿

= sup
𝑘0−ℎ≤ℓ≤𝑘0

‖𝜙(ℓ)‖, and ‖𝜓‖
𝐿

=

sup
𝑘0−ℎ≤ℓ≤𝑘0

‖𝜓(ℓ)‖, ℎ = max{𝑑, 𝜏}. 𝐾 > 0 is the decay coef-
ficient, and 𝜆 > 1 is the decay rate.

Remark 4. Without loss of generality, in this paper, we
assume 𝑁

0
= 0 for simplicity as commonly used in the

literature.

Remark 5. Based on the definition of exponential stability for
BAMneural networks in [5] and the definition of exponential
stability for switched systems in [13], we give the above
definition of exponential stability for discrete-time switched
BAM neural networks.

Lemma 6 (the Schur complement [18]). For any symmetric
matrix 𝑆 = [

𝑆11 𝑆12

𝑆
𝑇

12
𝑆22

] < 0, the following conditions are equiva-
lent:

(i) 𝑆
11

< 0, and 𝑆
22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0,
(ii) 𝑆
22

< 0, and 𝑆
11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 7 (finite sum inequality [13]). For any constant mat-
rix 𝑌 = [𝑀

1
𝑀
2
] ∈ R𝑛×2𝑛, 𝑅 > 0, ℎ ≥ 0, the following ineq-

uality holds:

−

𝑘−1

∑

𝑗=𝑘−ℎ

ℓ
𝑇
(𝑗) 𝑅ℓ (𝑗) ≤ 𝜉

𝑇
(𝑘) [

[

𝑀
𝑇

1
+𝑀
1

−𝑀
𝑇

1
+𝑀
2

∗ −𝑀
𝑇

2
−𝑀
2

]

]

× 𝜉 (𝑘) + ℎ𝜉
𝑇
(𝑘) 𝑌
𝑇
𝑅
−1
𝑌𝜉 (𝑘) ,

(12)

where ℓ(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and 𝜉(𝑘) = [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘 − ℎ)]

𝑇.
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3. Main Result

In this section, the exponential stability condition for the
discrete-time switched BAM neural networks (Σ) will be
presented using the average dwell time method.

When 𝜎(𝑘) = 𝑖, we have the following subsystem (Σ
𝑖
):

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝑊

𝑇

𝑖
𝑓 (𝑦 (𝑘 − 𝑑)) ,

𝑦 (𝑘 + 1) = 𝐵
𝑖
𝑦 (𝑘) + 𝑉

𝑇

𝑖
𝑔 (𝑥 (𝑘 − 𝜏)) .

(13)

Choose the Lyapunov-Krasovskii functional candidate for the
subsystem (Σ

𝑖
) as

𝑉
𝑖 (𝑘) = 𝑉

1𝑖 (𝑘) + 𝑉
2𝑖 (𝑘) + 𝑉

3𝑖 (𝑘) , (14)

where

𝑉
1𝑖 (𝑘) = 𝑥

𝑇
(𝑘) 𝑃1𝑖𝑥 (𝑘) + 𝑦

𝑇
(𝑘) 𝑃2𝑖𝑦 (𝑘) ,

𝑉
2𝑖 (𝑘) =

𝑘−1

∑

𝜃=𝑘−𝜏

𝑟
𝜃−𝑘+1

𝑥
𝑇
(𝜃) 𝑄1𝑖𝑥 (𝜃)

+

𝑘−1

∑

𝜃=𝑘−𝑑

𝑟
𝜃−𝑘+1

𝑦
𝑇
(𝜃) 𝑄2𝑖𝑦 (𝜃) ,

𝑉
3𝑖 (𝑘) =

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

1
(𝜃) 𝑅1𝑖ℓ1 (𝜃)

+

−1

∑

𝑠=−𝑑

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

2
(𝜃) 𝑅2𝑖ℓ2 (𝜃) ,

ℓ
1 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

ℓ
2 (𝑘) = 𝑦 (𝑘 + 1) − 𝑦 (𝑘) .

(15)

Now we give the following theorem, which plays an
important role in the derivation of the exponential stability
condition for the discrete-time switched BAM neural net-
works (Σ).

Theorem 8. Under the assumptions (𝐻
1
)–(𝐻
3
), for given

scalar 𝑟 > 1, the decay estimation

𝑉
𝑖 (𝑘) ≤ 𝑟

−(𝑘−𝑘0)𝑉
𝑖
(𝑘
0
) (16)

is satisfied along any trajectory of system (Σ
𝑖
) if there exist

matrices 𝑃
1𝑖

> 0, 𝑃
2𝑖

> 0, 𝑄
1𝑖

> 0, 𝑄
2𝑖

> 0, 𝑅
1𝑖

> 0, 𝑅
2𝑖

>

0, 𝑁
1𝑖
, 𝑁
2𝑖
, 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑇
1𝑖
> 0, and 𝑇

2𝑖
> 0, 𝑖 ∈ N, such that

the following linear matrix inequality holds:

[
[
[

[

Ω
𝑖

Γ
𝑇

1𝑖
Γ
𝑇

2𝑖

∗ −𝜏𝑟
𝜏
𝑅
1𝑖

0

∗ ∗ −𝑑𝑟
𝑑
𝑅
2𝑖

]
]
]

]

< 0, (17)

where

Ω
𝑖
=

[
[
[
[
[
[
[

[

Ω
11

Ω
12

0 0 0 Ω
16

∗ Ω
22

0 0 0 0

∗ ∗ Ω
33

Ω
34

0 0

∗ ∗ ∗ Ω
44

Ω
45

0

∗ ∗ ∗ ∗ Ω
55

0

∗ ∗ ∗ ∗ ∗ Ω
66

]
]
]
]
]
]
]

]

,

Γ
1𝑖
= [𝜏𝑁1𝑖 𝜏𝑁2𝑖 0 0 0 0] ,

Γ
2𝑖
= [0 0 0 𝑑𝑀

1𝑖
𝑑𝑀
2𝑖

0] ,

Ω
11

= 𝐴
𝑖
𝑃
1𝑖
𝐴
𝑖
− 𝑟
−1
𝑃
1𝑖
+ 𝑄
1𝑖

+ (𝐴
𝑖
− 𝐼) (𝜏𝑅

1𝑖
) (𝐴
𝑖
− 𝐼) + 𝑟

−𝜏
(𝑁
𝑇

1𝑖
+ 𝑁
1𝑖
) ,

Ω
12

= 𝑟
−𝜏

(−𝑁
𝑇

1𝑖
+ 𝑁
2𝑖
) ,

Ω
22

= −𝑟
−𝜏

(𝑄
1𝑖
+ 𝑁
𝑇

2𝑖
+ 𝑁
2𝑖
) + 𝑇
1𝑖
,

Ω
33

= 𝑉
𝑖
(𝑃
2𝑖
+ 𝑑𝑅
2𝑖
) 𝑉
𝑇

𝑖
− 𝐿
−1

1𝑖
𝑇
1𝑖
𝐿
−1

1𝑖
,

Ω
34

= 𝑉
𝑖
𝑃
2𝑖
𝐵
𝑖
+ 𝑉
𝑖
(𝑑𝑅
2𝑖
) (𝐵
𝑖
− 𝐼) ,

Ω
44

= 𝐵
𝑖
𝑃
2𝑖
𝐵
𝑖
− 𝑟
−1
𝑃
2𝑖
+ 𝑄
2𝑖
+ (𝐵
𝑖
− 𝐼) (𝑑𝑅

2𝑖
) (𝐵
𝑖
− 𝐼)

+ 𝑟
−𝑑

(𝑀
𝑇

1𝑖
+𝑀
1𝑖
) ,

Ω
45

= 𝑟
−𝑑

(−𝑀
𝑇

1𝑖
+𝑀
2𝑖
) ,

Ω
55

= −𝑟
−𝑑

(𝑄
2𝑖
+𝑀
𝑇

2𝑖
+𝑀
2𝑖
) + 𝑇
2𝑖
,

Ω
16

= 𝐴
𝑖
𝑃
1𝑖
𝑊
𝑇

𝑖
+ (𝐴
𝑖
− 𝐼) (𝜏𝑅

1𝑖
)𝑊
𝑇

𝑖
,

Ω
66

= 𝑊
𝑖
(𝑃
1𝑖
+ 𝜏𝑅
1𝑖
)𝑊
𝑇

𝑖
− 𝐿
−1

2𝑖
𝑇
2𝑖
𝐿
−1

2𝑖
.

(18)

Proof. Calculating the differential of 𝑉
𝑖
(𝑘) along the trajec-

tory of system (Σ
𝑖
), we obtain

Δ𝑉
1𝑖 (𝑘) = 𝑥

𝑇
(𝑘 + 1) 𝑃1𝑖𝑥 (𝑘 + 1)

+ 𝑦
𝑇
(𝑘 + 1) 𝑃2𝑖𝑦 (𝑘 + 1)

− 𝑥
𝑇
(𝑘) 𝑃1𝑖𝑥 (𝑘) − 𝑦

𝑇
(𝑘) 𝑃2𝑖𝑦 (𝑘)

= 𝑥
𝑇
(𝑘 + 1) 𝑃1𝑖𝑥 (𝑘 + 1)

− 𝑟
−1
𝑥
𝑇
(𝑘) 𝑃1𝑖𝑥 (𝑘) + 𝑦

𝑇
(𝑘 + 1) 𝑃2𝑖𝑦 (𝑘 + 1)

− 𝑟
−1
𝑦
𝑇
(𝑘) 𝑃2𝑖𝑦 (𝑘) + (𝑟

−1
− 1)𝑉

1𝑖 (𝑘) ,

(19)
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Δ𝑉
2𝑖 (𝑘) =

𝑘

∑

𝜃=𝑘+1−𝜏

𝑟
𝜃−𝑘

𝑥
𝑇
(𝜃) 𝑄1𝑖𝑥 (𝜃)

+

𝑘

∑

𝜃=𝑘+1−𝑑

𝑟
𝜃−𝑘

𝑦
𝑇
(𝜃) 𝑄2𝑖𝑦 (𝜃)

−

𝑘−1

∑

𝜃=𝑘−𝜏

𝑟
𝜃−𝑘+1

𝑥
𝑇
(𝜃) 𝑄1𝑖𝑥 (𝜃)

−

𝑘−1

∑

𝜃=𝑘−𝑑

𝑟
𝜃−𝑘+1

𝑦
𝑇
(𝜃) 𝑄2𝑖𝑦 (𝜃)

= 𝑥
𝑇
(𝑘) 𝑄1𝑖𝑥 (𝑘) − 𝑟

−𝜏
𝑥
𝑇
(𝑘 − 𝜏)𝑄1𝑖𝑥 (𝑘 − 𝜏)

+ 𝑦
𝑇
(𝑘) 𝑄2𝑖𝑦 (𝑘)

− 𝑟
−𝑑
𝑦
𝑇
(𝑘 − 𝑑)𝑄2𝑖𝑦 (𝑘 − 𝑑) + (𝑟

−1
− 1)𝑉

2𝑖 (𝑘) ,

Δ𝑉
3𝑖 (𝑘) =

−1

∑

𝑠=−𝜏

𝑘

∑

𝜃=𝑘+1+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

1
(𝜃) 𝑅1𝑖ℓ1 (𝜃)

+

−1

∑

𝑠=−𝑑

𝑘

∑

𝜃=𝑘+1+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

2
(𝜃) 𝑅2𝑖ℓ2 (𝜃)

−

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

1
(𝜃) 𝑅1𝑖ℓ1 (𝜃)

−

−1

∑

𝑠=−𝑑

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

2
(𝜃) 𝑅2𝑖ℓ2 (𝜃)

=

−1

∑

𝑠=−𝜏

(ℓ
𝑇

1
(𝑘) 𝑅1𝑖ℓ1 (𝑘)

+

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

1
(𝜃) 𝑅1𝑖ℓ1 (𝜃)

− 𝑟
𝑠
ℓ
𝑇

1
(𝑘 + 𝑠) 𝑅1𝑖ℓ1 (𝑘 + 𝑠))

+

−1

∑

𝑠=−𝑑

(ℓ
𝑇

2
(𝑘) 𝑅2𝑖ℓ2 (𝑘)

+

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

2
(𝜃) 𝑅2𝑖ℓ2 (𝜃)

− 𝑟
𝑠
ℓ
𝑇

2
(𝑘 + 𝑠) 𝑅2𝑖ℓ2 (𝑘 + 𝑠)) − 𝑉

3𝑖 (𝑘)

= 𝜏ℓ
𝑇

1
(𝑘) 𝑅1𝑖ℓ1 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜏

𝑟
𝑠−𝑘

ℓ
𝑇

1
(𝑠) 𝑅1𝑖ℓ1 (𝑠) + 𝑑ℓ

𝑇

2
(𝑘) 𝑅2𝑖ℓ2 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝑑

𝑟
𝑠−𝑘

ℓ
𝑇

2
(𝑠) 𝑅2𝑖ℓ2 (𝑠) + (𝑟

−1
− 1)𝑉

3𝑖 (𝑘)

≤ 𝜏ℓ
𝑇

1
(𝑘) 𝑅1𝑖ℓ1 (𝑘) + 𝑑ℓ

𝑇

2
(𝑘) 𝑅2𝑖ℓ2 (𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜏

𝑟
−𝜏
ℓ
𝑇

1
(𝑠) 𝑅1𝑖ℓ1 (𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝑑

𝑟
−𝑑
ℓ
𝑇

2
(𝑠) 𝑅2𝑖ℓ2 (𝑠) + (𝑟

−1
− 1)𝑉

3𝑖 (𝑘) .

(20)

Note that

− 𝑟
−𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

ℓ
𝑇

1
(𝑠) 𝑅1𝑖ℓ1 (𝑠)

≤ 𝑟
−𝜏
𝜂
𝑇

1
(𝑘) [

𝑁
𝑇

1𝑖
+ 𝑁
1𝑖

−𝑁
𝑇

1𝑖
+ 𝑁
2𝑖

∗ −𝑁
𝑇

2𝑖
− 𝑁
2𝑖

] 𝜂
1 (𝑘)

+ 𝑟
−𝜏
𝜂
𝑇

1
(𝑘) [

𝑁
𝑇

1𝑖

𝑁
𝑇

2𝑖

] 𝜏𝑅
−1

1𝑖
[𝑁1𝑖 𝑁2𝑖] 𝜂1 (𝑘) ,

− 𝑟
−𝑑

𝑘−1

∑

𝑠=𝑘−𝑑

ℓ
𝑇

2
(𝑠) 𝑅2𝑖ℓ2 (𝑠)

≤ 𝑟
−𝑑
𝜂
𝑇

2
(𝑘) [

𝑀
𝑇

1𝑖
+𝑀
1𝑖

−𝑀
𝑇

1𝑖
+𝑀
2𝑖

∗ −𝑀
𝑇

2𝑖
−𝑀
2𝑖

] 𝜂
2 (𝑘)

+ 𝑟
−𝑑
𝜂
𝑇

2
(𝑘) [

𝑀
𝑇

1𝑖

𝑀
𝑇

2𝑖

]𝑑𝑅
−1

2𝑖
[𝑀1𝑖 𝑀2𝑖] 𝜂2 (𝑘) ,

(21)

where

𝜂
1 (𝑘) = [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏)
] , 𝜂

2 (𝑘) = [
𝑦 (𝑘)

𝑦 (𝑘 − 𝑑)
] , (22)

𝑥
𝑇
(𝑘 − 𝜏) 𝑇1𝑖𝑥 (𝑘 − 𝜏)

− 𝑔
𝑇
(𝑥 (𝑘 − 𝜏)) 𝐿

−1

1𝑖
𝑇
1𝑖
𝐿
−1

1𝑖
𝑔 (𝑥 (𝑘 − 𝜏)) ≥ 0,

(23)

𝑦
𝑇
(𝑘 − 𝑑) 𝑇2𝑖𝑥 (𝑘 − 𝑑)

− 𝑓
𝑇
(𝑦 (𝑘 − 𝑑)) 𝐿

−1

2𝑖
𝑇
2𝑖
𝐿
−1

2𝑖
𝑓 (𝑦 (𝑘 − 𝑑)) ≥ 0.

(24)

From (20) to (24), the following inequality is satisfied:

Δ𝑉
𝑖 (𝑘)

≤ [
𝑥(𝑘)

𝑓(𝑦(𝑘 − 𝑑))
]

𝑇

[
𝐴
𝑖

𝑊
𝑖

]𝑃
1𝑖
[𝐴
𝑖
𝑊
𝑇

𝑖
] [

𝑥 (𝑘)

𝑓 (𝑦 (𝑘 − 𝑑))
]

− 𝑥
𝑇
(𝑘) 𝑟
−1
𝑃
1𝑖
𝑥 (𝑘) + 𝑥

𝑇
(𝑘) 𝑄1𝑖𝑥 (𝑘)

− 𝑥
𝑇
(𝑘 − 𝜏) 𝑟

−𝜏
𝑄
1𝑖
𝑥 (𝑘 − 𝜏)

+ [
𝑦(𝑘)

𝑔(𝑥(𝑘 − 𝜏))
]

𝑇

[
𝐵
𝑖

𝑉
𝑖

]𝑃
2𝑖
[𝐵
𝑖
𝑉
𝑇

𝑖
] [

𝑦 (𝑘)

𝑔 (𝑥 (𝑘 − 𝜏))
]
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− 𝑦
𝑇
(𝑘) 𝑟
−1
𝑃
2𝑖
𝑦 (𝑘) + 𝑦

𝑇
(𝑘) 𝑄2𝑖𝑦 (𝑘)

− 𝑦
𝑇
(𝑘 − 𝑑) 𝑟

−𝑑
𝑄
2𝑖
𝑦 (𝑘 − 𝑑)

+ [
𝑥(𝑘)

𝑓(𝑦(𝑘 − 𝑑))
]

𝑇

[
𝐴
𝑖
− 𝐼

𝑊
𝑖

]

× 𝜏𝑅
1𝑖
[𝐴
𝑖
− 𝐼 𝑊

𝑇

𝑖
] [

𝑥 (𝑘)

𝑓 (𝑦 (𝑘 − 𝑑))
]

+ [
𝑦(𝑘)

𝑔(𝑥(𝑘 − 𝜏))
]

𝑇

[
𝐵
𝑖
− 𝐼

𝑉
𝑖

]

× 𝑑𝑅
2𝑖
[𝐵
𝑖
− 𝐼 𝑉

𝑇

𝑖
] [

𝑦 (𝑘)

𝑔 (𝑥 (𝑘 − 𝜏))
]

+ 𝑟
−𝜏
𝜂
𝑇

1
(𝑘) [

[

𝑁
𝑇

1𝑖
+ 𝑁
1𝑖

−𝑁
𝑇

1𝑖
+ 𝑁
2𝑖

∗ −𝑁
𝑇

2𝑖
− 𝑁
2𝑖

]

]

𝜂
1 (𝑘)

+ 𝑟
−𝜏
𝜂
𝑇

1
(𝑘) [

[

𝑁
𝑇

1𝑖

𝑁
𝑇

2𝑖

]

]

𝜏𝑅
−1

1𝑖
[𝑁1𝑖 𝑁2𝑖] 𝜂1 (𝑘)

+ 𝑟
−𝑑
𝜂
𝑇

2
(𝑘) [

[

𝑀
𝑇

1𝑖
+𝑀
1𝑖

−𝑀
𝑇

1𝑖
+𝑀
2𝑖

∗ −𝑀
𝑇

2𝑖
−𝑀
2𝑖

]

]

𝜂
2 (𝑘)

+ 𝑟
−𝑑
𝜂
𝑇

2
(𝑘) [

[

𝑀
𝑇

1𝑖

𝑀
𝑇

2𝑖

]

]

𝑑𝑅
−1

2𝑖
[𝑀1𝑖 𝑀2𝑖] 𝜂2 (𝑘)

+ 𝑥
𝑇
(𝑘 − 𝜏) 𝑇1𝑖𝑥 (𝑘 − 𝜏)

− 𝑔
𝑇
(𝑥 (𝑘 − 𝜏)) 𝐿

−1

1𝑖
𝑇
1𝑖
𝐿
−1

1𝑖
𝑔 (𝑥 (𝑘 − 𝜏))

+ 𝑦
𝑇
(𝑘 − 𝑑) 𝑇2𝑖𝑥 (𝑘 − 𝑑)

− 𝑓
𝑇
(𝑦 (𝑘 − 𝑑)) 𝐿

−1

2𝑖
𝑇
2𝑖
𝐿
−1

2𝑖
𝑓 (𝑦 (𝑘 − 𝑑))

+ (𝑟
−1

− 1)𝑉
𝑖 (𝑘)

= 𝜁
𝑇
(𝑘)Ω𝑖𝜁 (𝑘) + 𝑟

−𝜏
𝜂
𝑇

1
(𝑘) [

[

𝑁
𝑇

1𝑖

𝑁
𝑇

2𝑖

]

]

× 𝜏𝑅
−1

1𝑖
[𝑁1𝑖 𝑁2𝑖] 𝜂1 (𝑘)

+ 𝑟
−𝑑
𝜂
𝑇

2
(𝑘) [

[

𝑀
𝑇

1𝑖

𝑀
𝑇

2𝑖

]

]

𝑑𝑅
−1

2𝑖
[𝑀1𝑖 𝑀2𝑖] 𝜂2 (𝑘)

+ (𝑟
−1

− 1)𝑉
𝑖 (𝑘) ,

(25)

where

𝜁 (𝑘) = [𝑥
𝑇
(𝑘) 𝑥

𝑇
(𝑘 − 𝜏) 𝑔

𝑇
(𝑥 (𝑘 − 𝜏)) 𝑦

𝑇
(𝑘) 𝑦

𝑇
(𝑘 − 𝑑) 𝑓

𝑇
(𝑦 (𝑘 − 𝑑))]

𝑇

. (26)

Therefore, from (17), we have

Δ𝑉
𝑖 (𝑘) ≤ (𝑟

−1
− 1)𝑉

𝑖 (𝑘) , (27)

which implies (16) is true. This completes the proof of
Theorem 8.

In what follows, we are in a position to derive the delay-
dependent exponential stability condition for the discrete-
time switched BAM neural networks (Σ), and the results are
given in the following theorem.

Theorem 9. Under the assumptions (𝐻
1
)–(𝐻
3
), for given

scalars 𝑟 > 1, 𝜇 ≥ 1, the system (Σ) is exponentially stable and
ensures a decay rate 𝜆, where 𝜆 = 𝑟

(− ln 𝜇/(𝑇𝑎 ln 𝑟))+1, if there exist
matrices 𝑃

1𝑖
> 0, 𝑃

2𝑖
> 0, 𝑄

1𝑖
> 0, 𝑄

2𝑖
> 0, 𝑅

1𝑖
> 0, 𝑅

2𝑖
>

0, 𝑁
1𝑖
, 𝑁
2𝑖
, 𝑀
1𝑖
,𝑀
2𝑖
, and 𝑇

1𝑖
> 0, 𝑇

2𝑖
> 0, 𝑖 ∈ N, such that

(17) and the following inequalities hold:
𝑃
1𝛼

≤ 𝜇𝑃
1𝛽
, 𝑃

2𝛼
≤ 𝜇𝑃
2𝛽
, 𝑄

1𝛼
≤ 𝜇𝑄
1𝛽
, (28)

𝑄
2𝛼

≤ 𝜇𝑄
2𝛽
, 𝑅

1𝛼
≤ 𝜇𝑅
1𝛽
, 𝑅

2𝛼
≤ 𝜇𝑅
2𝛽
, (29)

𝑇
𝑎
≥ 𝑇
∗

𝑎
= ceil [

ln 𝜇
ln 𝑟

] , 𝛼, 𝛽 ∈ N. (30)

Proof. Choose the Lyapunov-Krasovskii functional candidate
of system (Σ) as

𝑉
𝜎(𝑘) (𝑘) = 𝑉

1𝜎(𝑘) (𝑘) + 𝑉
2𝜎(𝑘) (𝑘) + 𝑉

3𝜎(𝑘) (𝑘) , (31)

where

𝑉
1𝜎(𝑘) (𝑘) = 𝑥

𝑇
(𝑘) 𝑃1𝜎(𝑘)𝑥 (𝑘) + 𝑦

𝑇
(𝑘) 𝑃2𝜎(𝑘)𝑦 (𝑘) ,

𝑉
2𝜎(𝑘) (𝑘) =

𝑘−1

∑

𝜃=𝑘−𝜏

𝑟
𝜃−𝑘+1

𝑥
𝑇
(𝜃) 𝑄1𝜎(𝑘)𝑥 (𝜃)

+

𝑘−1

∑

𝜃=𝑘−𝑑

𝑟
𝜃−𝑘+1

𝑦
𝑇
(𝜃) 𝑄2𝜎(𝑘)𝑦 (𝜃) ,

𝑉
3𝜎(𝑘) (𝑘) =

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

1
(𝜃) 𝑅1𝜎(𝑘)ℓ1 (𝜃)

+

−1

∑

𝑠=−𝑑

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

2
(𝜃) 𝑅2𝜎(𝑘)ℓ2 (𝜃) .

(32)
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From (16), (28), and (29), when 𝑘 ∈ [𝑘
𝑚
, 𝑘
𝑚+1

), there holds

𝑉
𝜎(𝑘) (𝑘) ≤ 𝑟

−(𝑘−𝑘𝑚)𝑉
𝜎(𝑘𝑚)

(𝑘
𝑚
)

≤ 𝜇𝑟
−(𝑘−𝑘𝑚)𝑉

𝜎(𝑘𝑚−1)
(𝑘
𝑚
)

≤ 𝜇𝑟
−(𝑘−𝑘𝑚)𝑟

−(𝑘𝑚−𝑘𝑚−1)𝑉
𝜎(𝑘𝑚−1)

(𝑘
𝑚−1

)

= 𝜇𝑟
−(𝑘−𝑘𝑚−1)𝑉

𝜎(𝑘𝑚−1)
(𝑘
𝑚−1

)

≤ ⋅ ⋅ ⋅ ≤ 𝜇
𝑁𝜎𝑟
−(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑘
0
) .

(33)

Observe that

𝑁
𝜎
≤

𝑘 − 𝑘
0

𝑇
𝑎

, 𝜇 = 𝑟
ln 𝜇/ ln 𝑟

. (34)

This together with (30) and (33) yields

𝜇
𝑁𝜎𝑟
−(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑘
0
) ≤ 𝜆
−(𝑘−𝑘0)𝑉

𝜎(𝑘0)
(𝑘
0
) . (35)

This further implies

𝑉
𝜎(𝑘) (𝑘) ≤ 𝜆

−(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑘
0
) . (36)

Let

𝛽
1
= min {min

𝑖∈N
{𝜆
𝑚
(𝑃
1𝑖
)} , min
𝑖∈N

{𝜆
𝑚
(𝑃
2𝑖
)}} ,

𝛽
2
= max {𝛽

21
, 𝛽
22
} ,

(37)

where

𝛽
21

= max
𝑖∈N

{𝜆
𝑀
(𝑃
1𝑖
)} +

𝑟 (1 − 𝑟
−𝜏
)

𝑟 − 1
max
𝑖∈N

{𝜆
𝑀
(𝑄
1𝑖
)}

+ 2
𝑟𝜏 (𝑟 − 1) − 𝑟 (1 − 𝑟

−𝜏
)

(𝑟 − 1)
2

max
𝑖∈N

{𝜆
𝑀
(𝑅
1𝑖
)} ,

(38)

𝛽
22

= max
𝑖∈N

{𝜆
𝑀
(𝑃
2𝑖
)} +

𝑟 (1 − 𝑟
−𝑑
)

𝑟 − 1
max
𝑖∈N

{𝜆
𝑀
(𝑄
2𝑖
)}

+ 2

𝑟𝑑 (𝑟 − 1) − 𝑟 (1 − 𝑟
−𝑑
)

(𝑟 − 1)
2

max
𝑖∈N

{𝜆
𝑀
(𝑅
2𝑖
)} .

(39)

It can be verified from (31) that

𝑉
𝜎(𝑘) (𝑘) ≥ 𝛽

1
(‖𝑥 (𝑘)‖

2
+
󵄩󵄩󵄩󵄩𝑦 (𝑘)

󵄩󵄩󵄩󵄩

2
) , (40)

𝑉
𝜎(𝑘0)

(𝑘
0
) ≤ 𝛽
21

󵄩󵄩󵄩󵄩𝜙 (𝑘)
󵄩󵄩󵄩󵄩

2

𝐿
+ 𝛽
22

󵄩󵄩󵄩󵄩𝜓 (𝑘)
󵄩󵄩󵄩󵄩

2

𝐿
, (41)

which gives rise to

𝛽
1
(‖𝑥 (𝑘)‖

2
+
󵄩󵄩󵄩󵄩𝑦 (𝑘)

󵄩󵄩󵄩󵄩

2
) ≤ 𝑉
𝜎(𝑘) (𝑘) ≤ 𝜆

−(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ 𝜆
−(𝑘−𝑘0)𝛽

2
(
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩

2

𝐿
) .

(42)

Therefore, we have

‖𝑥 (𝑘)‖
2
+
󵄩󵄩󵄩󵄩𝑦 (𝑘)

󵄩󵄩󵄩󵄩

2
≤

𝛽
2

𝛽
1

(
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩

2

𝐿
) 𝜆
−(𝑘−𝑘0), (43)

which implies that the discrete-time switched BAM neural
networks (Σ) are exponentially stable. This completes the
proof of Theorem 9.

Remark 10. In (30), the function ceil(𝑡) is used, which
represents rounding real number 𝑡 to the nearest integer
greater than or equal to 𝑡. The reason that we introduce the
function ceil is that the dwell time length of the currently
active subsystem is the number of sampling periods between
the two consecutive switching times.

Remark 11. In [3–6], the asymptotic or exponential stability
problem is considered for continuous-time BAM neural
networks with time delay

𝑥̇ (𝑡) = −𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝑑)) , (44)

̇𝑦 (𝑡) = −𝐵𝑥 (𝑡) + 𝑉𝑔 (𝑥 (𝑡 − 𝜏)) . (45)

However, the dynamics of discrete-time neural networksmay
be quite different from those of continuous-time ones, and
the stability criteria established for continuous-time BAM
neural networks model are not necessarily applicable to
discrete-time systems. Considering the importance in both
theory and practice, it is necessary to study the dynamics of
the discrete-time BAM neural networks.

Remark 12. There are few references concerning exponential
stability analysis for discrete-time switched BAM neural
networks. In this paper, some delay-dependent sufficient
conditions checking the exponential stability of discrete-time
switched BAM neural networks using average dwell time
approach are presented.These conditions are proposed in the
form of linear matrix inequalities, which can be easily solved
by using the recently developed interior algorithms.

4. An Illustrative Example

Consider the discrete-time switched BAM neural networks
(Σ) combining two subsystems with the following parame-
ters:

𝐴
1
= [

0.5 0

0 0.5
] ,

𝑊
1
= [

−0.0483 −0.01

−0.03 −0.04
] , 𝐵

1
= [

0.3 0

0 0.2
] ,

(46)

𝑉
1
= [

−0.05 −0.01

−0.05 −0.06
] ,

𝐴
2
= [

0.7 0

0 0.4
] , 𝐵

2
= [

0.6 0

0 0.7
] ,

(47)

𝑊
2
= [

−0.032 −0.06

−0.01 −0.05
] , 𝑉

2
= [

−0.05 −0.01

−0.05 −0.06
] . (48)

The activation functions are taken as

𝑓 (𝑦) =
1

2
(
󵄨󵄨󵄨󵄨𝑦 + 1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑦 − 1

󵄨󵄨󵄨󵄨) ,

𝑔 (𝑥) =
1

2
(|𝑥 + 1| − |𝑥 − 1|) .

(49)

Let 𝑑 = 1 and 𝜏 = 1. Solving LMI (17), (28), and
(29), it is found that the LMIs are feasible for all 𝑟 ≤ 1.47.
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Table 1: The maximum delay bound 𝜏, 𝑑 and decay rate 𝜆.

𝑟 1.45 1.4 1.35 1.3 1.25
𝜆 1.2083 1.1667 1.1250 1.0833 1.0417
𝑑 = 2, 𝜏max 10 14 18 22 28
𝑑 = 3, 𝜏max 9 13 17 21 27
𝑑 = 5, 𝜏max 7 11 15 19 25
𝑑 = 8, 𝜏max 4 8 12 16 22
𝑑 = 11, 𝜏max 1 5 9 13 19
𝑑 = 14, 𝜏max — 2 6 10 16
𝑑 = 17, 𝜏max — — 3 7 13
𝑑 = 20, 𝜏max — — — 4 10

max{𝑑 = 𝜏} 6 8 10 12 15

5 10 15 20 25 30

0

0.5

1

1.5

2

𝑥1

𝑥2

𝑦1

𝑦2

−1.5

−1

−0.5

Figure 1: State response of the given system.

The calculated values of the delay upper bound 𝜏 and decay
rate 𝜆 for different values of 𝑑 and 𝑟 are given in Table 1 when
𝑇
𝑎
= 1. FromTable 1, we can see that the delay is related to the

decay rate. For a given 𝑑, a smaller decay rate 𝜆 allows a larger
delay 𝜏max. Moreover, for every 𝑟, the delay 𝜏max decreases
when the delay 𝑑 increases.

Letting 𝑟 = 1.4, 𝑑 = 3, and 𝜇 = 1.2, we obtain that
𝑇
∗

𝑎
= ceil[0.5419]. Based on (30),𝑇

𝑎
= 1 is satisfied.Thenwe

can calculate that the decay rate 𝜆 = 𝑟
(− ln 𝜇/𝑇𝑎 ln 𝑟)+1 = 1.1667.

Therefore, the discrete-time switched BAM neural networks
with time delay are exponentially stable with the decay rate
𝜆 = 1.1667 if the delay 𝜏 is not larger than 13 based on Table 1.

For 𝑟 = 1.4, 𝑑 = 3, and 𝜏 = 2, based on Definition 3,
the discrete-time switched BAM neural networks ensure the
following exponential decay estimation:

‖𝑥 (𝑘)‖
2
+
󵄩󵄩󵄩󵄩𝑦 (𝑘)

󵄩󵄩󵄩󵄩

2

≤ 2.2866 × 1.1667
−(𝑘−𝑘0) (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐿
+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩

2

𝐿
) , ∀𝑘 ≥ 𝑘

0
.

(50)

Let 𝑘
0
= 0. Suppose the switching sequence is: 121212 . . ..

It can be seen from switched sequence that 𝑇
𝑎
= 1. Choose

initial value as 𝜙(𝑠) = [0.5 − 0.6]
𝑇 and 𝜓(𝑠) = [0.8 − 0.7]

𝑇;
then we obtain Figure 1, which depicts the trajectories of the
system state.

5. Conclusions

In this paper, the exponential stability problem for the
discrete-time switched BAMneural networks with time delay
has been proposed. At first, the mathematical model of
the discrete-time switched BAM neural networks with time
delay has been established. And then by constructing a
new switching-dependent Lyapunov-Krasovskii functional,
some sufficient criteria have been developed to guarantee the
discrete-time switched BAM neural networks to be expo-
nentially stable based on the average dwell time approach
and finite sum inequality technology. Finally, a numerical
example has been provided to demonstrate the potential and
effectiveness of the proposed algorithms.
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