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Simple, traditional methods for computation of the efficiency of spur gears are based on the hypotheses of constant friction
coeflicient and uniform load sharing along the path of contact. However, none of them is accurate. The friction coefficient is variable
along the path of contact, though average values can be often considered for preliminary calculations. Nevertheless, the nonuniform
load sharing produced by the changing rigidity of the pair of teeth has significant influence on the friction losses, due to the different
relative sliding at any contact point. In previous works, the authors obtained a nonuniform model of load distribution based on the
minimum elastic potential criterion, which was applied to compute the efficiency of standard gears. In this work, this model of load
sharing is applied to study the efficiency of both standard and high contact ratio involute spur gears (with contact ratio between 1
and 2 and greater than 2, resp.). Approximate expressions for the friction power losses and for the efficiency are presented assuming
the friction coeflicient to be constant along the path of contact. A study of the influence of some transmission parameters (as the

gear ratio, pressure angle, etc.) on the efficiency is also presented.

1. Introduction

The efficiency of the gear transmissions may have signifi-
cant influence not only on the direct operating costs and
the operating lives but also on the environmental impact
associated to power loss. The efficiency of involute gears is
usually high, but uncontrolled friction phenomena may result
in surface defects arising after operating periods shorter than
the expected ones. These defects will produce higher losses,
noise, vibrations, and heat generation during the operation,
which may result in the complete failure of the transmission
even.

Classic, simple models of efficiency of spur gears available
in technical literature [1-5] are based on the hypotheses of
constant friction coefficient and uniform load sharing along
the path of contact. Neither of them is accurate, but the
efficiency of spur gears is high, and very accurate calculations
were not required in the past. However, the rapidly rising
trend of transmitted power to size ratio may make more
accurate models suitable. In this sense, variations of the
friction coefficient along the path of contact can be neglected

if average values are considered [2, 3, 5]. Nevertheless, errors
induced for considering uniform load sharing between cou-
ples of teeth in simultaneous contact may be high, especially
if errors are expressed in terms of power losses.

Empirical models for load distribution and constant
friction coefficient have been used in some studies, as ones of
Michlin and Myunster [6] and Hohn et al. [7]. A preliminary
authors” study using a nonuniform load distribution model
can be found in [8]. Other models using nonuniform friction
coefficient models have been reported by Anderson et al. [9-
11], Vaishya and Houser [12], Lehtovaara [13], and Diab et
al. [14]. More complex models using the elastohydrodynamic
lubrication theory to formulate the variation of the friction
coefficient avoiding the necessity of experimental results have
been developed by Martin [15] and Wu and Cheng [16].
A similar model combined with load distribution models,
including experimental validation, was presented by Xu [17].
Many other studies to compute the power loss based on
experimental data can be found in technical literature [18-
22]. From a theoretical point of view, Velex and Ville [23]
formulate the problem using generalized displacements and
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FIGURE 1: Geometrical parameters of involute tooth.

incorporate the influence of profile modifications to propose
analytical formulae of tooth friction power losses in spur and
helical gears.

The authors developed a model of load distribution along
the line of contact based on the minimum elastic potential
(MEP) criterion [24-26] and applied it to the determination
of the efficiency of spur gears, considering average, constant
values of the friction coefficient [27-30]. Obtained results
provide values of the efficiency slightly greater than those
obtained from the traditional models [1-5]. A preliminary
model of efficiency based on the MEP load distribution and
a very simple model of nonconstant friction coefficient were
also developed and can be found in [31].

In this work, a similar model for the efliciency of spur
gears has been developed, considering both standard spur
gears with contact ratio between 1 and 2 and high contact
ratio spur gears, with contact ratio up to 2.7. The model is
based on the application of the MEP nonuniform model of
load distribution along the line of contact and assuming the
friction coefficient to be constant along the path of contact.
Analytical, approximate expressions for the power losses due
to friction, for the transmitted power and for the efficiency,
are presented. The efficiency has been expressed by a simple,
analytic equation as a function of only three parameters: the
number of teeth on pinion and wheel and the transverse
contact ratio. From this equation, a complete study of the
influence of some design parameters (as the number of teeth,
the gear ratio, the pressure angle, the addendum modification
coeflicient, etc.) on the efficiency is also presented.

2. Load Distribution Model

References [24, 25] present in detail the model of load
sharing of minimum elastic potential energy. It is based
on the assumption that the load sharing among couples of
teeth in simultaneous contact provides a minimum elastic
potential energy. It has been obtained by computing the total
elastic potential energy, considering all the pairs of teeth
in simultaneous contact, with an unknown fraction of the
load acting on each one, and minimizing its value by means
of variational techniques. In this section, the model will be
briefly described.

The elastic potential energy of a spur tooth U can be
expressed as the sum of the bending component U, the
compressive component U,,, and the shear component U.:

U=U,+U,+U.,. )

All the components can be computed from the equations
of the theory of elasticity and some geometrical parameters
of the tooth which have been represented in Figure 1. The
application of those equations to the geometry of the involute
teeth results in:

F2cos? Yo PAY
U,=6 cos ac J ()’C3 y) dy,
Eb Yp e (y)
u - LF “sin‘ag ch v )
2 Eb y, e(y)
U - lecoszocC JJ’C dy
s 2 Gb y, e(y)

where F is the normal load between both teeth, o the load
angle, b the face width, E the modulus of elasticity of the
material, G the transverse modulus of elasticity, and e(y)
the tooth chordal thickness at the section described by y,
being y the coordinate along the tooth centerline from the
gear rotation center. y, and y are the values of coordinate
y corresponding to the embedded section (defined by the
points of both sides of the profile at the root circle) and to
the load section (defined by the intersection of the line of
action of the load—i.e., the normal to the profile at the contact
point—and the tooth centerline), respectively. Finally, C is
the shear potential correction factor, which accounts the
nonuniform distribution of the shear stresses on the section,
according to the Colignon’s theorem. For rectangular section,
this factor takes the value C = 1.5.

To describe the contact point, the profile parameter & is
defined as [24, 25]

-
T RN (Y 3)
2n 27w 1
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where 0 is the involute rotation angle, Z the number of teeth,
r¢ the radius of the contact point, and r,, the base radius. Note
that the difference of & parameters corresponding to contact
at the outer point of contact and at the inner point of contact
is equal to the transverse contact ratio ¢,. Similarly, the
difference of & parameters corresponding to two contiguous
teeth in simultaneous contact is equal to 1.

According to this, the elastic potential energy of a tooth
can be expressed as a function of the profile parameter of its
load point (or contact point), U = U(£). Of course, this is
valid both for the pinion tooth and for the wheel tooth, so
that

U1 = U1 (E)s

U, =0, (52) >

where subscripts 1 and 2 denote the pinion and the wheel,
respectively (for simplicity, the pinion profile parameter will
be denoted by &, without subscript). The sum of the curvature
radii of both transverse profiles at the respective contact
points is constant along the line of action and equal to
the distance between the tangency points of the operating
pressure line and both base circles of pinion and wheel,
which provides a relation between pinion and wheel profile
parameters:

(4)

Z\+Z, /

E+8 =g = o tan a,, (5)
where oc{ is the operating transverse pressure angle (the
pressure angle at the pitch cylinder) and A; the distance
between both tangency points divided by the base radius and
the angular pitch of the pinion. The potential energy of a pair
of teeth in contact U, will be the sum of those of the pinion
and the wheel, which, according to (5), may be expressed as a
function of the pinion profile parameter &:

U,=U,+U,=U, (). (6)

Finally, two more parameters are defined [24, 25]: the unitary
potential u, which is the elastic potential for unit load and
face width, and the inverse unitary potential v, which is the
inverse of u:

w® = 50, ©,

1
u(@)’

being F the load carried by the pair of teeth. Both the unitary
potential and the inverse unitary potential of a determined
pair of teeth can be computed from the above equations by
numerical techniques of integration. The result for standard
teeth is always a function of £ similar to that in Figure 2.

For spur gears, the elastic potential energy is computed
considering all the pairs of teeth in simultaneous contact,
with an unknown fraction of the load acting on each one,
and minimizing its value by means of variational techniques
(Lagrange’s method). The load at each pair results in [24, 25]
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FIGURE 2: Example of unitary potential 4 and inverse unitary
potential v for spur gears (obtained by numerical integration of the
equations of the elasticity).

where F;(§;) and v,(§;) are the load and the inverse unitary
potential of tooth i when contact occurs at the point cor-
responding to &, F is the total transmitted load, and it is
assumed v;(§;) = 0 outside the interval of contact &, , < & <
&inn T+ €4> Where &, is the profile parameter corresponding to
the inner contact point of the pinion. According to this, the
load sharing ratio R(£) (or the fraction of the load supported
by the considered pair of teeth) is given by

F; (fi) _ Vi (Ei) _ v (fi) ’
Fooyntvi(E) T vE+G-i)
)

R; (fi) =

while the load per unit of length f(&), for spur gears, can be
expressed as

£.(8) = S RE). (10)

The load sharing model presented in (9) can be only
calculated by using computational methods and numeri-
cal integration techniques to compute the elastic potential
energy, whose domains are defined by the geometry of the
involute and the trochoid of pinion and wheel. Equations for
active and root profiles can be found in [25]. To perform
these calculations, a powerful automated numerical and
symbolic computation system is required, and all the above
equations have been implemented in MATHEMATICA [32].
This allows computing the load sharing for any spur gear
pair numerically. However, to develop an analytical model
of efficiency, an analytic function for the inverse unitary
potential is required [27].

If we define a new parameter { of the profile points as { =
& - &, the interval between contact at the inner point of
contact and the next tooth contacting at the inner point of
contact is given by 0 < { < 1, and the complete meshing
interval of a tooth is given by 0 < { < ¢,.
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FIGURE 3: Typical shape of the graph of inverse unitary potential

v(0).

The inverse unitary potential v can be expressed as a
function of this new parameter (. This expression can be
accurately approximated by equation [25]:

V() = cos [ (¢~ 2]
X (1)

b = .
\/(1/2)(1 +e,/2)" -1

Function v({) has a maximum at the midpoint of the interval
of contact (denoted by {,,, = €,/2). We will do v({) = 0 outside
the interval of contact 0 < { < ¢,.

Figure 3 shows the typical aspect of function v({) for
standard teeth. Note that, according to (9), the amplitude
of v({) has no influence on the load distribution, so a
normalized function v({), with a maximum value equal to 1,
may be considered for calculations, as one given by (11) and
represented in Figure 3. According to this, the load sharing
ratio for spur gears can be obtained by replacing (11) in (9),
which yields the following result for transverse contact ratio
&, between 1 and 2:

cos [by (¢ — &,/2)]

R@)= cos [by (¢ — €,/2)] + cos [by ({ + 1 —¢,/2)]

for0<{<e, -1
R{)=1 fore,-1<(<1 (12)
. cos 1y (¢ )]

cos [by (§ - 1 —¢,/2)] + cos [by (¢ - £,/2)]

for1<{<eg,
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which has been represented in Figure 4(a). Similarly, the load
sharing ratio for high contact ratio spur gears is given by

R = (cos |1y (¢~ %))
(oo (1= 3) o (651- %))
+cos [y (¢ +2- %)])1

for0<{<e -2

R@) = (o[ (¢-3)])
(-5 e (con- %))

fore, —2<{<1

R = (cos[tn (¢ 2)])
(ool (-3
+cos By ((+1—%“>]>_1

for1<{<e -1

R() = (cos |t ( ‘%)D
(eoefu(6-1-5) remsfn(e- )

fore, —1<{<2

€

R(@Q) = (cos 1y (¢ - %) ])
x (cos [y (¢ -2 % )] + cos [y (¢ - 1- %)

€

+ cos [bo (C— j")])il for2<{<eg,
(13)

which has been represented in Figure 4(b).

As seen in Figure 4, the load sharing ratio R({) presents a
linear variation with the profile parameter {, with different
slope at any interval, according to the number of teeth in
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FIGURE 4: Typical shape of function R({): (a) for1< ¢, < 2; (b) for 2 < ¢, < 3.

simultaneous contact. The limits of each interval can be
known from the fractional part of the transverse contact ratio,
d,. The values of R({) at the limits of these intervals depend
on the contact ratio; however, this dependence is very slight
for standard tooth height and center distance, and we can
consider constant values to be used for any spur gear, as
induced errors are very small [24, 26]. For standard contact
ratio gears, these constant values are

R,~R;,~033,  R,~Ry,~066, R, =Ry =1,
(14)
while for high contact ratio gears,
R;3~R;~025 ~ Ry~Ri;~030, Ry ~R,;~0.45,
R,, =R5, =0.40, R;, =Ry, = 0.60.
(15)

The first subscript denotes the contact point; the second one
the number of pairs in simultaneous contact. As the total load
is constant, it is verified for 1 < g, < 2:

Ry, +Rs =1, R,, + Ry, =1, (16)

and, for2 < ¢, < 3,
Ri3+ Ry +Rs3 =1, Ry; +Ry3 + Rg3 =11,
17)
Ry, + Ry =1, Ry + Ry = 1.
According to this, the load sharing ratio for standard spur
gears, given by (12), can be also computed from

l<1+ ¢ > for0<{<e, -1
3 1
R =141 fore, -1<{<1 (18)

1 —
_<1+€“ (> for 1 <{ <e,.
3 g, — 1

Similarly, the load sharing ratio for high contact ratio spur
gears, given by (13), can be also computed from

( 0.05
0.25 + ¢ for0<{<e, -2
& —2
0.20
0.40+3 ((-e,+2) forg,-2<(<1
—¢,
R()=4045 for1<{<eg,—1
0.20
0.60 — ((-e+1) forg,—1<(<2
3-¢,
0.05
0.30 - 2(C—2) for2<{<e,.
e —

o

(19)

A study of the accuracy of the above presented model of load
distribution for conventional spur gears can be found in [25,
26]. A wider study involving conventional and high contact
ratio gears has been reported in [33]. In all the considered
cases, accuracy of (12) and (13) for the load sharing ratio is
high enough for strength and load capacity calculations.

3. Model of Efficiency

The transmitted energy from contact at the inner point of
contact of a spur pinion tooth to contact at the same point
of the next tooth (i.e., AE = A{ =1) is given by

Wu = Frhl—.
1

(20)

Similarly, the total mechanical (load-dependent) energy lost
during a small rotation of the pinion can be expressed as
the average friction coefficient y, multiplied by the normal
load acting on the tooth and by the relative sliding. All these
parameters depend on the contact point and consequently
can be expressed as a function of &. References [27-29]
present the development of the model for spur and helical
gears. Following the same procedure we obtain for the energy
loss [8],

AW, = uFR &) 2L (ry, +17p) 2 dE. ()

Tv2 Z,

2
tan cxlf - Z_ﬂE
1
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FIGURE 5: Function R, (e,, A, {): (a) conventional spur gear with d,, < Ae, < 1; (b) high contact ratio spur gear with 1 < Ae, < g, — L.

Integrating along the complete meshing cycle and taking into
account that the friction coefficient is assumed to be constant
along the path of contact, we obtain

7 2T Einntey
W's:.“Frﬂ(”blﬁL”bz)Z_J R (&)

b2 1 Y&

dé,
(22)

2
tan oci - Z—f
1

and from (20) and (22) the following expression is obtained
for the efficiency #:
W T, + 71 ginn*’sa
— ]S ooyttt J R
n o 2 ©

u Tp2 &inn

dg
(23)

2m
tan oct' - —=¢

Z,
which can be written as a function of the gear ratio n, as

n=1 —#(1 + i) JE+ R (&)

inn

dé.  (24)

2
tan ocl - Z—nf
1

Equation (24) may be simplified if expressed as a function
of {. Moreover, if ¢, is the contribution to the contact ratio
of the approach interval (from contact at the inner point of
contact to the operating pitch point) and A the ratio between
&, and g,

1 /
a1 = _7'[ tan x = z;‘inn’
(25)
A= a1
s bl

the efficiency will be given by

1 1 b
n:1_2ﬂM<Z_1+Z_2)JO R(C)lc—ASOJd( (26)

Equation (26) has been obtained from an average friction
coeflicient, constant along the path of contact. For simplicity,
we will denote the function under the integral as R,:

R, (85 A.0) = R0 - Mg, (27)

Function Rn(sa,/\, {) depends on three dimensionless vari-
ables and has the typical shape shown in Figure 5. The integral
of R, will be denoted by I, and it will depend on two
dimensionless variables:

Iy (20 ) = J:“ R, (e 1) . (28)

According to this, the efliciency of spur gears is finally
described by
1 1

n=1—2ny<Z—I+Z—2)IR,7(sa,/\). (29)
Ig, is the area under curve R, in Figure 5 (grey area), and
can be only computed by means of numerical integration
techniques. From (23) and Figure 5, the interval of integration
should be divided for numerical integration taking into
account the different possible locations of the point { =
Ae,, belonging to the interval of two pair-tooth contact or
belonging to the interval of single pair-tooth contact (for high
transverse contact ratio gears, belonging to the interval of
three pair-tooth contact or belonging to the interval of two
pair-tooth contact).

The main problem is the calculation of Ip,. Once calcu-
lated, the efficiency can be immediately known with (29),
but the mathematical problem is not simple. Fortunately,
function I, depends on two parameters only, which suggests
the possibility to find an approximate, accurate enough
equation for I, (&,, A) suitable for calculations. Next section
deals with the search of such approximate equation.

4. Approximate Equation for Function I,
4.1. Standard Spur Gears, 1 < ¢, < 2. For numerical
calculation of the integral of Rﬂ(sa, A, (), the interval [0, &,]
should be divided in three subintervals according to the three
segments of R({), and one of them should be divided in two
ones due to the location of Ae,. It should be taken into account
if this point { = Ae, is located inside the interval of single-
pair tooth contact d, < Ag, < 1, as the case represented in
Figure 5(a), or inside any of two intervals of two-pair tooth
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FIGURE 6: Domains of existence of I, (g, A) and numerical examples.
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FIGURE 7: I, (g,, A) for 1 < g, < 2: (a) analytical and numerical values; (b) numerical and approximate values.

contact, 0 < Ag, < d, orl < Ae, < ¢g,. However, as function
Ip,(€4>A) is symmetric respect to A = 0.5, the last two
cases yield the same results. Figure 6 represents the domains
of existence of three cases mentioned above, for theoretical
ranges of values of A and d,,.

Figure 6 also represents the values of ¢, and A, for around
one thousand different cases of spur gears with transverse
contact ratio between 1and 2, considering values of the design
parameters inside wide enough ranges. It can be observed that
all the obtained values of A are always contained in a thin
interval around A = 0.5 + 0.1, which means the majority of
the cases corresponding to Ae, inside the central interval of
single-pair tooth contact, that is, d, < Ae, < 1. Only for
values of g, very close to 2, Ae, may shift to the intervals
of two-pair tooth contact, but this is less usual. According

to this, the development of the model will be simplified by
considering only the case d, < Ae,, < 1.

The limits of the four intervals of function I, (&,, A) are
known, as shown in Figure 5(a), as well as the equation
of R,](sa, A,{) in each interval, as seen in (18) and (27).
Calculating the four integrals and the sum of all of them, a
relatively simple analytic expression for I, (¢,, A) is obtained,
which has been represented in Figure 7(a):

IRn(sa,/l):% . %da(l—z/X)Z—)t+A2+di<g —/\+/\2>.

(30)

For unusual cases of spur gears with 0 < Ae, < d, or
1 < Ag, < g, (always with e, = 2) an analytic expression of



function I, (e,, A), similar to one given by (30) for the other
case, could %e obtained by following identical procedure.

The values of the load sharing ratio R at singular points
given by (14) are not exact, but they are slightly influenced
by the fractional part of the contact ratio. This influence is
not strong and however may induce a small error in the
determination of I Ry (a0 A). Obviously, (16) is always verified.

Nevertheless, it can be checked that the values of
I, (€, A) represented in Figure 6, which have been computed
by means of numerical techniques, do fit accurately with
function represented in Figure 7(a), which has been obtained
from the analytic expression given by (30), for the considered
range of values. The R*—factor for the cases considered in the
above mentioned study is greater than 0.9999.

As said above, all the values of I, (&4, A) are located in a
very thin interval of A, and accurate enough approximations
of I, (€,, A) can be obtained by considering only the influence
of ¢, and neglecting the influence of A. This can be observed
in Figures 6 and 7, in which for a given value of ¢, the interval
of values of Ip,(e,, A)—corresponding to the variation of
A—is very thin. According to that, the following linear
approximation was obtained by linear correlation of the
above thousand mentioned points:

IRr]approxl (S‘X,A) = IRr]approxl (806) = (2318¢x - 42) ’ 10_3'
(1)

Of course, better accuracy is obtained if a parabolic correla-
tion is used:

IRnappron (‘Soc’ A) = IRr] approx2 (sa)
(32)
= (231} - 503¢, + 537) - 107",

Figure 7(b) shows the comparison between the numerical
values of function I, (¢,, A) computed by numerical integra-
tion and the values given by the linear approximation of (31).
Relative errors of approximate values of I, (&4, A) given by
(31) are always included in the interval +2%, as shown in
Figure 8(a).

Errors are even lower if computed in terms of the
efficiency. Figure 8(b) shows the relative error of the efficiency
computed with the linear approximation of I, (¢,, A) given by

(31). All of them are inside the interval +3-10™* (£0.03%).

The parabolic approximation of I, (¢, A), given by (32),
yields even more accurate results. Relative errors of values of
I Rn(ea,)t) are lower than +1%, as shown in Figure 9(a). The
relative errors in the estimation of the efficiency are reduced
to +2-107* (+0.02%), as shown in Figure 9(b).

4.2. High Contact Ratio Spur Gears, 2 < &, < 3. In this case,
for numerical calculation of the integral of Rn(sa,/\, {) the
interval [0, ¢,] should be divided in five subintervals due to
the five segments of R({), and one of them should be divided
in two ones due to the location of Ag,,. It should be taken into
account if this point { = Ag, is located inside one of three
intervals of three-pair tooth contact (0 < Ae, < d,,1 < Ag, <
g, —lor2 < e, < g,) or inside one of two intervals of
two-pair tooth contact (d, < Ae, < loreg, —1 < Ag, < 2).

Mathematical Problems in Engineering

Function I, (A, &,) is symmetric with respect to A = 0.5, so
the last two cases yield the same results, as well as the first and
the third cases above.

Figure 6 represents the domains of existence of five cases
mentioned above, for theoretical ranges of values of A and
d,. Figure 6 also represents the values of I, as a function
of d,, and A, for around one thousand different cases of spur
gears with transverse contact ratio greater than 2, considering
wide enough ranges of values of the design parameters.
The obtained values of A remain contained in the interval
A = 0.5 + 0.1, which means that the majority of the cases
corresponds to Ae, inside the central interval of three-pair
tooth contact, that is, 1 < Ae, < e, — 1. As in the previous
case, only in few cases, always for values of ¢, very close to 2,
Mg, may shift to the intervals of two-pair tooth contact, so the
development of the model will be simplified by considering
only the case 1 < Ag, < ¢, — 1.

The limits of the six intervals of function I, (e, A) are
known as well as the equation of R,,(sa, A, Q) in each interval.
Calculating the six integrals and the sum of all of them, a
relatively simple analytic expression for I, (¢, A) is obtained:

IRr/ approx (S(x’ /\) zIR11 approx (soc)
1
= @(55 +34 (g, - 2)

+11(g, - 2)° - 27e24 + 27€207).
(33)

In this case, the values of the load sharing ratio R at singular
points given by (15) are slightly more influenced by the
fractional part of the contact ratio than those of the above
case; however, the induced error in the determination of
I, (&4, A) is also very small. Obviously, (16) is always verified.

Also for high contact ratio spur gears, the thousand
cases represented in Figure 6 are included in a thin interval
of A, so an approximate expression for Ip,(¢,,A) can be
found as a function of ¢, neglecting the influence of A.
Furthermore, this variation with &, is practically linear, as
shown in Figure 10(a). A very accurate approximation can be
obtained by assuming a linear variation of I, (&,, A) with ¢,,
with a value of the function of 0.45 for d,, = 0, and a value of
0.95 for d, = 1. Accordingly,

Iy (e A) = I, (&) = %sa -0.55 (34)

which has been represented in Figure 10(b). Figure 10(a)
shows how this expression fits with numerical values. Relative
error in the evaluation of I,(,, A) is always smaller than
3%, as shown in Figure 11(a). Relative error in the evaluation
of the efficiency is always smaller than 0.03%, as shown in
Figure 11(b).

5. Results

5.1 Standard Spur Gears, 1 < g, < 2. Figure 12 represents the
computed values of the efficiency for the set of thousand spur
gears used in previous studies (Figures 6 to 9). Considered
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(a) Iryapproxi: relative error (A, &)

(b) Mapproxi: relative error (A, &)

FIGURE 8: Relative error of linear approximation of function I, (&,, A): (a) in estimation of the function I R,](elx, A); (b) in estimation of the

efficiency.

() Iryapproxz: relative error (A, &)

(b) Mapprox2: relative error (A, &)

FIGURE 9: Relative error of parabolic approximation of function I Rﬂ(s‘x, A): (a) in estimation of the function I Rq(ea, A); (b) in estimation of the

efficiency.

data included standard pressure angle between 19 deg and
27 deg, 18 to 30 tooth pinion, and gear ratio between 1 and
10. Addendum and dedendum took the values of the ISO and
AGMA standard proportions [34, 35].

Values of the efficiency computed with the proposed
analytical method are very close to those computed by
numerical methods, yielding an error of 10~* order, as shown
in Figures 8(b) and 9(b). As said above, this small error
is induced by the load sharing ratio function R({), whose
values at the singular points depend on the contact ratio.
Nevertheless, an error of 10™* order in the estimation of the
efficiency is quite insignificant. Error levels in the estimation
of I, (e, A) increase a little, but they are never higher than
2%.

The influence on the friction losses and the efficiency of
the number of teeth on pinion and wheel, as well as of the

normal pressure angle, has been also studied. Results have
been represented in Figure 13.

Results obtained from the proposed analytical method
have been also compared with those obtained by assuming
the load to be uniformly distributed along the line of contact,
that is, considering 50% of the load acting at each pair of
teeth along the intervals of double tooth contact and 100%
of the load along the interval of single tooth contact. The
proposed model yields slightly greater values of the efficiency.
In fact, the relative sliding is bigger at points far from the pitch
circle and the load is significantly smaller at those points, so
computed friction losses are lower. Although the differences
are not important when computed in terms of the efficiency
(around 0.2%-0.4%), they are much more significant when
expressed in terms of losses (up to 11%), as represented in
Figure 14.
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0.2 0.4 0.6 0.8 1

° IRfy num(sa’ /\)

o I (g4, A)
Ry num\*a -—- IRnapprox(soc’A) = Esa - 0.55

IRn approx(sac’ A)
() (b)

FIGURE 10: Numerical and approximate values of I, (¢,, A) for 2 < ¢, < 3.

d
* 0.6

() Iryapproxs: relative error (A, &) (b) Mapproxs: relative error (A, &)

FIGURE 11: Relative error of approximation of function I Rq(s‘x, A) for 2 < g, < 3: (a) in estimation of the function I Ry (€ A); (b) in estimation
of the efficiency.

FIGURE 12: Values of the efficiency #(e,).
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FIGURE 13: Influence of pressure angle and number of teeth on pinion and wheel: (a) on friction losses; (b) on the efficiency.

W, relative error (%)

Z, 150

FIGURE 14: Percentage difference in the estimation of power losses
with uniform and minimum elastic potential load distribution
models.

5.2. High Contact Ratio Spur Gears, 2 < g < 3.
Figure 15 represents the computed values of the efficiency
for a significant range of high transverse contact ratio spur
gears. To get transverse contact ratio greater than 2, spur gears
were considered with standard pressure angle between 14 deg
and 17 deg, 50 tooth pinion, and gear ratio between 1 and 4.
Addendum and dedendum took the values of the ISO and
AGMA standard proportions [34, 35].

Values of the efficiency computed with the proposed
analytical method are very close to those computed by
numerical methods, yielding an error of 107* order. As in
the previous case, this small error is induced by the singular
points of the load sharing ratio function R({). Errors in the
estimation of the efficiency remain at similar levels of 107
order, while errors in the estimation of I, (¢, A) increase a
little, but never above 3%.

Also for this case, the influence of the number of teeth
on both gears and the normal pressure angle on the friction

11
(b)
1 S
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FIGURE 15: Computed values of the efficiency #(e,).

losses and the efficiency have been studied. Results have been
represented in Figure 16.

Results obtained from the proposed analytical model
have been also compared with those obtained by assuming
the load to be uniformly distributed along the line of contact,
that is, considering 1/3 of the load acting at each pair of
teeth along the intervals of three-pair tooth contact and 1/2
of the load along the intervals of two-pair tooth contact. The
proposed model yields slightly greater values of the efficiency.
The relative sliding is bigger at points far from the pitch circle
and the load is significantly smaller at those points, so friction
losses are lower. Once again, differences are not important
when computed in terms of efficiency (around 0.3%) but in
this case are much more significant when expressed in terms
of losses (up to 50%). The representation of these significant
differences of computed losses as a function of the parameter
[1/Z, +1/Z,]”" and the transverse contact ratio &, may be
interesting. It is given in Figure 17, both for standard and high
contact ratio spur gears.
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FIGURE 17: Percentage difference in the estimation of power losses with uniform and minimum elastic potential load distribution models: (a)

standard spur gears; (b) high contact ratio spur gears.

6. Conclusions

A model of efficiency for involute spur gears has been
developed from a nonuniform load sharing model, based on
the minimum elastic potential criterion and assuming the
friction coefficient to be constant along the path of contact.
Both standard and high contact ratio spur gears have been
considered. According to the obtained load sharing ratio,
the efficiency has been expressed by a very simple, analytic
equation, as a function of the average friction coefficient, the
number of teeth on pinion and wheel, and the transverse
contact ratio.

In spite of its simplicity, this expression allows to compute
the efficiency with very small errors, always lower than
0.0003 (0.03% relative error), if compared with numerical

calculations, for a wide range of geometric and operating
parameters. In all the cases, values of the efficiency are higher
than those obtained from the hypothesis of uniform load
sharing due to the lower load intensity at points with bigger
relative sliding.

Some studies of the influence on the efficiency of several
design parameters have been carried out. It can be checked
that the efficiency increases for bigger pressure angle, for
balanced specific sliding on pinion and wheel, also if the gear
ratio decreases by increasing the number of teeth on pinion.
These results are suitable for spur gears with contact ratio
between 1and 2.7.

The presented model establishes the background of
advanced models considering undercut teeth and vacuum
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gearing effects, variable friction coefficient along the path of

contact, and not load-dependent losses.
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