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The Variational Iteration Method (VIM) and Modified Variational Iteration Method (MVIM) are used to find solutions of systems
of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy
and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential
equations, problemswere solved byAdomianDecompositionMethod andVIMandHomotopyPerturbationMethod.Comparisons
with exact solutions reveal that the Variational Iteration Method (VIM) and the Modified Variational Iteration Method (MVIM)
are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary
differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory
solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

1. Introduction

Stiff system of ordinary differential equations (ODEs) can be
seen in modeling various real-world problems [1]. Solving
such a system of ODEs is important, and many numer-
ical and analytical methods have been developed [1–17].
Classical numerical methods, such as finite difference and
finite element methods are computationally expensive and
are generally affected by round-off errors, which may give
inaccurate solutions. For further details of stiff problems, the
reader is referred to some previous studies in this field [1–
17]. Examples are presented to illustrate the efficiency of the
proposed approaches.

In this paper, Variation Iteration Method (VIM) and
Modified Variation Iteration Method (MVIM) are proposed
to obtain exact solutions of a stiff system of ODEs. This
numerical scheme is based upon application of Variational
Theory and is capable of finding the exact solutions of many
linear differential equations.

The Variation Iteration Method was first proposed by He
[18–23] and was successfully applied to autonomous ordinary
differential equations by He [23], nonlinear polycrystalline
solids [20], nonlinear partial differential equations, and other
fields [19–25].

The purpose of this paper is to show the merits of
VIM and MVIM in solving some stiff systems of ordinary
differential equations. The Variation Iteration Method is
useful for obtaining exact and approximate solutions of linear
and nonlinear differential equations.There is no requirement
for linearization or discretization and, hence, large computa-
tional work and round-off errors are avoided.The availability
of computer symbolic packages gives a mathematical tool to
perform some complicated manipulations and to carry out
somemodifications on amethod for a specific problem easily.
The results of the Variation Iteration Method (VIM) and
Modified Variation Iteration Method (MVIM) are compared
with the exact solutions of the problems to show the efficiency
of these methods.
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2. Variation Iteration Method

In 1978, Inokuti et al. [26] introduced a general Lagrange
multiplier method to solve nonlinear problems. In this
method the solution of a mathematical problem with a
linearization assumption is used as an initial approximation
or trial function. To illustrate this method, consider the
following form of a differential equation:

𝐿𝑢 (𝑡) + 𝑁𝑢 (𝑡) = 𝑔 (𝑡) , (1)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and
𝑔(𝑡) is an inhomogeneous term.

He has modified the above mentioned method into an
iteration procedure. According to the Variation Iteration
Method, or more precisely, He’s Variation Iteration Method
[18–23], a correctional functional can be written in the
following way:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛+1

(𝑡) + ∫

𝑡

0

𝜆 (𝜏) (𝐿𝑢
𝑛
(𝜏) + 𝑁𝑢

𝑛
(𝜏) − 𝑔 (𝜏)) 𝑑𝜏,

(2)

where 𝜆 is a general Lagrangian multiplier [19–23], which
can be identified optimally via the Variational Theory, the
subscript 𝑛 denotes the 𝑛th order approximation, and 𝛿𝑢

𝑛
is

considered as a restricted variation [19–23], that is, 𝛿𝑢
𝑛
= 0.

In this case, (2) is called a correction functional.
Also as it was indicated by Ramos [27], Inokuti et al.’s

Variational Iteration and alsoHe’s Variation IterationMethod
can be derived by means of Adjoint Operators, Green’s
Function, Integration by Parts, and the method of Weighted
Residuals.

Based on this basic VIM and MVIM formulation knowl-
edge, there are three different VIM algorithms given in [28]:

Algorithm 1.

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) + ∫

𝑡

𝑡0

𝜆 [𝐿𝑢
𝑛
(𝜏) + 𝑁𝑢

𝑛
(𝜏)] 𝑑𝜏, (3)

Algorithm 2.

𝑢
𝑛+1

(𝑡) = 𝑢
0
(𝑡) + ∫

𝑡

𝑡0

𝜆 [𝑁𝑢
𝑛
(𝜏)] 𝑑𝜏, (4)

Algorithm 3.

𝑢
𝑛+2

(𝑡) = 𝑢
𝑛+1

(𝑡) + ∫

𝑡

𝑡0

𝜆 [𝑁𝑢
𝑛+1

(𝜏) − 𝑁𝑢
𝑛
(𝜏)] 𝑑𝜏. (5)

Further details of these iteration procedures with examples
can be found in [27].

3. Stiffness of a System of Ordinary
Differential Equations

For a given system of ordinary differential equations, stiffness
means a big difference in the time scales of the components in
the vector solution. Some of well-known numerical methods

and their procedures which are quite satisfactory in general
can work unsatisfactorily on stiff problems. For a general
formulation for stiff problems,

y = f (𝑥, y) , y (𝑥
0
) = y0, 𝑎 ≤ 𝑥 ≤ 𝑏, (6)

where f(𝑥, y) is defined and continuous in a region 𝐷 ⊂

[𝑎, 𝑏], that is either singular or stiff or both. The definition
of stiffness is given in [15] and in [16] as follows.

The Initial Value Problem of (6) is said to be stiff over the
finite interval for every 𝑥 ∈ [𝑎, 𝑏], the eigenvalues {𝜆

𝑠
(𝑥), 𝑠 =

1, 2, 3, . . . , 𝑚} of the Jacobian matrix satisfy the following
conditions:

(a) Re (𝜆
𝑠
(𝑥)) < 0, 𝑠 = 1, 2, 3, . . . , 𝑚,

(b) stiffness ratio 𝑅 =
max Re (𝜆𝑠 (𝑥))



min Re (𝜆𝑠 (𝑥))


≫ 1,

𝑠 = 1, 2, 3, . . . , 𝑚,

(7)

where 𝜆
𝑠
are the eigenvalues of the Jacobian of the system.

4. Applications

In this section, Variation Iteration Method (VIM) and Mod-
ified Variational Method (MVIM) are applied to various stiff
systems of ordinary differential equations.

4.1. Problem 1. The stiff differential equation of second order
can be considered as a first example of this study elaborated
in [29]. The problem is as follows:

𝑢


(𝑡) = −20𝑢


(𝑡) − 19𝑢 (𝑡) (8)

with initial conditions

𝑢 (0) = 2, 𝑢


(0) = −20. (9)

Its exact analytical solution is 𝑢(𝑡) = 𝑒
−19𝑡

+ 𝑒
−𝑡.

Below, this second order ordinary differential equation
can be written as a system of first order ordinary differential
equations and the stiffness ratio for this system can be
calculated as 𝑅 = 19 by using (7) and one can obtain the
following system.

𝑢


= V, (10a)

V


= −20V − 19𝑢. (10b)

4.1.1. VIM Iteration Formulation. VIM iteration formulation
for this system can be written as follows:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) + ∫

𝑡

0

𝜆
1
(𝑠) [𝑢


𝑛
(𝑠) − V

𝑛
(𝑠)] 𝑑𝑠, (11a)

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + ∫

𝑡

0

𝜆
2
(𝑠) [V


𝑛
(𝑠) + 19𝑢

𝑛
(𝑠) + 20V

𝑛
(𝑠)] 𝑑𝑠.

(11b)
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Their Lagrange multipliers can be calculated as 𝜆
1
(𝑠) = −1

and 𝜆
2
(𝑠) = −𝑒

20(𝑠−𝑡). As an exemplary purpose, first and
second iterations are given as follows for VIM formulation.

For 𝑛 = 0,

𝑢
1
(𝑡) = 𝑢

0
(𝑡) − ∫

𝑡

0

[𝑢


0
(𝑠) − V

0
(𝑠)] 𝑑𝑠, (12a)

V
1
(𝑡) = V

0
(𝑡) − ∫

𝑡

0

𝑒
20(𝑠−𝑡)

[V


0
(𝑠) + 19𝑢

0
(𝑠) + 20V

0
(𝑠)] 𝑑𝑠.

(12b)

For 𝑛 = 1,

𝑢
2
(𝑡) = 𝑢

1
(𝑡) − ∫

𝑡

0

[𝑢


1
(𝑠) − V

1
(𝑠)] 𝑑𝑠, (13a)

V
2
(𝑡) = V

1
(𝑡) − ∫

𝑡

0

𝑒
20(𝑠−𝑡)

[V


1
(𝑠) + 19𝑢

1
(𝑠) + 20V

1
(𝑠)] 𝑑𝑠.

(13b)

By using the above written formulations, we can get the
following approximations as

𝑢
1
(𝑡) = 2 − 20𝑡, (14a)

V
1
(𝑡) = −

19

10
−

181𝑒
−20𝑡

10
, (14b)

𝑢
2
(𝑡) =

219

200
+

181𝑒
−20𝑡

200
−

19𝑡

10
, (15a)

V
2
(𝑡) = −

57

20
−

343𝑒
−20𝑡

20
+ 19𝑡. (15b)

4.1.2. MVIM Iteration Formulation. MVIM iteration formu-
lation for this system can be written as follows:

𝑚𝑢
𝑛+1

(𝑡) = 𝑚𝑢
𝑛
(𝑡) + ∫

𝑡

0

𝜆
1
(𝑠) [𝑚𝑢



𝑛
(𝑠) − 𝑚V

𝑛
(𝑠)] 𝑑𝑠,

(16a)

𝑚V
𝑛+1

(𝑡) = 𝑚V
𝑛
(𝑡) + ∫

𝑡

0

𝜆
2
(𝑠) [𝑚V



𝑛
(𝑠) + 19𝑚𝑢

𝑛+1
(𝑠)

+20𝑚V
𝑛
(𝑠)] 𝑑𝑠.

(16b)

For 𝑛 = 0,

𝑚𝑢
1
(𝑡) = 𝑚𝑢

0
(𝑡) − ∫

𝑡

0

[𝑚𝑢


0
(𝑠) − 𝑚V

0
(𝑠)] 𝑑𝑠, (17a)

𝑚V
1
(𝑡) = 𝑚V

0
(𝑡) − ∫

𝑡

0

𝑒
20(𝑠−𝑡)

[𝑚V


0
(𝑠) + 19𝑚𝑢

1
(𝑠)

+20𝑚V
0
(𝑠)] 𝑑𝑠.

(17b)

For 𝑛 = 1,

𝑚𝑢
2
(𝑡) = 𝑚𝑢

1
(𝑡) − ∫

𝑡

0

[𝑚𝑢


1
(𝑠) − 𝑚V

1
(𝑠)] 𝑑𝑠, (18a)

𝑚V
2
(𝑡) = 𝑚V

1
(𝑡) − ∫

𝑡

0

𝑒
20(𝑠−𝑡)

[𝑚V


1
(𝑠) + 19𝑚𝑢

2
(𝑠)

+ 20𝑚V
1
(𝑠)] 𝑑𝑠,

(18b)

or as computed iterations as follows:

𝑚𝑢
1
(𝑡) = 2 − 20𝑡, (19a)

𝑚V
1
(𝑡) = −

57

20
−

343𝑒
−20𝑡

20
+ 19𝑡, (19b)

𝑚𝑢
2
(𝑡) =

457

400
+

343𝑒
−20𝑡

400
−

57𝑡

20
+

19𝑡
2

2
, (20a)

𝑚V
2
(𝑡) = −

10127

8000
−

14987𝑒
−20𝑡

8000
+

361𝑡

100

−
6517𝑡

400
𝑒
−20𝑡

−
361𝑡
2

40
.

(20b)

In the interval of 0 ≤ 𝑡 ≤ 1 VIM and MVIM results are
obtained for the 15th iteration. These results are compared
with the exact result of the stiff ordinary differential equation
for error analysis purpose in Tables 1 and 2.

4.2. Problem 2. This stiff ordinary differential equations
system example is presented in [9] and has the following
form:

(
𝑢


(𝑡)

V (𝑡)
) = (

−10 1

1 −2
)(

𝑢 (𝑡)

V (𝑡)
) (21)

with initial conditions

(
𝑢 (0)

V (0)
) = (

2

8
) . (22)

The stiffness ratio 𝑅 of the system is 𝑅 = 5.393540395 and
can be easily found by using (7). The exact solutions of this
stiff ordinary differential equations system can be obtained
by Laplace transform method as follows:

𝑢
𝐸
(𝑡) = 𝑒

(−6−√17)𝑡

+ 𝑒
(−6+√17)𝑡

,

V
𝐸
(𝑡) =

(−17 + 4√17) 𝑒
(−6−√17)𝑡

+ (17 + 4√17) 𝑒
(−6+√17)𝑡

√17

.

(23)

4.2.1. VIM Iteration Formulation. We can construct the
following correction functionals for vector (

𝑢(𝑡)

V(𝑡) ) as follows:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) + ∫

𝑡

0

𝜆
1
(𝑠) [𝑢


𝑛
(𝑠) + 10𝑢

𝑛
(𝑠) − Ṽ

𝑛
(𝑠)] 𝑑𝑠,

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + ∫

𝑡

0

𝜆
2
(𝑠) [V


𝑛
(𝑠) − �̃�

𝑛
(𝑠) + 2V

𝑛
(𝑠)] 𝑑𝑠,

(24)
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Table 1: Values for 𝑢(𝑡) for the fifteenth iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of 𝑢(𝑡).

𝑡 VIM 𝑢
15

MVIM 𝑢
15

Exact 𝑢
0 2 2 2
0.1 1.0544060372585944 1.0544060372585946 1.0544060372585946
0.2 0.8411015249341647 0.8411015249341475 0.8411015249341474
0.3 0.744164186144312 0.744164186139189 0.7441641861391891
0.4 0.6708204977097115 0.6708204974690799 0.6708204974690799
0.5 0.6066055157577269 0.6066055115425211 0.6066055115425211
0.6 0.5488228716973902 0.5488228315788688 0.548822831578869
0.7 0.49658723146673706 0.49658697828461873 0.4965869782846189
0.8 0.44933040627822074 0.4493292145688589 0.44932921456885877
0.9 0.40657420615772905 0.40656969720030467 0.40656969720030467
1 0.36789386847489264 0.36787944677423856 0.3678794467742388

where 𝜆
1
and 𝜆

2
are general Lagrange multipliers and �̃�

𝑛

and Ṽ
𝑛
denote restricted variations. In this respect, we

have 𝛿�̃�
𝑛
= 0 and 𝛿V

𝑛
= 0. In order to construct correction

functional, (24) should be elaborated as follows:

𝛿𝑢
𝑛+1

(𝑡) = 𝛿𝑢
𝑛
(𝑡) + 𝛿∫

𝑡

0

𝜆
1
(𝑠) [𝑢


𝑛
(𝑠) + 10𝑢

𝑛
(𝑠) − Ṽ

𝑛
(𝑠)] 𝑑𝑠

= 𝛿𝑢
𝑛
(𝑡) + 𝛿∫

𝑡

0

𝜆
1
(𝑠) [𝑢


𝑛
(𝑠) + 10𝑢

𝑛
(𝑠)] 𝑑𝑠 = 0

= 𝛿𝑢
𝑛
(𝑠) + 𝜆

1
⋅ 𝛿𝑢
𝑛
(𝑠) ‖
𝑡

0

+ ∫

𝑡

0

(10𝜆
1
(𝑠) − 𝜆



1
(𝑠)) 𝛿𝑢

𝑛
(𝑠) 𝑑𝑠 = 0.

(25)

Fromhere, by using stationary conditions obtained from (25),
following iteration formulas,

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) + ∫

𝑡

0

𝜆
1
(𝑠) [𝑢


𝑛
(𝑠) + 10𝑢

𝑛
(𝑠) − V

𝑛
(𝑠)] 𝑑𝑠,

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + ∫

𝑡

0

𝜆
2
(𝑠) [V


𝑛
(𝑠) − 𝑢

𝑛
(𝑠) + 2V

𝑛
(𝑠)] 𝑑𝑠,

(26)

and general Lagrange multipliers can be obtained as follows:

𝜆
1
(𝑠) = − 𝑒

10(𝑠−𝑡)

, 𝜆
2
(𝑠) = − 𝑒

2(𝑠−𝑡) (27)

for this problem. As an example, first and second VIM
iterations of the problem given in (21)-(22) can easily be
found by using (26)-(27) together.

For 𝑛 = 0,

𝑢
1
(𝑡) = 𝑢

0
(𝑡) − ∫

𝑡

0

𝑒
10(𝑠−𝑡)

[𝑢


0
(𝑠) + 10𝑢

0
(𝑠) − V

0
(𝑠)] 𝑑𝑠,

V
1
(𝑡) = V

0
(𝑡) − ∫

𝑡

0

𝑒
2(𝑠−𝑡)

[V


0
(𝑠) − 𝑢

0
(𝑠) + 2V

0
(𝑠)] 𝑑𝑠,

(28)

Table 2: Absolute error values for 𝑢(𝑡) for the fifteenth iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM).

𝑡 |𝑢(𝑡) − 𝑢
15
(𝑡)| |𝑢(𝑡) − 𝑚𝑢

15
(𝑡)|

0 0 0
0.1 2.2887169047990097 ∗ 10

−16

1.7412077124868676 ∗ 10
−17

0.2 1.7246525930471324 ∗ 10
−14

1.0492619227905604 ∗ 10
−16

0.3 5.12282328102992 ∗ 10
−12

1.1491517324386781 ∗ 10
−17

0.4 2.4063157065892793 ∗ 10
−10

7.613359770026226 ∗ 10
−17

0.5 4.215205883992268 ∗ 10
−9

5.942063179931005 ∗ 10
−17

0.6 4.0118521299307985 ∗ 10
−8

2.1285853261205842 ∗ 10
−16

0.7 2.531821182757271 ∗ 10
−7

9.624496566471713 ∗ 10
−17

0.8 1.1917093621013897 ∗ 10
−6

5.238729372178397 ∗ 10
−17

0.9 4.508957424324139 ∗ 10
−6

1.0421893383016911 ∗ 10
−17

1 0.000014421700653924341 2.388226335442445 ∗ 10
−16

or, as a computed result for this first iteration,

𝑢
1
(𝑡) =

4

5
+

6𝑒
−10𝑡

5
, V

1
(𝑡) = 1 + 7𝑒

−2𝑡

. (29)

For 𝑛 = 1,

𝑢
2
(𝑡) = 𝑢

1
(𝑡) − ∫

𝑡

0

𝑒
10(𝑠−𝑡)

[𝑢


1
(𝑠) + 10𝑢

1
(𝑠) − V

1
(𝑠)] 𝑑𝑠,

V
2
(𝑡) = V

1
(𝑡) − ∫

𝑡

0

𝑒
2(𝑠−𝑡)

[V


1
(𝑠) − 𝑢

1
(𝑠) + 2V

1
(𝑠)] 𝑑𝑠,

(30)

or, as a computed result for this second iteration,

𝑢
2
(𝑡) =

1

10
+

41𝑒
−10𝑡

40
+

7𝑒
−2𝑡

8
,

V
2
(𝑡) =

2

5
−

3𝑒
−10𝑡

20
+

31𝑒
−2𝑡

4
.

(31)

VIM iteration of this problem is conducted up to 15 iterations
and results and related errors are given in Tables 3, 4, 5, and 6
for comparison purposes.



Mathematical Problems in Engineering 5

Table 3: Values for 𝑢(𝑡) for the fifteenth iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of 𝑢(𝑡).

𝑡 VIM 𝑢
15

MVIM 𝑢
15

Exact 𝑢
0 2 2 2
1 0.15310487138764364 0.15310487138763976 0.15310487138763973
2 0.02342881322120863 0.02342881321791905 0.02342881321791905
3 0.0035861247768383723 0.0035861247256523954 0.003586124725652396
4 0.0005489094046572347 0.0005489092132974475 0.0005489092132974475
5 0.00008401900780327056 0.00008401864059355628 0.00008401864059355636

Table 4: Values for V(𝑡) for the fifteenth iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of V(𝑡).

𝑡 VIM V
15

MVIM V
15

Exact V
0 8 7.999999999999999 8.000000000000002
1 1.2433560287025747 1.2433560287025707 1.243356028702570
2 0.1903147111678612 0.19031471116472698 0.19031471116472704
3 0.02913046998493388 0.029130469932580193 0.0291304699325802
4 0.004458847727178969 0.004458847518489839 0.00445884751848984
5 0.0006824927138448505 0.0006824922920622653 0.000682492292062266

Table 5: Absolute Error Values for 𝑢(𝑡) for the fifteenth iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM).

𝑡 |𝑢(𝑡) − 𝑢
15
(𝑡)| |𝑢(𝑡) − 𝑚𝑢

15
(𝑡)|

0 0 0
1 3.9361078957821094 ∗ 10

−15

4.8262061805908646 ∗ 10
−17

2 3.289578231666611 ∗ 10
−12

7.555517345896108 ∗ 10
−19

3 5.1185976684536014 ∗ 10
−11

3.215333759054874 ∗ 10
−19

4 1.9135978719018548 ∗ 10
−10

1.2307620334176499 ∗ 10
−20

5 3.672097141931768 ∗ 10
−10

7.506581340857471 ∗ 10
−20

Table 6: Absolute Error Values for V(𝑡) for the fifteenth iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM).

𝑡 |V(𝑡) − V
15
(𝑡)| |V(𝑡) − 𝑚V

15
(𝑡)|

0 1.7763568394002505 ∗ 10
−15

2.6229018956769323 ∗ 10
−15

1 3.796171276632121 ∗ 10
−15

6.699623261226515 ∗ 10
−17

2 3.1341844809566755 ∗ 10
−12

5.768933781415289 ∗ 10
−17

3 5.235368044577589 ∗ 10
−11

7.028651272175357 ∗ 10
−18

4 2.086891291014619 ∗ 10
−10

1.3107024221759996 ∗ 10
−18

5 4.2178258450234333 ∗ 10
−10

6.661330967823222 ∗ 10
−19

4.2.2. MVIM Iteration Formulation. One has

𝑚𝑢
𝑛+1

(𝑡) = 𝑚𝑢
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
1
(𝑠) [𝑚𝑢



𝑛
(𝑠) + 10𝑚𝑢

𝑛
(𝑠) − 𝑚V

𝑛
(𝑠)] 𝑑𝑠,

𝑚V
𝑛+1

(𝑡) = 𝑚V
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
2
(𝑠) [𝑚V



𝑛
(𝑠) − 𝑚𝑢

𝑛+1
(𝑠) + 2𝑚V

𝑛
(𝑠)] 𝑑𝑠.

(32)

and general Lagrange multipliers can be obtained as follows:

𝜆
1
(𝑠) = −𝑒

10(𝑠−𝑡)

, 𝜆
2
(𝑠) = −𝑒

2(𝑠−𝑡) (33)

for this problem. As an example, first and second MVIM
iterations of the problem given in (21)-(22) can easily be
found by using (32)-(33) together.

For 𝑛 = 0,
𝑚𝑢
1
(𝑡) = 𝑚𝑢

0
(𝑡)

− ∫

𝑡

0

𝑒
10(𝑠−𝑡)

[𝑚𝑢


0
(𝑠) + 10𝑚𝑢

0
(𝑠) − 𝑚V

0
(𝑠)] 𝑑𝑠,

𝑚V
1
(𝑡) = 𝑚V

0
(𝑡)

− ∫

𝑡

0

𝑒
2(𝑠−𝑡)

[𝑚V


0
(𝑠) − 𝑚𝑢

1
(𝑠) + 2𝑚V

0
(𝑠)] 𝑑𝑠,

(34)

or, as a computed result for this first iteration,

𝑚𝑢
1
(𝑡) =

4

5
+

6𝑒
−10𝑡

5
,

𝑚V
1
(𝑡) =

2

5
−

3𝑒
−10𝑡

20
+

31𝑒
−2𝑡

4
.

(35)

For 𝑛 = 1,
𝑚𝑢
2
(𝑡) = 𝑚𝑢

1
(𝑡)

− ∫

𝑡

0

𝑒
10(𝑠−𝑡)

[𝑚𝑢


1
(𝑠) + 10𝑚𝑢

1
(𝑠) − 𝑚V

1
(𝑠)] 𝑑𝑠,

𝑚V
2
(𝑡) = 𝑚V

1
(𝑡)

− ∫

𝑡

0

𝑒
2(𝑠−𝑡)

[𝑚V


1
(𝑠) − 𝑚𝑢

2
(𝑠) + 2𝑚V

1
(𝑠)] 𝑑𝑠,

(36)
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or, as a computed result for this second iteration,

𝑚𝑢
2
(𝑡) =

1

25
+

793𝑒
−10𝑡

800
+

31𝑒
−2𝑡

32
−

3

20
𝑒
−10𝑡

𝑡,

𝑚V
2
(𝑡) =

1

50
−

389𝑒
−10𝑡

3200
+

1037𝑒
−2𝑡

128

+
3

160
𝑒
−10𝑡

𝑡 +
31

32
𝑒
−2𝑡

𝑡.

(37)

MVIM iteration of this problem is conducted up to 15
iterations and results and related errors are given in Tables
3–6 for comparison purposes.

4.3. Problem 3. Let us consider the following stiff ordinary
differential equations system with stiffness ratio as 𝑅 = 1000

as an our next example which is given in [30]

(
𝑢


(𝑡)

V (𝑡)
) = (

998 1998

−999 −1999
)(

𝑢 (𝑡)

V (𝑡)
) (38)

with initial conditions as follows:

(
𝑢 (0)

V (0)
) = (

1

1
) (39)

with exact solutions:

𝑢 (𝑡) = 4𝑒
−𝑡

− 3𝑒
−1000𝑡

,

V (𝑡) = −2𝑒
−𝑡

+ 3𝑒
−1000𝑡

.

(40)

4.3.1. VIM Iteration Formulation. VIM iteration formulation
for this system can be written as follows:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
1
(𝑠) [𝑢


𝑛
(𝑠) − 998𝑢

𝑛
(𝑠) − 1998V

𝑛
(𝑠)] 𝑑𝑠,

(41a)

V
𝑛+1

(𝑡) = V
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
2
(𝑠) [V


𝑛
(𝑠) + 999𝑢

𝑛
(𝑠) + 1999V

𝑛
(𝑠)] 𝑑𝑠.

(41b)

Their Lagrange multipliers can be calculated as 𝜆
1
(𝑠) =

−𝑒
−998(𝑠−𝑡) and 𝜆

2
(𝑠) = −𝑒

1999(𝑠−𝑡). As an exemplary purpose,
first and second iterations are given as follows for VIM
formulation.

The stiffness ratio of the system (𝑅) is equal to 1000.

For 𝑛 = 0,

𝑢
1
(𝑡) = 𝑢

0
(𝑡)

− ∫

𝑡

0

𝑒
−998(𝑠−𝑡)

[𝑢


0
(𝑠) − 998𝑢

0
(𝑠) − 1998V

0
(𝑠)] 𝑑𝑠,

(42a)

V
1
(𝑡) = V

0
(𝑡)

− ∫

𝑡

0

𝑒
−1999(𝑠−𝑡)

[V


0
(𝑠) + 999𝑢

0
(𝑠) + 1999V

0
(𝑠)] 𝑑𝑠.

(42b)

For 𝑛 = 1,

𝑢
2
(𝑡) = 𝑢

1
(𝑡)

− ∫

𝑡

0

𝑒
−998(𝑠−𝑡)

[𝑢


1
(𝑠) − 998𝑢

1
(𝑠) − 1998V

1
(𝑠)] 𝑑𝑠,

(43a)

V
2
(𝑡) = V

1
(𝑡)

− ∫

𝑡

0

𝑒
−1999(𝑠−𝑡)

[V


1
(𝑠) + 999𝑢

1
(𝑠) + 1999V

1
(𝑠)] 𝑑𝑠.

(43b)

By using the above written formulations, we can get the
following approximations as

𝑢
1
(𝑡) = −

999

499
+

1498𝑒
998𝑡

499
, (44a)

V
1
(𝑡) = −

999

1999
+

2998𝑒
−1999𝑡

1999
, (44b)

𝑢
2
(𝑡) =

998001

997501
−

5996𝑒
−1999𝑡

5997
+

1496𝑒
998𝑡

1497
, (45a)

V
2
(𝑡) =

998001

997501
+

5998𝑒
−1999𝑡

5997
−

1498𝑒
998𝑡

1497
. (45b)

4.3.2. MVIM Iteration Formulation. MVIM iteration formu-
lation for this system can be written as follows:

𝑚𝑢
𝑛+1

(𝑡) = 𝑚𝑢
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
1
(𝑠) [𝑚𝑢



𝑛
(𝑠) − 998𝑚𝑢

𝑛
(𝑠)

−1998𝑚V
𝑛
(𝑠)] 𝑑𝑠,

(46a)

𝑚V
𝑛+1

(𝑡) = 𝑚V
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
2
(𝑠) [𝑚V



𝑛
(𝑠) + 999𝑚𝑢

𝑛+1
(𝑠)

+1999𝑚V
𝑛
(𝑠)] 𝑑𝑠.

(46b)
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For 𝑛 = 0,

𝑚𝑢
1
(𝑡) = 𝑚𝑢

0
(𝑡) − ∫

𝑡

0

𝑒
−998(𝑠−𝑡)

[𝑚𝑢


0
(𝑠) − 998𝑚𝑢

0
(𝑠)

−1998𝑚V
0
(𝑠)] 𝑑𝑠,

(47a)

𝑚V
1
(𝑡) = 𝑚V

0
(𝑡)

− ∫

𝑡

0

𝑒
−1999(𝑠−𝑡)

[𝑚V


0
(𝑠) + 999𝑚𝑢

1
(𝑠)

+1999𝑚V
0
(𝑠)] 𝑑𝑠.

(47b)

For 𝑛 = 1,

𝑚𝑢
2
(𝑡) = 𝑚𝑢

1
(𝑡)

− ∫

𝑡

0

𝑒
−998(𝑠−𝑡)

[𝑚𝑢


1
(𝑠) − 998𝑚𝑢

1
(𝑠)

−1998𝑚V
1
(𝑠)] 𝑑𝑠,

(48a)

𝑚V
2
(𝑡) = 𝑚V

1
(𝑡)

− ∫

𝑡

0

𝑒
−1999(𝑠−𝑡)

[𝑚V


1
(𝑠) + 999𝑚𝑢

2
(𝑠)

+1999𝑚V
1
(𝑠)] 𝑑𝑠,

(48b)

or as computed iterations as follows:

𝑚𝑢
1
(𝑡) = −

999

499
+

1498𝑒
998𝑡

499
, (49a)

𝑚V
1
(𝑡) =

998001

997501
+

5998𝑒
−1999𝑡

5997
−

1498𝑒
998𝑡

1497
, (49b)

𝑚𝑢
2
(𝑡) = −

997002999

497752999
−

11996𝑒
−1999𝑡

17991

+
8224022𝑒

998𝑡

2241009
−

997668𝑡

499
𝑒
998𝑡

,

(50a)

𝑚V
2
(𝑡) =

996005996001

995008245001
+

155864026𝑒
−1999𝑡

107892027

−
9719026𝑒

998𝑡

6723027
+

1331556𝑡

1999
𝑒
−1999𝑡

+
332556𝑡

499
𝑒
998𝑡

.

(50b)

The results and related error analysis in the interval of 0 ≤ 𝑡 ≤

0.001 are obtained by using VIM and MVIM. The results are
given in Tables 7, 8, 9, and 10.

4.4. Problem 4. Current stiff ordinary differential equations
system example is elaborated in [8] and has the following
form:

𝑢


(𝑡) = 0.01 − (0.01 + 𝑢 (𝑡) + V (𝑡))

× (𝑢
2

(𝑡) + 1001𝑢 (𝑡) + 1001) ,

V


(𝑡) = 0.01 − (0.01 + 𝑢 (𝑡) + V (𝑡)) (1 + V
2

)

(51)

with initial conditions

𝑢 (0) = 0,

V (0) = 0.

(52)

4.4.1. VIM Iteration Formulation. By using VIM iteration
formula for this problem,

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) + ∫

𝑡

0

𝜆
1
(𝑠)

× [𝑢


𝑛
(𝑠) − 0.01

+ (0.01 + 𝑢
𝑛
(𝑠) + V

𝑛
(𝑠))

× (𝑢
2

𝑛
(𝑡) + 1001𝑢

𝑛
(𝑡) + 1001)] 𝑑𝑠,

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + ∫

𝑡

0

𝜆
2
(𝑠)

×[V


𝑛
(𝑠) − 0.01 + (0.01 + 𝑢

𝑛
(𝑠) + V

𝑛
(𝑠))

× (1 + V
2

𝑛
(𝑠))] 𝑑𝑠

(53)

are obtained with general Lagrange multipliers of this prob-
lem

𝜆
1
(𝑠) = −𝑒

−1011.01(𝑠−𝑡)

, 𝜆
2
(𝑠) = −𝑒

𝑠−𝑡

. (54)

Furthermore, by using (7), it can be calculated that the Stiff-
ness Ratio 𝑅 of this current nonlinear ordinary differential
equations system is 102312, so 𝑅 = 102312 for this system. It
should be noted that this current𝑅 value is much higher than
the previous example’s 𝑅 value.
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Table 7: Values for 𝑢(𝑡) for the fifteenth iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of 𝑢(𝑡).

𝑡 VIM 𝑢
15

MVIM 𝑢
15

Exact 𝑢
0 1.0000000000000009 0.9999999999999991 1
0.0001 1.2850877658914557 1.2850877658914535 1.2850877658914546
0.0002 1.5430078207607218 1.54300782076072 1.5430078207607214
0.0003 1.7763455179368497 1.7763455179368466 1.7763455179368477
0.0004 1.9874401818504213 1.9874401818504188 1.98744018185042
0.0005 2.178408520778776 2.178408520778775 2.1784085207787767
0.0006 2.3511658115739342 2.351165811573942 2.3511658115739427
0.0007 2.5074450683970526 2.5074450683971445 2.5074450683971445
0.0008 2.648814387306315 2.648814387307067 2.64881438730707
0.0009 2.776692640287484 2.7766926402923118 2.776692640292312
0.001 2.8923636757938955 2.8923636758191704 2.892363675819173

Table 8: Values for V(𝑡) for the fifteenth iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of V(𝑡).

𝑡 VIM V
15

MVIM V
15

Exact V
0 0.9999999999999998 1.0000000000000004 1
0.0001 0.7147122441082119 0.7147122441082117 0.7147122441082121
0.0002 0.4565922192366122 0.4565922192366125 0.4565922192366121
0.0003 0.2230545720541527 0.22305457205415302 0.22305457205415302
0.0004 0.011759978128248435 0.011759978128248725 0.011759978128248916
0.0005 −0.1794082708204386 −0.17940827082043712 −0.1794082708204383

0.0006 −0.35236545164593536 −0.35236545164593086 −0.3523654516459318

0.0007 −0.5088445785114996 −0.508844578511458 −0.5088445785114579

0.0008 −0.6504137474780325 −0.6504137474777034 −0.6504137474777028

0.0009 −0.7784918305373185 −0.7784918305352573 −0.7784918305352575

0.001 −0.894362676163021 −0.8943626761524226 −0.894362676152423

Table 9: Absolute Error Values for 𝑢(𝑡) for the fifteenth iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM).

𝑡 |𝑢(𝑡) − 𝑢
15
(𝑡)| |𝑢(𝑡) − 𝑚𝑢

15
(𝑡)|

0 8.881784197001252∗ 10−16 8.881784197001252∗ 10−16

0.0001 1.4107638668381384∗ 10−15 1.63927337215093∗ 10−15

0.0002 4.874572967494828∗ 10−16 3.636731723871602∗ 10−16

0.0003 1.762479051592436∗ 10−15 1.6310915359790852∗ 10−15

0.0004 1.7208456881689926∗ 10−15 2.045543910037667∗ 10−15

0.0005 5.412337245047638∗ 10−16 2.501877828173238∗ 10−15

0.0006 8.18789480661053∗ 10−15 2.9766770645589524∗ 10−16

0.0007 9.009459844833145∗ 10−14 1.3595895242968226∗ 10−16

0.0008 7.55506768257419∗ 10−13 2.9303816317938214 ∗ 10−15

0.0009 4.828359934094806∗ 10−12 1.551710149261254∗ 10−15

0.001 2.5278001913875414∗ 10−11 2.39044894989604∗ 10−15

For 𝑛 = 0, the first iteration will be as follows:

𝑢
1
(𝑡) = 𝑢

0
(𝑡)

− ∫

𝑡

0

𝑒
−1011.01(𝑠−𝑡)

Table 10: Absolute Error Values for V(𝑡) for the fifteenth iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM).

𝑡 |V(𝑡) − V
15
(𝑡)| |V(𝑡) − 𝑚V

15
(𝑡)|

0 2.220446049250313∗ 10−16 4.440892098500626∗ 10−16

0.0001 4.437097390896927∗ 10−16 2.5681613855185254∗ 10−16

0.0002 8.370040771588094∗ 10−17 4.270630030588457610−16

0.0003 1.7607443281164592∗ 10−16 2.1077031846439075∗ 10−16

0.0004 4.891920202254596∗ 10−16 1.8985618825906542∗ 10−16

0.0005 5.412337245047638∗ 10−16 9.454598697911445∗ 10−16

0.0006 3.802513859341161∗ 10−15 7.902156712183764∗ 10−16

0.0007 4.1175396425785493∗ 10−14 1.22514845490862∗ 10−17

0.0008 3.295558270721699∗ 10−13 1.3088353100973449∗ 10−15

0.0009 2.0607682227336∗ 10−12 4.040821496853475∗ 10−16

0.001 1.0597828170588741∗ 10−11 1.2790333028811496∗ 10−15

× [𝑢


0
(𝑠) − 0.01

+ (0.01 + 𝑢
0
(𝑠) + V

0
(𝑠))

× (𝑢
2

0
(𝑡) + 1001𝑢

0
(𝑡) + 1001)] 𝑑𝑠,
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V
1
(𝑡) = V

0
(𝑡)

− ∫

𝑡

0

𝑒
𝑠−𝑡

[V


0
(𝑠) − 0.01

+ (0.01 + 𝑢
0
(𝑠) + V

0
(𝑠))

× (1 + V
2

0
(𝑠))] 𝑑𝑠,

(55)

or, as a computed result for this first iteration,

𝑢
1
(𝑡) = − 0.00989109900000989

+ 0.00989109900000989𝑒
−1011.01𝑡

,

V
1
(𝑡) = 0.

(56)

For 𝑛 = 1, the second iteration will be as follows:

𝑢
2
(𝑡) = 𝑢

1
(𝑡)

− ∫

𝑡

0

𝑒
−1011.01(𝑠−𝑡)

× [𝑢


1
(𝑠) − 0.01

+ (0.01 + 𝑢
1
(𝑠) + V

1
(𝑠))

× (𝑢
2

1
(𝑡) + 1001𝑢

1
(𝑡) + 1001)] 𝑑𝑠,

V
2
(𝑡) = V

1
(𝑡)

− ∫

𝑡

0

𝑒
𝑠−𝑡

[V


1
(𝑠) − 0.01

+ (0.01 + 𝑢
1
(𝑠) + V

1
(𝑠))

× (1 + V
2

1
(𝑠))] 𝑑𝑠,

(57)

or, as a computed result for this second iteration,

𝑢
2
(𝑡) = − 0.009987964198100541

+ 4.785730068611516

× 10
−10

𝑒
−3033.0299999999993𝑡

+ ⋅ ⋅ ⋅ ,

V
2
(𝑡) = 0.00989109900000989

+ 0.000009793070365649738𝑒
−1011.01𝑡

− 0.00990089207037554𝑒
−𝑡

.

(58)

4.4.2. MVIM Iteration Formulation. From Modified Vari-
ation Iteration Method (MVIM), the following iteration
formulation can be obtained for (51)-(52):

𝑚𝑢
𝑛+1

(𝑡) = 𝑚𝑢
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
1
(𝑠) [𝑚𝑢



𝑛
(𝑠) − 0.01

+ (0.01 + 𝑚𝑢
𝑛
(𝑠) + 𝑚V

𝑛
(𝑠))

× (𝑚𝑢
2

𝑛
(𝑡) + 1001𝑚𝑢

𝑛
(𝑡)

+1001)] 𝑑𝑠,

𝑚V
𝑛+1

(𝑡) = 𝑚V
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆
2
(𝑠) [𝑚V



𝑛
(𝑠) − 0.01

+ (0.01 + 𝑚𝑢
𝑛+1

(𝑠) + 𝑚V
𝑛
(𝑠))

× (1 + 𝑚V
2

𝑛
(𝑠))] 𝑑𝑠.

(59)

Here again the same general Lagrangemultipliers are used for
calculations, for example,

𝜆
1
(𝑠) = −𝑒

−1011.01(𝑠−𝑡)

, 𝜆
2
(𝑠) = −𝑒

𝑠−𝑡

. (60)

For 𝑛 = 0,
𝑚𝑢
1
(𝑡) = 𝑚𝑢

0
(𝑡)

− ∫

𝑡

0

𝑒
−1011.01(𝑠−𝑡)

[𝑚𝑢


0
(𝑠) − 0.01

+ (0.01 + 𝑚𝑢
0
(𝑠) + 𝑚V

0
(𝑠))

× (𝑚𝑢
2

0
(𝑡) + 1001𝑚𝑢

0
(𝑡)

+1001)] 𝑑𝑠,

𝑚V
1
(𝑡) = 𝑚V

0
(𝑡)

− ∫

𝑡

0

𝑒
𝑠−𝑡

[𝑚V


0
(𝑠) − 0.01

+ (0.01 + 𝑚𝑢
1
(𝑠) + 𝑚V

0
(𝑠))

× (1 + 𝑚V
2

0
(𝑠))] 𝑑𝑠,

(61)

or, as a computed result for this first iteration,

𝑚𝑢
1
(𝑡) = − 0.00989109900000989

+ 0.00989109900000989𝑒
−1011.01𝑡

,

𝑚V
1
(𝑡) = 0.00989109900000989

+ 0.000009793070365649738𝑒
−1011.01𝑡

− 0.00989109900000989𝑒
−𝑡

− ⋅ ⋅ ⋅ .

(62)
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Table 11: Values for 𝑢(𝑡) for the second iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of 𝑢(𝑡) in 0.0001 ≤ 𝑡 ≤ 0.1.

𝑡 VIM 𝑢
2

MVIM 𝑢
2

Exact 𝑢
0.0001 −0.0009511410406405126 −0.0009511426259533606 −0.9511426272 ∗ 10

−3

0.001 −0.0063049860784233505 −0.0063060126254418855 −0.6306050198 ∗ 10
−2

0.01 −0.00998748230827825 −0.010064948254214971 −0.1006914044 ∗ 10
−1

0.1 −0.009987964198100541 −0.010893307586231409 −0.1096779217 ∗ 10
−1

Table 12: Values for V(𝑡) for the second iteration by Variational IterationMethod (VIM) andModified Variational IterationMethod (MVIM)
compared with exact values of V(𝑡) in 0.0001 ≤ 𝑡 ≤ 0.1.

𝑡 VIM V
2

MVIM V
2

Exact V
0.0001 4.8355100352656666 ∗ 10

−8

4.835591010596274 ∗ 10
−8

0.4835591013 ∗ 10
−7

0.001 3.6660943322046335 ∗ 10
−6

3.670267991501275 ∗ 10
−6

0.3670275606 ∗ 10
−5

0.01 0.00008872285001837454 0.00008976891925882233 0.8978912350 ∗ 10
−4

0.1 0.0009324013827985804 0.0009850573565074391 0.9879731668 ∗ 10
−3

For 𝑛 = 1,

𝑚𝑢
2
(𝑡) = 𝑚𝑢

1
(𝑡)

− ∫

𝑡

0

𝑒
−1011.01(𝑠−𝑡)

× [𝑚𝑢


1
(𝑠) − 0.01

+ (0.01 + 𝑚𝑢
1
(𝑠) + 𝑚V

1
(𝑠))

× (𝑚𝑢
2

1
(𝑡) + 1001𝑚𝑢

1
(𝑡) + 1001)] 𝑑𝑠,

𝑚V
2
(𝑡) = 𝑚V

1
(𝑡)

− ∫

𝑡

0

𝑒
𝑠−𝑡

[𝑚V


1
(𝑠) − 0.01

+ (0.01 + 𝑚𝑢
2
(𝑠) + 𝑚V

1
(𝑠))

× (1 + 𝑚V
2

1
(𝑠))] 𝑑𝑠,

(63)

or, as a computed result for this second iteration,

𝑚𝑢
2
(𝑡) = − 0.01968426729443655

+ 4.79046836800244

× 10
−10

𝑒
−3033.0299999999997𝑡

− ⋅ ⋅ ⋅ ,

𝑚V
2
(𝑡) = 0.01968424705929668

+ 9.090257649281869

× 10
−10

𝑒
−5055.049999999988𝑡

− ⋅ ⋅ ⋅ .

(64)

VIM and MVIM iterations of this problem are conducted
up to 2 iterations. The results and related errors are given in
Tables 11, 12, 13, and 14 for comparison purposes.

Table 13: Absolute Error Values for 𝑢(𝑡) for the second iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM) in 0.0001 ≤ 𝑡 ≤ 0.1.

𝑡 |𝑢(𝑡) − 𝑢
2
(𝑡)| |𝑢(𝑡) − 𝑚𝑢

2
(𝑡)|

0.0001 1.5865594874117303 ∗ 10
−9

1.2466394019514104 ∗ 10
−12

0.001 1.0641195766500702 ∗ 10
−6

3.757255811510929 ∗ 10
−8

0.01 0.0000816581317217499 4.192185785029806 ∗ 10
−6

0.1 0.0009798279718994593 0.00007448458376859216

Table 14: Absolute Error Values for V(𝑡) for the second iteration
by Variational Iteration Method (VIM) and Modified Variational
Iteration Method (MVIM) in 0.0001 ≤ 𝑡 ≤ 0.1.

𝑡 |V(𝑡) − V
2
(𝑡)| |V(𝑡) − 𝑚V

2
(𝑡)|

0.0001 8.097773433344856 ∗ 10
−13

2.4037259795860145 ∗ 10
−17

0.001 4.181273795366942 ∗ 10
−9

3.757255811510929 ∗ 10
−8

0.01 1.0662734816254679 ∗ 10
−6

2.0204241177684498 ∗ 10
−8

0.1 0.00005557178400141969 2.915810292560949 ∗ 10
−6

5. Discussion and Conclusions

In this research, we obtain numerical solutions for four
examples of stiff systems of ordinary differential equations. In
order to analyze the efficiency of the two methods, namely,
VIM and MVIM, in comparison with exact solutions, the
absolute errors are calculated for different 𝑡 values.

It can be seen that there are very good agreement between
the results of VIM, results of MVIM, and exact solutions
for these examples, which confirms the validity of the two
methods for these problems. However, when solutions of
VIM and MVIM are compared, it can be said that MVIM is
providing better results in general.

These methods are very simple and do not require very
small time steps for mildly stiff linear ordinary differential
equations to obtain results in which error accumulation gets
bigger as the time gets bigger for finding the solution.
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