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This paper studies the nonlinear dynamic behaviors including chaotic, subharmonic, and quasi-periodic motions of a rigid rotor
supported by floating ring gas bearing (FRGB) system. A hybrid numerical method combining the differential transformation
method and the finite difference method used to calculate pressure distribution of FRGB system and rotor orbits. The results
obtained for the orbits of the rotor center are in good agreement with those obtained using the traditional finite difference approach.
Moreover, the hybrid method avoids the numerical instability problem suffered by the finite difference scheme at low values of the
rotor mass and computational time-step. Moreover, power spectra, Poincaré maps, bifurcation diagrams and Lyapunov exponents
are applied to examine the nonlinear dynamic response of the FRGB systemover representative ranges of the rotormass and bearing
number, respectively. The results presented summarize the changes which take place in the dynamic behavior of the FRGB system
as the rotor mass and bearing number are increased and therefore provide a useful guideline for the bearing system.

1. Introduction

Gas bearing systems have been extensively used for a variety
of electromechanical system applications, and it is particu-
larly valuable when used with precision instruments. This is
due, in part, to low noise when there is rotation, and to zero
friction when the instruments are used as null devices. This
bearing systemhas a number of advantages compared to their
rolling-element or oil-lubricated counterparts, including low
friction losses and zero risk of contamination through lubri-
cant leakage. As a result, they are widely applied in a diverse
range of rotational systems.

Floating ring gas bearing (FRGB) system is different from
general gas bearings due to the double thins lubrication.
Because the rotational speed of the rotor applied in precision
control could reach 106 rpm, the stability of rotor dynamics is
one of the most important factors for considering the design
of FRGB systems. So, how to increase the stability of rotor
systems and control the appearance of nonperiodic motion
becomes the major execution of this paper.

According to the recent research, nonlinear dynamic
responses of rotor-bearing systems are analyzed and pub-
lished. In 1994, Malik and Bert [1] studied the differential
quadrature method (DQM) and applied it for the first
time to the solution of steady-state oil and gas lubrication
problems of self-acting hydrodynamic bearings. In that
work, the quadrature solutions of the Reynolds equation for
incompressible lubrication were compared with the exact
solutions of finite-length bearings. The quadrature solutions
of the compressible Reynolds equation for finite-length plain
journal bearings were comparedwith the finite difference and
finite element solutions. The work also included comparison
of the CPU times of the quadrature solutions with those
of the trigonometric series and finite element solutions of
oil-lubricated plain slider and journal bearings. For the gas-
lubricated journal bearing, the CPU times of the quadrature
solutions were compared with those of the finite solutions. In
all cases, it was found that the quadraturemethodwas capable
of yielding accurate solutions to the lubrication problems and
that it was computationallymore efficient than othermethods
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Figure 1: Cross-section of floating ring gas bearing system.

of solution. Zhao et al. [2] investigated the subharmonic and
quasi-periodic motions of an eccentric squeeze film damper-
mounted rigid rotor system. The authors showed that for
large values of the rotor unbalance and static misalignment,
the sub-harmonic and quasi-periodic motions generated at
speeds ofmore than twice the system critical speed bifurcated
from an unstable harmonic solution. Sundararajan and Noah
[3] utilized a simple shooting scheme integrated with an arc-
length continuation algorithm to analyze the dynamics of
periodically forced rotor systems. The results revealed the
occurrence of periodic, quasi-periodic, or chaotic motion at
different values of the rotor speed. In 2002, Wang et al. [4]
investigated static and dynamic characteristics of a flexible
rotor supported by externally pressurized porous gas journal
bearings. In this work, a modified Reynolds equation was
solved by the finite difference method, and a comparative
stability of rotor center and journal center was done.

In 2006, Rahmatabadi et al. [5, 6] studied the static and
dynamic characteristics of noncircular gas journal bearings
by considering the effect of mount angles and preload.
They proved that noncircular bearings have better dynamic
characteristic than circular bearings. Also, by using suitable
value of mount angles, stability margin can be increased.
Although previous works provide insight into the behavior of
the system, the bifurcation and nonlinear dynamic behavior

of the gas film in a FRGB has not been examined. Therefore,
this paper presents study of nonlinear dynamic behavior of a
rigid rotor supported by floating ring gas bearings.

Wang [7, 8] analyzed the bifurcation behavior and non-
linear dynamics of flexible and rigid rotors supported by
gas journal bearings (relative short gas journal bearings and
relative short spherical gas bearing systems) and showed that
the rotors exhibited a complex dynamic behavior comprising
periodic, sub-harmonic, and quasi-periodic responses at
different values of the rotor mass and bearing number,
respectively. In 2009, Wang [9] analyzed the bifurcation
behavior of a spherical gas journal bearing system by a hybrid
method including differential transformation method and
finite difference method. The bearing system is modeled as
a rigid rotor supported by bearing forces as a result of gas
viscosity and rotational speed.

The present study analyzes the nonlinear dynamic
response of a rigid rotor supported by two floating ring
gas bearings. In analyzing the bearing system, the time-
dependentmotions of the rotor center are described using the
Reynolds equation.ThemodifiedReynolds equation is solved
by using a hybrid method combining the differential trans-
formation method (DTM) and the finite difference method
(FDM). The validity of the hybrid method is confirmed by
comparing the results obtained for the orbits of the rotor
center with those obtained using the conventional FDM
scheme. The proposed method is then applied to analyze the
nonlinear dynamic response of the rotor for rotor masses
and bearing number in the ranges 0.1 ∼ 16.5 kg and 1.0 ∼ 7.8,
respectively.

2. Mathematical Modeling

2.1. Governing Equations. A floating ring gas bearing is
different from general gas bearing system due to the double
thins lubrication. The application for high rotational speed
more than 106 rpm can be used by FRGB system, and
the stability of this system is focused on to be analyzed.
The FRGB system is shown in Figure 1, and 𝑂
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In general, the pressure distribution in the gas film

between the shaft, floating ring, and the bushing in a floating
ring gas bearing (FRGB) system is modeled using the Reyn-
olds equation for an ideal gas. In the present study, the time-
dependent motions of the rotor center are modeled with the
following form.
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where 𝑃
𝑖,𝑖𝑖

is the dimensionless pressure corresponding to
the atmospheric pressure 𝑃

𝑎
; 𝐻
𝑖,𝑖𝑖

is the dimensionless film
thickness between the rotating shaft and the bushing, cor-
responding to the radial clearance 𝐶

𝑟
; 𝐷 is the diameter of

bearing,𝐿 is the length of bearing,Λ
𝑖,𝑖𝑖
is the bearing number;

𝜃 and 𝜍 are the coordinates in the circumferential and axial
directions, respectively.

The FRGB system model incorporates the following
design assumptions.

(a) The gas flow in and out of the sides of the bearing (side
flow) is neglected.

(b) Assume that the flow is isothermal because the ability
of the bearing materials to conduct away heat is
greater than the heat generating capacity of the gas
film.

(c) As gas viscosity is somewhat insensitive to changes in
pressure and the temperature is virtually constant, we
assume the gas viscosity to be constant.

The gas film pressure distribution must fulfill the follow-
ing boundary conditions.

(a) Gas pressure on both ends of the housing is equal to
the atmospheric pressure 𝑃

𝑎
, 𝑃(𝜃, ±𝜍) = 1.

(b) Gas pressure 𝑃 is an even function for 𝜍, 𝑃(𝜃, 𝜍) =
𝑃(𝜃, −𝜍).

(c) Gas pressure 𝑃 is continuous at 𝜍 = 0, 𝜕𝑃/𝜕𝜍|
𝜍=0
= 0.

(d) Gas pressure 𝑃 is a periodic function for 𝜃, 𝑃(𝜃, 𝜍) =
𝑃(𝜃 + 2𝜋, 𝜍), 𝜕𝑃/𝜕𝜃|

𝜃
= 𝜕𝑃/𝜕𝜃|

𝜃+2𝜋
.

The analysis presented in this study considers a FRGB
system comprising a perfectly balanced rigid rotor of mass
𝑚

𝑟
supported symmetrically on two identical floating ring

gas bearings, mounted in turn on rigid pedestals. Since the
rotor is perfectly balanced and the FRGB is symmetric about
its central axes, the current analyses are confined to a single
bearing supporting a rotating rotor of mass 𝑚

𝑟
with two

degrees of translatory oscillation in the transverse plane.
In the transient state, the equation of motion of the rotor

can be written as
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in which 𝐹∗elx and 𝐹∗ely are the components of the external
loading in the horizontal and vertical directions, respectively.

And the transformations are introduced as follows:
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Substituting the transformations given in (4) into (3) and
introducing the non-dimensional groups defined above, the
transient equations of motion of the rotor center can be
reformulated as follows:
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2.2. Mathematical Formulation of Numerical Simulations. In
solving the modified Reynolds equation using the finite
difference method, (1) and (2) are discretized initially using
the central-difference scheme in the 𝜃 and 𝜍 directions and
are then discretized once again using the implicit-back-
difference scheme in the time domain 𝜏. Note that for
simplicity, a uniform mesh size is used. (1) and (2) can be
transformed into the following form.

Inner film:

3((𝐻

𝑖
)

𝑛+1

𝑖,𝑗
)

2

(

(𝐻

𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝐻

𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

1

)

×(

(𝑃

2

𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝑃

2

𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

1

)

+ ((𝐻

𝑖
)

𝑛+1

𝑖,𝑗
)

3

(

(𝑃

2

𝑖
)

𝑛+1

𝑖+1,𝑗
− 2(𝑃

2

𝑖
)

𝑛+1

𝑖,𝑗
+ (𝑃

2

𝑖
)

𝑛+1

𝑖−1,𝑗

(Δ𝜃

1
)

2
)

+ 3((𝐻

𝑖
)

𝑛+1

𝑖,𝑗
)

2

(

(𝐻

𝑖
)

𝑛+1

𝑖,𝑗+1
− (𝐻

𝑖
)

𝑛+1

𝑖,𝑗−1

2Δ𝜍

1

)

×(

(𝑃

2

𝑖
)

𝑛+1

𝑖,𝑗+1
− (𝑃

2

𝑖
)

𝑛+1

𝑖,𝑗−1

2Δ𝜍

1

)

+ ((𝐻

𝑖
)

𝑛+1

𝑖,𝑗
)

3

(

(𝑃

2

𝑖
)

𝑛+1

𝑖,𝑗+1
− 2(𝑃

2

𝑖
)

𝑛+1

𝑖,𝑗
+ (𝑃

2

𝑖
)

𝑛+1

𝑖,𝑗−1

(Δ𝜍

1
)

2
)



4 Mathematical Problems in Engineering

= 2Λ

𝑖
(

(𝐻

𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝐻

𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

1

)(𝑃

𝑖
)

𝑛+1

𝑖,𝑗

+ 2Λ

𝑖
(

(𝑃

𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝑃

𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

1

)(𝐻

𝑖
)

𝑛+1

𝑖,𝑗

+ 2Λ

𝑖
Ω(

(𝐻

𝑖
)

𝑛+1

𝑖,𝑗+1
− (𝐻

𝑖
)

𝑛+1

𝑖,𝑗−1

2Δ𝜍

1

)(𝑃

𝑖
)

𝑛+1

𝑖,𝑗

+ 2Λ

𝑖
Ω(

(𝑃

𝑖
)

𝑛+1

𝑖,𝑗+1
− (𝑃

𝑖
)

𝑛+1

𝑖,𝑗−1

2Δ𝜍

1

)(𝐻

𝑖
)

𝑛+1

𝑖,𝑗

+ 4Λ

𝑖
𝛾(𝐻

𝑖
)

𝑛+1

𝑖,𝑗
(

(𝑃

𝑖
)

𝑛+1

𝑖,𝑗
− (𝑃

𝑖
)

𝑛

𝑖,𝑗

Δ𝜏

)

+ 4Λ

𝑖
𝛾(𝑃

𝑖
)

𝑛+1

𝑖,𝑗
(

(𝐻

𝑖
)

𝑛+1

𝑖,𝑗
− (𝐻

𝑖
)

𝑛

𝑖,𝑗

Δ𝜏

) ,

(7)

Outer film:

3((𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗
)

2

(

(𝐻

𝑖𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝐻

𝑖𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

2

)

×(

(𝑃

2

𝑖𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝑃

2

𝑖𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

2

)

+ ((𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗
)

3

(

(𝑃

2

𝑖𝑖
)

𝑛+1

𝑖+1,𝑗
− 2(𝑃

2

𝑖𝑖
)

𝑛+1

𝑖,𝑗
+ (𝑃

2

𝑖𝑖
)

𝑛+1

𝑖−1,𝑗

(Δ𝜃

2
)

2
)

+ 3((𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗
)

2

(

(𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗+1
− (𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗−1

2Δ𝜍

2

)

×(

(𝑃

2

𝑖𝑖
)

𝑛+1

𝑖,𝑗+1
− (𝑃

2

𝑖𝑖
)

𝑛+1

𝑖,𝑗−1

2Δ𝜍

2

)

+ ((𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗
)

3

(

(𝑃

2

𝑖𝑖
)

𝑛+1

𝑖,𝑗+1
− 2(𝑃

2

𝑖𝑖
)

𝑛+1

𝑖,𝑗
+ (𝑃

2

𝑖𝑖
)

𝑛+1

𝑖,𝑗−1

(Δ𝜍

2
)

2
)

= 2Λ

𝑖𝑖
(

(𝐻

𝑖𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝐻

𝑖𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

2

)(𝑃

𝑖𝑖
)

𝑛+1

𝑖,𝑗

+ 2Λ

𝑖𝑖
(

(𝑃

𝑖𝑖
)

𝑛+1

𝑖+1,𝑗
− (𝑃

𝑖𝑖
)

𝑛+1

𝑖−1,𝑗

2Δ𝜃

2

)(𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗

+ 4Λ

𝑖𝑖
𝛾(𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗
(

(𝑃

𝑖𝑖
)

𝑛+1

𝑖,𝑗
− (𝑃

𝑖𝑖
)

𝑛

𝑖,𝑗

Δ𝜏

)

+ 4Λ

𝑖𝑖
𝛾(𝑃

𝑖𝑖
)

𝑛+1

𝑖,𝑗
(

(𝐻

𝑖𝑖
)

𝑛+1

𝑖,𝑗
− (𝐻

𝑖𝑖
)

𝑛

𝑖,𝑗

Δ𝜏

) .

(8)

The pressure distribution at each time step can then be
obtained using an iterative calculation process.

The hybrid method proposed in this study is commenced
by using the differential transformation method (DTM) [9,
10] to discretize the modified Reynolds equation given in (1)
with respect to time. DTM is one of the most widely used
techniques for solving nonlinear differential equations due to
its rapid convergence rate and minimal calculation error.

In solving the Reynolds equation for the current FRGB
system, DTM is used to transform the Reynolds equation
with respect to the time domain 𝜏, and thus (1) and (2)
become as follows.
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,

(9)

Outer film:

3𝐼 ⊗

𝜕𝐻

𝑖𝑖

𝜕𝜃

2

⊗

𝜕𝑄

𝜕𝜃

2

+ 𝐽 ⊗

𝜕

2
𝑄

𝜕𝜃

2

2

+ 3𝐼 ⊗

𝜕𝐻

𝑖𝑖

𝜕𝜍

2

⊗

𝜕𝑄

𝜕𝜍

2

+ 𝐽 ⊗

𝜕

2
𝑄

𝜕𝜍

2

2

= 2Λ

𝑖𝑖
𝑃

𝑖𝑖
⊗

𝜕𝐻

𝑖𝑖

𝜕𝜃

2

+ 2Λ

𝑖𝑖
𝐻

𝑖𝑖
⊗

𝜕𝑃

𝑖𝑖

𝜕𝜃

2

+ 4Λ

𝑖𝑖
𝛾𝑃

𝑖𝑖
⊗

𝜕𝐻

𝑖𝑖

𝜕𝜏

+ 4Λ

𝑖𝑖
𝛾𝐻

𝑖𝑖
⊗

𝜕𝑃

𝑖𝑖

𝜕𝜏

,

(10)

where

𝑄 (𝑘) = 𝑃

2
= 𝑃 ⊗ 𝑃 =

𝑘

∑

𝑙=0

𝑃

𝑖,𝑗 (
𝑘 − 𝑙) 𝑃𝑖,𝑗 (

𝑙) ,

𝐼 (𝑘) = 𝐻

2
= 𝐻 ⊗𝐻 =

𝑘

∑

𝑙=0

𝐻

𝑖,𝑗 (
𝑘 − 𝑙)𝐻𝑖,𝑗 (

𝑙) ,



Mathematical Problems in Engineering 5

𝐽 (𝑘) = 𝐻

3
= 𝐻 ⊗𝐻 ⊗𝐻

=

𝑘

∑

𝑙=0

𝐻

𝑖,𝑗 (
𝑘 − 𝑙)

𝑙

∑

𝑚=0

𝐻

𝑖,𝑗 (
𝑙 − 𝑚)𝐻𝑖,𝑗 (

𝑚) .

(11)

The finite difference method (FDM) is then used to
discretize (9) and (10) with respect to the 𝜃 and 𝜍 directions.
Note that (9) and (10) are discretized using the second-order
accurate central-difference scheme for both the first and the
second derivatives.

Substituting (11) into (9)-(10) yields the following form.
Inner film:

3

𝑘

∑

𝑙=0

𝐼

𝑖,𝑗 (
𝑘 − 𝑙)

𝑙

∑

𝑚=0

(𝐻

𝑖
)

𝑖,𝑗
(𝑙 − 𝑚)

⋅ (

𝑄

𝑖+1,𝑗 (
𝑚) − 2𝑄𝑖,𝑗 (

𝑚) + 𝑄𝑖−1,𝑗 (
𝑚)

(Δ𝜃

1
)

2
)

+

𝑘

∑

𝑙=0

𝐽

𝑖,𝑗 (
𝑘 − 𝑙) (

𝑄

𝑖+1,𝑗 (
𝑙) − 2𝑄𝑖,𝑗 (

𝑙) + 𝑄𝑖−1,𝑗 (
𝑙)

(Δ𝜃

1
)

2
)

+ 3

𝑘

∑

𝑙=0

𝐼

𝑖,𝑗 (
𝑘 − 𝑙)

𝑙

∑

𝑚=0

(𝐻

𝑖
)

𝑖,𝑗
(𝑙 − 𝑚)

⋅ (

𝑄

𝑖,𝑗+1 (
𝑚) − 2𝑄𝑖,𝑗 (

𝑚) + 𝑄𝑖,𝑗−1 (
𝑚)

(Δ𝜍

1
)

2
)

+

𝑘

∑

𝑙=0

𝐽

𝑖,𝑗 (
𝑘 − 𝑙) (

𝑄

𝑖,𝑗+1 (
𝑙) − 2𝑄𝑖,𝑗 (

𝑙) + 𝑄𝑖,𝑗−1 (
𝑙)

(Δ𝜍

1
)

2
)

= 2Λ

𝑖

𝑘

∑

𝑙=0

(𝑃

𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (

(𝐻

𝑖
)

𝑖+1,𝑗
(𝑙) − (𝐻𝑖

)

𝑖−1,𝑗
(𝑙)

2Δ𝜃

1

)

+ 2Λ

𝑖

𝑘

∑

𝑙=0

(𝐻

𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (

(𝑃

𝑖
)

𝑖+1,𝑗
(𝑙) − (𝑃𝑖

)

𝑖−1,𝑗
(𝑙)

2Δ𝜃

1

)

+ 2Λ

𝑖
Ω

𝑘

∑

𝑙=0

(𝑃

𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (

(𝐻

𝑖
)

𝑖+1,𝑗
(𝑙) − (𝐻𝑖

)

𝑖−1,𝑗
(𝑙)

2Δ𝜃

1

)

+ 2Λ

𝑖
Ω

𝑘

∑

𝑙=0

(𝐻

𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (

(𝑃

𝑖
)

𝑖+1,𝑗
(𝑙) − (𝑃𝑖

)

𝑖−1,𝑗
(𝑙)

2Δ𝜃

1

)

+ 4Λ

𝑖
𝛾

𝑘

∑

𝑙=0

[(

𝑘 + 1

̃

𝐻

) (𝑃

𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (𝐻𝑖

)

𝑖,𝑗
(𝑙 + 1)]

+ 4Λ

𝑖
𝛾

𝑘

∑

𝑙=0

[(

𝑘 + 1

̃

𝐻

) (𝐻

𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (𝑃𝑖

)

𝑖,𝑗
(𝑙 + 1)] ,

(12)

Outer film:

3

𝑘

∑

𝑙=0

𝐼

𝑖,𝑗 (
𝑘 − 𝑙)

𝑙

∑

𝑚=0

(𝐻

𝑖𝑖
)

𝑖,𝑗
(𝑙 − 𝑚)

⋅ (

𝑄

𝑖+1,𝑗 (
𝑚) − 2𝑄𝑖,𝑗 (

𝑚) + 𝑄𝑖−1,𝑗 (
𝑚)

(Δ𝜃

2
)

2
)

+

𝑘

∑

𝑙=0

𝐽

𝑖,𝑗 (
𝑘 − 𝑙) (

𝑄

𝑖+1,𝑗 (
𝑙) − 2𝑄𝑖,𝑗 (

𝑙) + 𝑄𝑖−1,𝑗 (
𝑙)

(Δ𝜃

2
)

2
)

+ 3

𝑘

∑

𝑙=0

𝐼

𝑖,𝑗 (
𝑘 − 𝑙)

𝑙

∑

𝑚=0

(𝐻

𝑖𝑖
)

𝑖,𝑗
(𝑙 − 𝑚)

⋅ (

𝑄

𝑖,𝑗+1 (
𝑚) − 2𝑄𝑖,𝑗 (

𝑚) + 𝑄𝑖,𝑗−1 (
𝑚)

(Δ𝜍

2
)

2
)

+

𝑘

∑

𝑙=0

𝐽

𝑖,𝑗 (
𝑘 − 𝑙) (

𝑄

𝑖,𝑗+1 (
𝑙) − 2𝑄𝑖,𝑗 (

𝑙) + 𝑄𝑖,𝑗−1 (
𝑙)

(Δ𝜍

2
)

2
)

= 2Λ

𝑖𝑖

𝑘

∑

𝑙=0

(𝑃

𝑖𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (

(𝐻

𝑖𝑖
)

𝑖+1,𝑗
(𝑙) − (𝐻𝑖𝑖

)

𝑖−1,𝑗
(𝑙)

2Δ𝜃

2

)

+ 2Λ

𝑖𝑖

𝑘

∑

𝑙=0

(𝐻

𝑖𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (

(𝑃

𝑖𝑖
)

𝑖+1,𝑗
(𝑙) − (𝑃𝑖𝑖

)

𝑖−1,𝑗
(𝑙)

2Δ𝜃

2

)

+ 4Λ

𝑖𝑖
𝛾

𝑘

∑

𝑙=0

[(

𝑘 + 1

̃

𝐻

) (𝑃

𝑖𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (𝐻𝑖𝑖

)

𝑖,𝑗
(𝑙 + 1)]

+ 4Λ

𝑖𝑖
𝛾

𝑘

∑

𝑙=0

[(

𝑘 + 1

̃

𝐻

) (𝐻

𝑖𝑖
)

𝑖,𝑗
(𝑘 − 𝑙) (𝑃𝑖𝑖

)

𝑖,𝑗
(𝑙 + 1)] ,

(13)

where ̃𝐻 is time step value.
From (9),𝑃

𝑖,𝑗
(𝑘) is obtained for each time interval, where 𝑖

and 𝑗 are the coordinates of the node position, and 𝑘 indicates
the 𝑘th term.

The motions of the rotor center are computed using
an iterative procedure which commences by determining
the acceleration and then computes the velocity and the
displacement on a step-by-step basis over time. In defining
the initial conditions, the initial displacement (𝑋

20
,𝑌
20
) is

specified as the static equilibrium position of the shaft and
defines the gap 𝐻

𝑖,𝑗
(𝑘) between the shaft and the journal

bearing, and the velocity of the rotor is assumed to be zero.
The iterative computation procedure can be summarized

as follows.

Step 1. At time 𝜏 = 0, the external loading increases from 𝐹elo
to 𝐹el. After a time increment Δ𝜏, the new values of the rotor
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Table 1: Comparison of rotor center orbits calculated by FDM and hybrid method, respectively.

Displacement
Conditions 𝑋

2
(𝑛𝑇) 𝑌

2
(𝑛𝑇)

̃

𝐻 = 0.001

̃

𝐻 = 0.01

̃

𝐻 = 0.001

̃

𝐻 = 0.01

SOR and FDM 𝑚

𝑟
= 2.1 kg

𝜔 = 3.5 × 10

6 rpm
0.0171111035 0.0172835103 −0.0247812154 −0.0258745091

DTM and FDM 0.0172889076 0.0172858013 −0.0251754812 −0.0251713214

SOR and FDM 𝑚

𝑟
= 6.0 kg

𝜔 = 3.5 × 10

6 rpm
0.0182283150 0.0181341276 −0.1258257815 −0.1285321157

DTM and FDM 0.0183243783 0.0183297430 −0.1258701321 −0.1258781121

Table 2: Comparison of Poincarémaps of rotor center with different
values of𝑚

𝑟
and ̃𝐻.

𝜏 𝑋

2
(𝑛𝑇) 𝑌

2
(𝑛𝑇)

𝑚

𝑟
= 3.0 kg

𝜋/300 −0.0123810007 −0.0411895333

𝜋/600 −0.0123892510 −0.0411955171

𝑚

𝑟
= 8.0 kg

𝜋/300 −0.0870651990 −0.2553740891

𝜋/600 −0.0870179312 −0.2553712540

Table 3: Comparison of Poincarémaps of rotor center with different
values of Λ and ̃𝐻.

𝜏 𝑋

2
(𝑛𝑇) 𝑌

2
(𝑛𝑇)

Λ = 2.2

𝜋/300 0.0250423417 −0.1103104169

𝜋/600 0.0250431948 −0.1104462652

Λ = 6.1

𝜋/300 −0.2414364192 0.01215789323

𝜋/600 −0.2414519731 0.01213502841

acceleration, velocity, and displacement can be estimated as

𝑑

2
𝑋

𝑑𝜏

2
=

𝐹elx − 𝐹gfx

𝑚

𝑟

= 𝐴𝑐

𝑋
,

𝑑

2
𝑌

𝑑𝜏

2
=

𝐹ely − 𝐹gfy

𝑚

𝑟

= 𝐴𝑐

𝑌
,

(14)

𝑉

𝑋
= 𝑉

𝑋𝑜
+ 𝐴𝑐

𝑋
⋅ Δ𝜏,

𝑉

𝑌
= 𝑉

𝑌𝑜
+ 𝐴𝑐

𝑌
⋅ Δ𝜏,

(15)

𝑋 = 𝑋

𝑜
+ 𝑉

𝑋
⋅ Δ𝜏 +

1

2

𝐴𝑐

𝑋
⋅ Δ𝜏

2
,

𝑌 = 𝑌

𝑜
+ 𝑉

𝑌
⋅ Δ𝜏 +

1

2

𝐴𝑐

𝑌
⋅ Δ𝜏

2
.

(16)

Step 2. The rotor displacement causes a change in the gap𝐻
between the rotor and the bushing. Substituting the new value
of𝐻 into (1) and (2) gives the new pressure distribution in the
gap𝐻.

Step 3. The internal force is estimated by integrating the
pressure distribution obtained from Step 2.

Step 4. The displacement and velocity values from Step 1, the
pressure distribution from Step 2, and the internal force from
Step 3 are taken as the new initial conditions. Using these
new conditions, the calculation procedure returns to Step 1
to compute the changes which take place in the time interval
Δ𝜏 → 2Δ𝜏.

In this study, the data generated via the iterative computa-
tion procedure described above are used to construct power
spectra, Poincaré maps, bifurcation diagrams andLyapunov
exponents with which to examine the nonlinear dynamic
response of the FRGB systemover representative ranges of the
rotor mass and bearing number, respectively. For analyzing
the behavior of the FRGB system, the time-series data
corresponding to the first 1000 revolutions are deliberately
excluded in order to ensure that the analyzed data correspond
to steady-state conditions.

3. Results and Discussions

3.1. Numerical Analysis. Table 1 compares the results
obtained from the FDM and hybrid method (FDM&DTM)
for the orbits of the rotor center. It is observed that a good
agreement exists between the two sets of results. Moreover, it
can be seen that while the FDM suffers numerical instability
at low values of the rotor mass and time step, the hybrid
method converges under all the considered conditions
and therefore represents a more appropriate method for
analyzing the nonlinear dynamic response of the FRGB
system.

Tables 2 and 3 compare the Poincaré map data calculated
by the hybrid method using different time step values, ̃𝐻,
for rotor mass and bearing number values, respectively. For a
given rotor mass and bearing number, the rotor center orbits
are in agreement to approximately 4 decimal places for the
different time steps, ̃𝐻.

3.2. Dynamic Analysis: Situation I. Thefirst dynamic analysis
of the FRGB system considered a constant rotational speed
with a gradually increasing rotor mass. The gas bearing was
loaded with a constant rotational speed of 3.5 × 106 rpm, and
the rotor mass𝑚

𝑟
was varied in the range 0.1 ≤ 𝑚

𝑟
≤ 16.5 kg.

3.2.1. Dynamic Orbits and Phase Trajectories. Figure 2(a)
shows that the dynamic orbits of the rotor center are regular
at a low value of the rotor mass (𝑚

𝑟
= 3.0 kg) but become
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irregular at a rotormass of𝑚
𝑟
= 11.27 kg. For rotormass values

of𝑚
𝑟
= 13.17, 13.32, 14.13, 14.24, 14.61, 14.74, 15.03, and 15.12 kg,

the orbits still exhibit non-periodic characteristic. So, increas-
ing rotor mass causes irregular and non-periodic motion
especially when𝑚

𝑟
is greater than 11.27 kg. Figure 2(b) shows

the phase trajectories of the rotor center at different values
of the rotor mass. It is observed that the tendencies of the
phase trajectories with changes in the rotormass are identical
to those of the rotor center orbits.

3.2.2. Power Spectra. Figures 2(c) and 2(d) show the dynamic
responses of the rotor center in the vertical and horizontal
directions, respectively. It is seen that the rotor center exhibits
T-periodic motion at a rotor mass of 𝑚

𝑟
= 3.0 kg. However,

when the rotor mass is increased to 𝑚
𝑟
= 11.27 kg,Figures

2(c) and 2(d), second panels, show that the rotor center
performs non-periodic motion in the horizontal and vertical
directions. For higher rotor mass values of 𝑚

𝑟
= 13.17, 13.32,

14.13, 14.24, 14.61, 14.74, 15.03, and 15.12 kg, the rotor center
exhibits sub-harmonic, quasi-periodic, or chaotic motion.

3.2.3. Bifurcation Diagrams, Poincaré Maps, and Maximum
Lyapunov Exponents. Figures 3(a) and 3(b) present the
bifurcation diagrams of the rotor center displacement in
the horizontal and vertical directions as a function of the
rotor mass 𝑚

𝑟
. Meanwhile, Figures 4(a)–4(j) present the

Poincaré maps of the rotor center trajectories at 𝑚
𝑟
= 3.0,

11.27, 13.17, 13.32, 14.13, 14.24, 14.61, 14.74, 15.03, and 15.12,
respectively. In Figures 3(a) and 3(b), it can be seen that
the rotor center performs T-periodic motion in both the
horizontal and the vertical directions at low values of the
rotor mass, that is, 𝑚

𝑟
< 11.27 kg. This is confirmed by

the Poincaré map shown in Figure 4(a) for a rotor mass of
3.0 kg. However, at 𝑚

𝑟
= 11.27 kg, the T-periodic motion is

replaced by quasi-periodic motion (see Figure 4(b)). From
Figure 3, it is seen that this quasi-periodic motion persists
over the rotor mass range 11.27 ≤ 𝑚

𝑟
< 13.179 kg.

However, at 𝑚
𝑟
= 13.17 kg, the quasi-periodic motion

is replaced by multiperiodic motion in the horizontal and
vertical directions. This motion is maintained over the rotor
mass interval 13.17 ≤ 𝑚

𝑟
< 13.32 kg. Specifically, the rotor

center response transits through a cycle of Chaotic - Multi-T
periodic behavior as the rotor mass is increased from 13.32 to
15.52 kg (see Figures 4(c)–4(i)). Then, the behavior of rotor
center reverts from Multi-T periodic to chaotic motion for
rotor mass values in the range 15.12 ≤ 𝑚

𝑟
≤ 16.5 kg (see

Figure 4(j)). Figure 5, corresponding to rotormass, show that
the maximum Lyapunov exponent hasa value of positive,
which indicates that the system has a chaotic response over
the intervals 14.74 ≤ 𝑚

𝑟
< 15.03 and 15.12 ≤ 𝑚

𝑟
≤ 16.5,

shown in Figures 5(a) and 5(b).
From the discussions above, it is evident that the rotor

center behavior is significantly dependent on the rotor mass.
Table 4 summarizes the motions performed by the rotor
center for rotor mass values in the interval 0.1 ≤ 𝑚

𝑟
≤

16.5 kg.

Table 4: Behavior of rotor center at different rotormasses in interval
0.1 ≤ 𝑚

𝑟
≤ 16.5 kg.

Rotor mass𝑚
𝑟
(kg) Dynamic behavior

0.1 ≤ 𝑚

𝑟
< 11.27 T

11.27 ≤ 𝑚

𝑟
< 13.17 Quasi

13.17 ≤ 𝑚

𝑟
< 13.32 Multi-T (8T)

13.32 ≤ 𝑚

𝑟
< 14.13 Chaos

14.13 ≤ 𝑚

𝑟
< 14.24 Multi-T (12T)

14.24 ≤ 𝑚

𝑟
< 14.61 Multi-𝑇

14.61 ≤ 𝑚

𝑟
< 14.74 Multi-T (14T)

14.74 ≤ 𝑚

𝑟
< 15.03 Chaos

15.03 ≤ 𝑚

𝑟
< 15.12 Multi-T (14T)

15.12 ≤ 𝑚

𝑟
≤ 16.5 Chaos

Table 5: Behavior of rotor center at different bearing numbers in
interval 1.0 ≤ Λ ≤ 7.8.

Bearing number Λ Dynamic behavior
1.0 ≤ Λ < 5.13 T
5.13 ≤ Λ < 5.29 Multi-T
5.29 ≤ Λ < 5.35 7T
5.35 ≤ Λ < 5.99 Chaos
5.99 ≤ Λ < 6.24 T
6.24 ≤ Λ < 7.28 2T
7.28 ≤ Λ ≤ 7.8 Chaos

3.3. Dynamic Analysis: Situation II. In the second series of
analyses, the rotor mass was specified as𝑚

𝑟
= 3.0 kg, and the

bearing number Λ was increased over the range 1.0 ≤ Λ ≤
7.8.

3.3.1. Dynamic Orbits and Phase Trajectories. Figure 6(a)
shows that the dynamic orbits of the rotor center are regular
at a low value of the bearing number (Λ = 3.1) but become
irregular at Λ = 5.13. At a bearing number of Λ = 5.29, 5.99,
and 6.24, the rotor center resorts to a regular periodicmotion.
When the bearing number is changed to 5.35 and 7.28, the
rotor center performs an irregular motion. Figure 6(b) shows
the phase trajectories of the rotor center at different values
of the bearing number. It is observed that the results are
consistentwith those shown in Figure 6(a) for the rotor center
orbits, namely a regularmotion atΛ = 3.1, 5.29, 5.99, and 6.24,
but a non-periodic motion at Λ = 5.13, 5.35, and 7.28.

3.3.2. Power Spectra. Figures 6(c) and 6(d) show that the
rotor center performs a periodic motion at a bearing number
of Λ = 3.1 and 5.99. However, when the bearing number is
changed to Λ = 5.13, 5.29, and 6.24, the power spectra show
that the rotor center performs sub-harmonic motion in both
the horizontal and the vertical directions. For values of Λ
equal to 5.35, and 7.28, the rotor center performsnon-periodic
motion.

3.3.3. Bifurcation Diagrams, Poincaré Maps, and Maximum
Lyapunov Exponents. Figure 7 plots the bifurcation diagrams
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Figure 2: Continued.
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Figure 2: Trajectories of rotor center at𝑚
𝑟
= 3.0, 11.27, 13.17, 13.32, 14.13, 14.24, 14.61, 14.74, 15.03, 15.12 kg (a); phase trajectories of rotor center

(b); power spectra of rotor center in horizontal direction (c) and vertical direction (d) (at 𝜔 = 3.5 × 106 rpm).
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Figure 4: Poincaré maps of rotor center trajectory at: (a)𝑚
𝑟
= 3.0, (b) 11.27, (c) 13.17, (d) 13.32, (e) 14.13, (f) 14.24, (g) 14.61, (h) 14.74, (i) 15.03,

(j) 15.12 kg.
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Figure 5: Maximum Lyapunov exponents of system at different values of rotor mass at: (a)𝑚
𝑟
= 14.74 (b) 15.12 kg.
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Figure 6: Continued.
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Figure 6: Trajectories of rotor center at Λ = 3.1, 5.13, 5.29, 5.35, 5.99, 6.24, 7.28 (a); phase trajectories of rotor center (b), power spectra of
rotor center in horizontal direction (c) and vertical direction (d) (at𝑚

𝑟
= 3.0 kg).

for the rotor center displacement in the horizontal and
vertical directions as a function of the bearing number
Λ in the range from 1.0 to 7.8. Figures 8(a)–8(g) present
the Poincaré maps of the rotor center trajectories at Λ
= 3.1, 5.13, 5.29, 5.35, 5.99, 6.24, and 7.28, respectively. In
Figure 7, it can be seen that the rotor center performs
𝑇-periodic motion over the bearing number range 1.0 ≤
Λ < 5.13 and proved by Figure 8(a). The 𝑇-periodic motion
becomes unstable at bearing numbers of Λ = 5.13 and is
replaced by multi-periodic motion (see Figure 8(b)). This
multiperiodic behavior persists over 5.13 ≤ Λ < 5.29 and

also changes to sub-harmonic with a period of multi-𝑇.
For bearing numbers in the range 5.29 ≤ Λ ≤ 7.8, the
rotor center transits through 7𝑇 → Chaotic → 𝑇 →

2𝑇 → Chaotic motion (see Figures 8(c)–8(g)). Figure 9
shows that the maximum Lyapunov exponent has a positive
value when Λ equals 5.35 and 7.28 and also indicates that
the system has a chaotic response. Meanwhile, over the
intervals 5.35 ≤ Λ < 5.99, and 7.28 ≤ Λ ≤ 7.8,
shown in Figures 7 and 9, the system behaves non-stable
behavior and also should be avoided to operate under these
parameters.
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Figure 8: Poincaré maps of rotor center trajectory at Λ = (a) 3.1, (b) 5.13, (c) 5.29, (d) 5.35, (e) 5.99, (f) 6.24, (g) 7.28.

In other words, these bearing number intervals, which
correspond to the typical operating conditions of a real-world
FRGB system, are characterized by 𝑇-, 2𝑇-, 7𝑇-, multi-𝑇 and
chaotic motions of the rotor center. However, at specific and
higher bearing numbers, the rotor performs predominantly
chaotic motion in the horizontal and vertical directions.
Table 5 summarizes the motions performed by the rotor
center for bearing number values in the interval 1.0 ≤ Λ ≤
7.8.

4. Conclusions

This study has analyzed the nonlinear dynamic behavior of
a rigid rotor supported by floating ring gas bearing (FRGB)
system and utilized a hybrid numerical scheme comprising
the differential transformation method (DTM) and the finite
difference method (FDM) to obtain the pressure distribution
of FRGB system. The system dynamic orbits, phase trajecto-
ries, power spectra, bifurcation diagrams, Poincarémaps, and
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Figure 9: Maximum Lyapunov exponents of system at different values of bearing number at: (a) Λ = 5.35 (b) 7.28.

maximum Lyapunov exponents have revealed the presence
of a complex dynamic behavior comprising periodic, sub-
harmonic, quasi-periodic and chaotic responses of the rotor
center. The proposed hybrid method avoids the numerical
instability problem suffered by the finite difference scheme at
low values of the rotor mass and computational time-step.
Moreover, the DTM&FDM method converges under all
the considered conditions and therefore represents a more
appropriate method for analyzing the nonlinear dynamic
response of the FRGB system. The results of this study
provide an understanding of the nonlinear dynamic behavior
of floating ring gas bearing systems characterized by different
rotor masses 𝑚

𝑟
and bearing numbers Λ. Specifically, the

results have shown that at a rotor mass of 𝑚
𝑟
= 11.27 kg,

the Poincaré map has the form of a closed curve, indicating
that the rotor center performs quasi-periodic motion. And
chaotic motion appears in three rotor mass intervals to be
avoided. Regarding the influence of the bearing number on
the dynamic response of the bearing system, the results have
shown that at Λ = 3.1, the Poincaré map contains one
discrete points, indicating the presence of𝑇-periodicmotion.
However, when the bearing number is increased to Λ = 5.35,
the system is transferred to chaotic motion. Then, chaotic
motion appears in two intervals in the bearing number range
5.35 ≤ Λ ≤ 7.8. As shown in Table 5, the intermediate regions
in the bearing number range are characterized by 𝑇- and 2𝑇-
motion.
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