
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 149046, 12 pages
http://dx.doi.org/10.1155/2013/149046

Research Article
Nonlinear Dynamic Analysis and Optimization of Closed-Form
Planetary Gear System

Qilin Huang,1,2 Yong Wang,1,2 Zhipu Huo,1,2 and Yudong Xie1,2

1 School of Mechanical Engineering, Shandong University, Jingshi Road 17923, Jinan, Shandong 25006, China
2 Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Jinan,
Shandong 250061, China

Correspondence should be addressed to Yong Wang; meywang@sdu.edu.cn

Received 3 February 2013; Accepted 10 May 2013

Academic Editor: Zhuming Bi

Copyright © 2013 Qilin Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A nonlinear purely rotational dynamic model of a multistage closed-form planetary gear set formed by two simple planetary stages
is proposed in this study. The model includes time-varying mesh stiffness, excitation fluctuation and gear backlash nonlinearities.
The nonlinear differential equations of motion are solved numerically using variable step-size Runge-Kutta. In order to obtain
function expression of optimization objective, the nonlinear differential equations of motion are solved analytically using harmonic
balance method (HBM). Based on the analytical solution of dynamic equations, the optimization mathematical model which aims
at minimizing the vibration displacement of the low-speed carrier and the total mass of the gear transmission system is established.
The optimization toolbox in MATLAB program is adopted to obtain the optimal solution. A case is studied to demonstrate the
effectiveness of the dynamic model and the optimization method.The results show that the dynamic properties of the closed-form
planetary gear transmission system have been improved and the total mass of the gear set has been decreased significantly.

1. Introduction

Planetary gear sets have been widely used in engineering
including automotive transmissions, aviation transmissions,
and crane gearboxes as well as other marine and industrial
power transmission systems. Planetary gear trains havemany
advantages over fixed-center counter-shaft gear systems.
The flow of power via multiple-gear meshes increases the
power density and helps to reduce the overall size of the
transmission train. The ability of multistage planetary sets
in providing multiple speed reduction ratios has been the
main reason for their extensive use in automatic transmission
applications. Closed-form planetary trains are obtained from
a number of single-stage differential planetary gear sets
and one quasi-planetary stage whose central members are
connected according to a given power flow configuration.
Input, output, and fixed member assignments are made to
certain central members to achieve a given gear ratio.

Because of complexity of structure, most of the ear-
lier published studies on the planetary gear systems were

confined to single-stage planetary. In addition, these early
models were of linear time-invariant type, so that the eigen
solutions andmodel summation techniques were used to pre-
dict the natural modes and the forced response [1–3]. Kahra-
man [4] employed a purely rotational dynamic model for all
possible power flow configurations of complex compound
planetary gear sets. He classified the naturalmodel in two cat-
egories: asymmetric planet modes and axi-symmetric overall
modes. Sun and Hu [5] investigated the frequency response
of nonlinear planetary transmission system with multiple
clearances using single-term harmonic balance method and
focusing only on a single power flow configuration, in
which the ring gear was fixed. Al-shyyab and Kahraman
[6] developed a rotational single-stage nonlinear dynamic
model of a simple planetary gear set and provided a semi-
analytical forced response solution using multiterm HBM
and showed that these HBM solutions in well agreement with
direct numerical integration solution. Also, a recent study
by Al-shyyab [7] investigated a compound planetary gear set
formed by any number of simple planetary stages, and each
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Figure 1: (a) A closed-form planetary gear system; (b) A discrete model of closed-form planetary gear system.

planetary stage has a distinct fundamental mesh frequency
and any number of planets spaced in any angular positions
using multiterm HBM.

Those studies cited previously are mainly aimed at the
modeling of planetary gear trains, the analysis of dynamic
response as well as the analysis of parameters stability, and
so on. Whereas, the studies on nonlinear dynamic optimi-
zation design of planetary transmission system with multiple
clearances are still very limited. Zeng Bao [8] and Guan
Wei [9] investigated multistage helical gear trains and single-
stage planetary gear train taking the dynamic properties
as objective functions, respectively. But, in their studies
the design variables of optimization were limited to these
parameters: the number of gears, the pitch-cycle helical-
angle, and the modification coefficients. This study aims at
providing numerical solutions and analytical solutions for the
dynamic response of a closed-form planetary gear train hav-
ing three planets spaced equally position angle using Runge-
Kutta numerical integration and HBM, respectively. Based
on the analytical solution, the optimization mathematical
model that focused on minimizing the vibration acceleration
of structure and the total mass of the gear transmission
system is established. Some key design parameters such as the
number of each gear, the module of each stage planetary, the
transmission ratio of each stage planetary and the pressure
angle are chosen as design varies. This study is available for
the designing of closed-form planetary gear sets of bothmin-
imum weight and best dynamic characteristic for reference.

2. Dynamic Model of System

2.1. Model and Assumptions. The closed-form planetary gear
train consists of a single-stage differential planetary (low-
speed stage) and a single-stage quasi-planetary (high-speed
stage, carrier is fixed) in this study, as shown in Figure 1. Each
stage is comprised of three central elements: the sun gear
(𝑠
1
, 𝑠
2
), the ring gear (𝑟

1
, 𝑟
2
), and carrier (𝑐

1
, 𝑐
2
). Each stage
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Figure 2: Lumped parameter dynamic model of single-stage plane-
tary gear set.

planetary has 𝑛planet gears.Theparameter 𝑛 representing the
number of planet gears is taken as 3 throughout this paper.
The planets of each stage are free to rotate with respect to
their common carrier. All the gears aremounted on their rigid
shafts supported by rolling element bearings. The two rings
are connected by torsional linear springs of stiffness 𝑘

𝑟1𝑟2
,

as shown in Figure 2. Likewise, the other central elements
𝑐
1
, 𝑐
2
and 𝑠
1
, 𝑠
2
are constrained by torsional linear springs

of stiffness 𝑘
𝑐1𝑠2

, 𝑘
𝑐2

and 𝑘
𝑠1
, 𝑘
𝑐1𝑠2

, respectively. In order to
establish themathematical model of the transmission system,
a number of simplified assumptions are introduced in the case
of speed reduction in the closed-form planetary gear set, as
shown in Figure 1.
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(1) All of the gears in the set are assumed to be rigid and
the flexibilities of each gear teeth at the gear mesh
interface are modeled by an equivalent spring having
time-varying stiffness acting along the mesh direc-
tions. These periodically time-varying mesh stiff-
nesses are subject to piece-linear functions represent-
ing gear backlashes.

(2) Because the bending stiffness of shafts in the set is
very large, the deflection of these shafts can be ne-
glected. Thus, the transverse displacements of gears
are not considered.

(3) Because the damping mechanisms at the gear meshes
and bearings of a planetary gear set are not easy to give
a description of mathematical model, viscous gear
mesh damping elements are introduced to represent
energy dissipation of the transmission system.

2.2. Equivalent Displacements. In order to establish the equa-
tions of motion easily, all of torsional angular displacements
are unified on the pressure line in terms of equivalent
displacements. The equivalent transverse displacements in
the mesh line direction caused by rotational displacements
are written as follows:

𝑢
𝑐𝑗
= 𝑟
𝑐𝑗
𝜃
𝑐𝑗
, 𝑢
𝑟𝑗
= 𝑟
𝑟𝑗
𝜃
𝑟𝑗
, 𝑢
𝑠𝑗
= 𝑟
𝑠𝑗
𝜃
𝑠𝑗
, 𝑢
𝑝𝑗𝑛
= 𝑟
𝑝𝑗
𝜃
𝑗𝑛
,

𝑗 = 1, 2; 𝑛 = 1, 2, 3,

(1)

where 𝜃 and 𝑟 (subscripts 𝑐𝑗, 𝑟𝑗, 𝑠𝑗, 𝑗𝑛; 𝑗 = ℎ, 𝑙; 𝑛 = 1, 2, 3)
are angular displacements and base circle radius of the parts,
respectively. While 𝑟 (subscripts 𝑐1, 𝑐2) is the equivalent base
circle radius of the carriers defined as follows:

𝑟
𝑠1
+ 𝑟
𝑝ℎ
= 𝑟
𝑟1
− 𝑟
𝑝ℎ
= 𝑟
𝑐1
cos𝛼,

𝑟
𝑠2
+ 𝑟
𝑝𝑙
= 𝑟
𝑟2
− 𝑟
𝑝𝑙
= 𝑟
𝑐2
cos𝛼.

(2)

With the symbol 𝑈 is used to represent the relative
displacements in the direction of pressure line, the relative
displacements are obtained according to themeshing relation
and the equivalent displacements as follows. The positive
direction of the relative displacements is assumed to be the
same direction of the compressive deformation. The relative
displacements of the parts in the pressure line direction are
written as follows:

𝑈
𝑠1𝑝ℎ𝑖

= 𝑟
𝑠1
(𝜃
𝑠1
− 𝜃
𝑐1
) − 𝑟
𝑝ℎ
(𝜃
ℎ𝑖
+ 𝜃
𝑐1
)

= 𝑟
𝑠1
𝜃
𝑠1
− 𝑟
𝑐1
𝜃
𝑐1
cos𝛼 − 𝑟

𝑝ℎ
𝜃
ℎ𝑖
,

(3a)

𝑈
𝑟1𝑝ℎ𝑖

= 𝑟
𝑝ℎ
(𝜃
ℎ𝑖
+ 𝜃
𝑐1
) − 𝑟
𝑟1
(𝜃
𝑟1
+ 𝜃
𝑐1
)

= 𝑟
𝑝ℎ
𝜃
ℎ𝑖
− 𝑟
𝑐1
𝜃
𝑐1
cos𝛼 − 𝑟

𝑟1
𝜃
𝑟1
,

(3b)

𝑈
𝑐1𝑠2
= 𝑟
𝑐1
(𝜃
𝑐1
− 𝜃
𝑠2
) cos𝛼, (3c)

𝑈
𝑐2
= 𝑟
𝑐2
𝜃
𝑐2
cos𝛼, (3d)

𝑈
𝑠2𝑝𝑙𝑖

= 𝑟
𝑠2
(𝜃
𝑠2
− 𝜃
𝑐2
) − 𝑟
𝑝𝑙
(𝜃
𝑙𝑖
+ 𝜃
𝑐2
)

= 𝑟
𝑠2
𝜃
𝑠2
− 𝑟
𝑐2
𝜃
𝑐2
cos𝛼 − 𝑟

𝑝𝑙
𝜃
𝑙𝑖
,

(3e)

𝑈
𝑟2𝑝𝑙𝑖

= 𝑟
𝑝𝑙
(𝜃
𝑙𝑖
+ 𝜃
𝑐2
) − 𝑟
𝑟2
(𝜃
𝑟2
+ 𝜃
𝑐2
)

= 𝑟
𝑝𝑙
𝜃
𝑙𝑖
− 𝑟
𝑐2
𝜃
𝑐2
cos𝛼 − 𝑟

𝑟2
𝜃
𝑟2
,

(3f)

𝑈
𝑟1𝑟2

= 𝑟
𝑟1
(𝜃
𝑟1
− 𝜃
𝑟2
) . (3g)

2.3. Equations of Motion. The closed-form planetary gear
system consists of four different kinds of gear pairs, the
external gear pair, that is, the sun gear/planet gear-𝑖 pair
(subscripts 𝑠1, 𝑝ℎ𝑖 and 𝑠2, 𝑝𝑙𝑖), and the internal gear pair,
that is, the ring gear/planet gear-𝑖 pair (subscripts 𝑟1, 𝑝ℎ𝑖
and 𝑟2, 𝑝𝑙𝑖). The mesh of gear 𝑗 (𝑠𝑖 or 𝑟𝑖, 𝑖 = 1, 2) with a
planet 𝑝𝑖 (𝑖 = ℎ, 𝑙) is represented by a periodically time-
varying stiffness element 𝑘

𝑗𝑝𝑖
(𝑡) subjected to a piecewise

linear backlash function 𝑔 that includes a clearance of gap
width 2𝑏

𝑗𝑝𝑖
. Accordingly, the dynamicmodel of a closed-form

gear set with 𝑛 planets includes 2𝑛 clearances. In this closed-
form planetary gear system, damper is described by constant
viscous damper coefficient 𝑐

𝑗𝑝𝑖
. This is a rather simplified

mesh contact model; in reality these contacts are subjected to
the hydro-elastic-dynamic regime of lubrication [10]. In this
paper, it is supposed that all planets 𝑝𝑖 (𝑖 = ℎ, 𝑙) and their
respective meshes with gear 𝑗 (𝑠1, 𝑠2 or 𝑟1, 𝑟2) are identical
so that 𝑘

𝑗𝑝𝑖
(𝑡), 𝑏
𝑗𝑝𝑖
, and 𝑐

𝑗𝑝𝑖
are the same for each 𝑗𝑝𝑖 mesh,

except the phase angles of 𝑘
𝑗𝑝𝑖
(𝑡) which differ according to

planet phasing conditions.
Thus, the nonlinear dynamic differential equations of

motion of closed-form planetary gear set can be established
using the Lagrange principle as follows:

𝑀
𝑐1
𝑢̈
𝑐1
+ 𝐶
𝑐1𝑠2
𝑈̇
𝑐1𝑠2

−

3

∑
𝑖=1

(𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑖

+ 𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑖

) + 𝑘
𝑐1𝑠2
𝑈
𝑐1𝑠2

−

3

∑
𝑖=1

[𝑘
𝑠1𝑛
𝑈
𝑠1𝑝ℎ𝑖

+ 𝑘
𝑟1𝑛
𝑈
𝑟1𝑝ℎ𝑖

] = 0,

(4a)

𝑀
𝑟1
𝑢̈
𝑟1
+ 𝐶
𝑟1𝑟2
𝑈̇
𝑟1𝑟2

−

3

∑
𝑖=1

𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑖

+ 𝑘
𝑟1𝑟2
𝑈
𝑟1𝑟2

−

3

∑
𝑖=1

𝑘
𝑟1𝑛
𝑈
𝑟1𝑝ℎ𝑖

= 0,

(4b)

𝑀
𝑠1
𝑢̈
𝑠1
+

3

∑
𝑖=1

𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑖

+

3

∑
𝑖=1

𝑘
𝑠1𝑛
𝑈
𝑠1𝑝ℎ𝑖

=
𝑇in
𝑟
𝑠1

, (4c)

𝑀
𝑝ℎ
𝑢̈
ℎ𝑛
− 𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑛

+ 𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑛

− 𝑘
𝑠1𝑛
𝑈
𝑠1𝑝ℎ𝑛

+ 𝑘
𝑟1𝑛
𝑈
𝑟1𝑝ℎ𝑛

= 0 (𝑛 = 1, 2, 3) ,

(4d)
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𝑀
𝑐2
𝑢̈
𝑐2
+ 𝐶
𝑐2
𝑈̇
𝑐2

−

3

∑
𝑖=1

(𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖

+ 𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑖
) + 𝑘
𝑐2
𝑈
𝑐2

−

3

∑
𝑖=1

[𝑘
𝑠2𝑛
𝑈
𝑠2𝑝𝑙𝑖

+ 𝑘
𝑟2𝑛
𝑈
𝑟2𝑝𝑙𝑖
] = 0,

(4e)

𝑀
𝑟2
𝑢̈
𝑟2
− 𝐶
𝑟1𝑟2
𝑈̇
𝑟1𝑟2

𝑟
𝑟1

𝑟
𝑟2

−

3

∑
𝑖=1

𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑖

− 𝑘
𝑟1𝑟2
𝑈
𝑟1𝑟2

𝑟
𝑟1

𝑟
𝑟2

−

3

∑
𝑖=1

𝑘
𝑟2𝑛
𝑈
𝑟2𝑝𝑙𝑖

=
𝑇out
𝑟
𝑟2

,

(4f)

𝑀
𝑠2
𝑢̈
𝑠2
− 𝐶
𝑐1𝑠2
𝑈̇
𝑐1𝑠2

𝑟
𝑐1
cos𝛼
𝑟
𝑠2

+

3

∑
𝑖=1

𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖

− 𝑘
𝑐1𝑠2
𝑈
𝑐1𝑠2

𝑟
𝑐1
cos𝛼
𝑟
𝑠2

+

3

∑
𝑖=1

𝑘
𝑠2𝑛
𝑈
𝑠2𝑝𝑙𝑖

= 0,

(4g)

𝑀
𝑝𝑙
𝑢̈
𝑙𝑛
− 𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑛

+ 𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑛

− 𝑘
𝑠2𝑛
𝑈
𝑠2𝑝𝑙𝑛

+ 𝑘
𝑟2𝑛
𝑈
𝑟2𝑝𝑙𝑛

= 0 (𝑛 = 1, 2, 3) ,
(4h)

where, 𝐼
𝑐1
= 𝐼󸀠
𝑐1
+ 3𝑚
𝑝ℎ
𝑟2
𝑐1

is the equivalent mass moment
of inertia of the carrier including planet gears in high-speed
stage; 𝐼󸀠

𝑐1
is the inertia of the carrier in high-speed stage;

𝑚
𝑝ℎ

is the actual mass of planet-gear in high-speed stage;
and 𝑟
𝑐1

is the distribution circle radius of the planet gears.
𝐼
𝑐1
= 𝑀
𝑐1
𝑟2
𝑏𝑐1

, 𝑀
𝑐1

is the equivalent mass of the carrier in
high-speed stage with respect to the its equivalent base circle
radius; 𝑟

𝑏𝑐1
is equivalent base circle radius of the carrier in

high-speed stage; 𝑟
𝑏𝑐1
= 𝑟
𝑐1
cos𝛼; 𝐼

𝑟1
= 𝑀
𝑟1
𝑟2
𝑟1
, and𝑀

𝑟1
is the

equivalent mass of the ring in low-speed stage with respect to
its base circle radius; 𝐼

𝑠1
= 𝑀
𝑠1
𝑟2
𝑠1
, and𝑀

𝑠1
is the equivalent

mass of the sun gear in low-speed stage with respect to its
base circle radius; 𝐼

𝑝ℎ𝑛
= 𝑀
𝑝ℎ
𝑟2
𝑝ℎ
, and𝑀

𝑝ℎ
is the equivalent

mass of the planet-gear in high-speed stage with respect to its
equivalent base circle radius; 𝐼

𝑐2
= 𝐼
󸀠

𝑐2
+3𝑚
𝑝𝑙
𝑟
2

𝑐2
, and 𝐼󸀠

𝑐2
is the

moment of inertia of the carrier in low-speed stage.
Dynamic model of motion of transmission has consider-

able difficulties in its solution procedure as follows. (1) As a
semidefinite system, its first-order natural frequency is zero
corresponding to a rigid body motion. (2) The piecewise-
linear function 𝑔 represents the gear backlash, and the
number of variables is even different according to the external
and internal gear pairs. (3) As both linear and nonlinear
restoring forces exist in the equations, it is not possible
to write out the governing equation in matrix form, while
a general solution technique applicable to the systems of
multiple degrees of freedom must be based on matrix form.

Therefore, (4a)–(4h) are simplified further by introducing
a set of new variables:

𝑈
𝑠1𝑝ℎ𝑛

= 𝑢
𝑠1
− 𝑢
𝑐1
− 𝑢
ℎ𝑛
, (5a)

𝑈
𝑟1𝑝ℎ𝑛

= 𝑢
ℎ𝑛
− 𝑢
𝑐1
− 𝑢
𝑟1
, (5b)

𝑈
𝑐1𝑠2
= 𝑢
𝑐1
−
𝑟
𝑐1
cos𝛼
𝑟
𝑠2

𝑢
𝑠2
, (5c)

𝑈
𝑐2
= 𝑢
𝑐2
, (5d)

𝑈
𝑠2𝑝ℎ𝑛

= 𝑢
𝑠2
− 𝑢
𝑐2
− 𝑢
𝑙𝑛
, (5e)

𝑈
𝑟2𝑝ℎ𝑛

= 𝑢
𝑙𝑛
− 𝑢
𝑐2
− 𝑢
𝑟2
, (5f)

𝑈
𝑟1𝑟2

= 𝑢
𝑟1
−
𝑟
𝑟1

𝑟
𝑟2

𝑢
𝑟2
. (5g)

The new coordinate variables defined previously not only
have intuitional physicalmeaning, but also eliminate the rigid
body motion. Furthermore, the piecewise-linear backlash
function 𝑔 can be written as a set of functions with a single
variable according to (5a)–(5g).

In addition, nondimensional parameters of (4a)–(4h) can
be obtained by a characteristic length 𝑏 and frequency 𝜔

𝑛
=

√𝑘
𝑠1𝑛
/𝑀
𝑠1
, such that

𝑡 = 𝜔
𝑛
𝑡. (6)

Hence, a set of simplified equations of motions of the
transmission system is obtained by substituting (5a)–(5g) and
(6) into (4a)–(4h):

𝑈̈
𝑠1𝑝ℎ𝑛

+
1

𝜔2
𝑛

3

∑
𝑖=1

[
𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑖

𝑀
𝑠1𝑐1

+
𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑖

𝑀
𝑐1

]

+
1

𝜔2
𝑛

[
𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑛

− 𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑛

𝑀
𝑝ℎ

−
𝐶
𝑐1𝑠2
𝑈̇
𝑐1𝑠2

𝑀
𝑐1

]

+
1

𝜔2
𝑛

3

∑
𝑖=1

[

[

𝑘
𝑠1𝑛
𝑔 (𝑈
𝑠1𝑝ℎ𝑖

)

𝑀
𝑠1𝑐1

+
𝑘
𝑟1𝑛
𝑔 (𝑈
𝑟1𝑝ℎ𝑖

)

𝑀
𝑐1

]

]

+
1

𝜔2
𝑛

[

[

𝑘
𝑠1𝑛
𝑔 (𝑈
𝑠1𝑝ℎ𝑛

) − 𝑘
𝑟1𝑛
𝑔 (𝑈
𝑟1𝑝ℎ𝑛

)

𝑀
𝑝ℎ

−
𝑘
𝑐1𝑠2
𝑔 (𝑈
𝑐1𝑠2
)

𝑀
𝑐1

]

]

=
𝑇in

𝑟
𝑠1
𝑀
𝑠1
𝑏𝜔2
𝑛

(𝑛 = 1, 2, 3) ,

(7a)



Mathematical Problems in Engineering 5

𝑈̈
𝑟1𝑝ℎ𝑛

+
1

𝜔2
𝑛

[
𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑛

− 𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑛

𝑀
𝑝ℎ

−
𝐶
𝑐1𝑠2
𝑈̇
𝑐1𝑠2

𝑀
𝑐1

−
𝐶
𝑟1𝑟2
𝑈̇
𝑟1𝑟2

𝑀
𝑟1

]

+
1

𝜔2
𝑛

3

∑
𝑖=1

[
𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑖

𝑀
𝑐1

+
𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑖

𝑀
𝑐1𝑟1

]

+
1

𝜔2
𝑛

3

∑
𝑖=1

[

[

𝑘
𝑠1𝑛
𝑔 (𝑈
𝑠1𝑝ℎ𝑖

)

𝑀
𝑐1

+
𝑘
𝑟1𝑛
𝑔 (𝑈
𝑟1𝑝ℎ𝑖

)

𝑀
𝑐1𝑟1

]

]

+
1

𝜔2
𝑛

[

[

𝑘
𝑟1𝑛
𝑔 (𝑈
𝑟1𝑝ℎ𝑛

) − 𝑘
𝑠1𝑛
𝑔 (𝑈
𝑠1𝑝ℎ𝑛

)

𝑀
𝑝ℎ

−
𝑘
𝑐1𝑠2
𝑔 (𝑈
𝑐1𝑠2
)

𝑀
𝑐1

−
𝑘
𝑟1𝑟2
𝑔 (𝑈
𝑟1𝑟2
)

𝑀
𝑟1

]

]

= 0

(𝑛 = 1, 2, 3) ,

(7b)

𝑈̈
𝑐1𝑠2
+
𝐶
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

𝑈̇
𝑐1𝑠2

−
1

𝜔2
𝑛

3

∑
𝑖=1

[
𝐶
𝑠1𝑛
𝑈̇
𝑠1𝑝ℎ𝑖

+ 𝐶
𝑟1𝑛
𝑈̇
𝑟1𝑝ℎ𝑖

𝑀
𝑐1

+
𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖
𝑟
𝑐1
cos𝛼

𝑀
𝑠2
𝑟
𝑠2

]

+
𝐶
𝑐1𝑠2

𝑀
𝑠2
𝜔2
𝑛

(
𝑟
𝑐1
cos𝛼
𝑟
𝑠2

)

2

𝑈̇
𝑐1𝑠2
+
𝑘
𝑐1𝑠2
𝑔 (𝑈
𝑐1𝑠2
)

𝑀
𝑐1
𝜔2
𝑛

+
𝑘
𝑐1𝑠2
𝑔 (𝑈
𝑐1𝑠2
)

𝑀
𝑠2
𝜔2
𝑛

(
𝑟
𝑐1
cos𝛼
𝑟
𝑠2

)

2

−
1

𝜔2
𝑛

3

∑
𝑖=1

[

[

𝑘
𝑠1𝑛
𝑔 (𝑈
𝑠1𝑝ℎ𝑖

) + 𝑘
𝑟1𝑛
𝑔(𝑈
𝑟1𝑝ℎ𝑖

)

𝑀
𝑐1

+
𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑖
) 𝑟
𝑐1
cos𝛼

𝑀
𝑠2
𝑟
𝑠2

]

]

= 0,

(7c)

𝑈̈
𝑐2
+
𝐶
𝑐2
𝑈̇
𝑐2

𝑀
𝑐2
𝜔2
𝑛

−

3

∑
𝑖=1

𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖

+ 𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑖

𝑀
𝑐2
𝜔2
𝑛

+
𝑘
𝑐2
𝑔 (𝑈
𝑐2
)

𝑀
𝑐2
𝜔2
𝑛

−

3

∑
𝑖=1

𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑖
) + 𝑘
𝑟2𝑛
𝑔 (𝑈
𝑟2𝑝𝑙𝑖
)

𝑀
𝑐2
𝜔2
𝑛

= 0,

(7d)

𝑈̈
𝑠2𝑝𝑙𝑛

+
1

𝜔2
𝑛

3

∑
𝑖=1

[
𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖

𝑀
𝑠2

+
𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖

+ 𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑖

𝑀
𝑐2

]

+
1

𝜔2
𝑛

[
𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑛

− 𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑛

𝑀
𝑝𝑙

−
𝐶
𝑐2
𝑈̇
𝑐2

𝑀
𝑐2

−
𝐶
𝑐1𝑠2

𝑀
𝑠2

𝑟
𝑐1
cos𝛼𝑈̇

𝑐1𝑠2

𝑟
𝑠2

]

+
1

𝜔2
𝑛

3

∑
𝑖=1

[

[

𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑖
)

𝑀
𝑠2

+
𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑖
) + 𝑘
𝑟2𝑛
𝑔 (𝑈
𝑟2𝑝𝑙𝑖
)

𝑀
𝑐2

]

]

+
1

𝜔2
𝑛

[

[

𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑛

) − 𝑘
𝑟2𝑛
𝑔 (𝑈
𝑟2𝑝𝑙𝑛

)

𝑀
𝑝𝑙

−
𝑘
𝑐2
𝑔 (𝑈
𝑐2
)

𝑀
𝑐2

−
𝑘
𝑐1𝑠2

𝑀
𝑠2

×
𝑔 (𝑈
𝑐1𝑠2
) 𝑟
𝑐1
cos𝛼

𝑟
𝑠2

]

]

= 0 (𝑛 = 1, 2, 3) ,

(7e)

𝑈̈
𝑟2𝑝𝑙𝑛

+
1

𝜔2
𝑛

[
𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑛

− 𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑛

𝑀
𝑝𝑙

−
𝐶
𝑐2
𝑈̇
𝑐2

𝑀
𝑐2

+
𝐶
𝑟1𝑟2
𝑟
𝑟1
𝑈̇
𝑟1𝑟2

𝑀
𝑟2
𝑟
𝑟2

]

+
1

𝜔2
𝑛

3

∑
𝑖=1

[
𝐶
𝑠2𝑛
𝑈̇
𝑠2𝑝𝑙𝑖

+ 𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑖

𝑀
𝑐2

+
𝐶
𝑟2𝑛
𝑈̇
𝑟2𝑝𝑙𝑛

𝑀
𝑟2

]

+
1

𝜔2
𝑛

[

[

𝑘
𝑟2𝑛
𝑔 (𝑈
𝑟2𝑝𝑙𝑛

)−𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑛

)

𝑀
𝑝𝑙

−
𝑘
𝑐2
𝑔 (𝑈
𝑐2
)

𝑀
𝑐2

+
𝑘
𝑟1𝑟2
𝑟
𝑟1
𝑔 (𝑈
𝑟1𝑟2
)

𝑀
𝑟2
𝑟
𝑟2

]

]
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+
1

𝜔2
𝑛

3

∑
𝑖=1

[

[

𝑘
𝑠2𝑛
𝑔 (𝑈
𝑠2𝑝𝑙𝑖
)+𝑘
𝑟2𝑛
𝑔 (𝑈
𝑟2𝑝𝑙𝑖
)

𝑀
𝑐2

+
𝑘
𝑟2𝑛
𝑔 (𝑈
𝑟2𝑝𝑙𝑖
)

𝑀
𝑟2

]

]

=
−𝑇out

𝑀
𝑟2
𝑟
𝑟2
𝑏𝜔2
𝑛

(𝑛 = 1, 2, 3) ,

(7f)

𝑈̈
𝑟1𝑟2
+
𝐶
𝑟1𝑟2
𝑈̇
𝑟1𝑟2

𝑀
𝑟1𝑟2
𝜔2
𝑛

+
1

𝜔2
𝑛

3

∑
𝑖=1

(
𝐶
𝑟2𝑛
𝑟
𝑟1

𝑀
𝑟2
𝑟
𝑟2

𝑈̇
𝑟2𝑝𝑙𝑖

−
𝐶
𝑟1𝑛

𝑀
𝑟1

𝑈̇
𝑟1𝑝ℎ𝑖

)

+
𝑘
𝑟1𝑟2
𝑔 (𝑈
𝑟1𝑟2
)

𝑀
𝑟1𝑟2
𝜔2
𝑛

+
1

𝜔2
𝑛

3

∑
𝑖=1

(
𝑘
𝑟2𝑛
𝑟
𝑟1
𝑔 (𝑈
𝑟2𝑝𝑙𝑖
)

𝑀
𝑟2
𝑟
𝑟2

−
𝑘
𝑟1𝑛
𝑔 (𝑈
𝑟1𝑝ℎ𝑖

)

𝑀
𝑟1

)

= −
𝑇out𝑟𝑟1

𝑀
𝑟2
𝑟2
𝑟2
𝑏𝜔2
𝑛

,

(7g)

where,
1

𝑀
𝑠1𝑐1

=
1

𝑀
𝑠1

+
1

𝑀
𝑐1

,

1

𝑀
𝑐1𝑟1

=
1

𝑀
𝑐1

+
1

𝑀
𝑟1

,

1

𝑀
𝑟1𝑟2

=
1

𝑀
𝑟1

+
𝑟
𝑟1

𝑀
𝑟2
𝑟
𝑟2

.

(8)

Equations (7a)–(7g) can be written in matrix form as

Ü + CU̇ + K𝑔 (U) = T, (9)

where, the piecewise-linear backlash function is defined as

𝑔 [𝑈
𝑖𝑗
(𝑡)] =

{{

{{

{

𝑈
𝑖𝑗
(𝑡) − 𝑏

𝑖𝑗
, 𝑈
𝑖𝑗
> 𝑏
𝑖𝑗
,

0, −𝑏
𝑖𝑗
≤ 𝑈
𝑖𝑗
≤ 𝑏
𝑖𝑗
,

𝑈
𝑖𝑗
(𝑡) + 𝑏

𝑖𝑗
, 𝑈
𝑖𝑗
< −𝑏
𝑖𝑗
.

(10)

3. Solution of Dynamic Equations

3.1. Dynamic Response Using the Numerical Integration.
In this section, the mathematical model will be solved
numerically by the variable step-size Runge-Kutta integration
method firstly. The parameters of the closed-form planetary
gear set shown in Figure 1 are given in Tables 1 and 2. In this
work, the values of the gearmesh damping coefficients𝐶

𝑖𝑗
are

assumed to be constants as 0.01 [11].
By resolving the dynamic differential equations of

motions, the dynamic responses (displacement and speed) of
low-stage carrier are gained as shown in Figure 3.

3.2.The Acquisition of Analytical Solutions. In order to estab-
lish the optimization mathematical model of the dynamic
behavior of the closed-form planetary gear set, it is necessary
to obtain the analytical solutions ofmodel using the harmonic
balancemethod. For limiting the number of algebraic balance
equations, only the fundamental frequency harmonic of the
mesh stiffness functions are considered in this case. Similarly,
external torque functions is also considered to be in the form
of mesh stiffness functions. And then, attention is paid to the
periodic vibrations of system under the harmonic excitation.
The procedure of solving (7a)–(7g) using HBM [5] includes
some aspects as follows.
(1) According to the assumption previously mentioned,

the external excitations that represent fundamental frequency
pulsations can be written in the form

T = T
𝑚𝑖
+ T
𝑎𝑖
cos (Ω𝑡 + 𝜙

𝑖
) , (11)

where T
𝑚𝑖

is the mean component of torque and T
𝑎𝑖
is the

amplitude of the alternating component of the fundamental
frequency mesh force. 𝜙

𝑖
is the phase angle.

(2) According to the harmonic excitations given in
(11), the harmonic balance method solution to (7a)–(7g) is
assumed in the same form

U = U
𝑚𝑖
+ U
𝑎𝑖
cos (Ω𝑡 + 𝜙

𝑖
) , (12)

whereU
𝑚𝑖

andU
𝑎𝑖
are the mean and alternating components

of the steady state response, respectively, and 𝜙
𝑖
is the phase

angle.
(3) For relative mesh displacements, the piecewise-linear

function in (4a)–(4h) can be written in a unified form:

𝑔 (𝑈
𝑖
) = 𝑁

𝑚𝑖
𝑈
𝑚𝑖
+ 𝑁
𝑎𝑖
𝑈
𝑎𝑖
cos (Ω𝑡 + 𝜙

𝑖
) , (13)

where

𝑁
𝑚𝑖
= 1 +

𝑞
𝑎𝑖

2𝑞
𝑚𝑖

[𝐺 (𝜇
+
) − 𝐺 (𝜇

−
)] ,

𝑁
𝑎𝑖
= 1 −

1

2
[𝐻 (𝜇

+
) − 𝐻 (𝜇

−
)] .

(14)

The expressions of 𝐺 and𝐻 are given in the Appendix.
(4) Considering the mean value and the fundamental

harmonic value of periodically time-varying mesh stiffness
in Figure 2, the elements of stiffness matrix K in (9) can be
written as

𝑘
𝑖𝑗
= 𝑘
𝑚𝑖𝑗
+ 𝑘
𝑎𝑖𝑗

cos (Ω𝜏 + 𝜑
𝑖𝑗
) . (15)

So, the stiffness matrix K is written in terms of two separate
matrices for mean stiffness and alternating stiffness as

K = K
𝑚
+ ΔK, (16)

where

K
𝑚
= [𝑘
𝑚𝑖𝑗
]
𝑛×𝑛
,

ΔK = [𝑘
𝑎𝑖𝑗

cos (Ω𝜏 + 𝜑
𝑖𝑗
)]
𝑛×𝑛
.

(17)
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Table 1: Geometric parameters of the closed-form planetary gear set.

High-speed stage Low-speed stage
Sun gear Planet gear Ring gear Sun gear Planet gear Ring gear

Number of teeth 16 38 92 16 24 62
Module (mm) 3 3
Pressure angle (deg) 21.5∘ 21.5∘

Modification coefficient 0.3 0.12 0.54 0.475 0.471 0.309
Face width (mm) 22 20 20 34.5 30 32

Table 2: Physical parameters of the closed-form planetary gear set.

High-speed stage Low-speed stage
Sun Planet Ring Carrier Sun Planet Ring Carrier

Inertia (kg⋅mm2) 88.54 827 68883.72 6800.79 339.59 462.92 110213.96 9400.9
Rotation radius (mm) 11.07 32.78 113 57.25 23.28 31.12 113 28
Mean mesh stiffness (N/mm) 𝐾

𝑠1𝑛
= 𝐾
𝑟1𝑛
= 2𝑒7 𝐾

𝑠2𝑛
= 𝐾
𝑟2𝑛
= 2𝑒7

Torsional stiffness (N/mm) 𝐾
𝑐1𝑠2
= 2𝑒7 𝐾

𝑟1𝑟2
= 10𝑒7, 𝐾

𝑐2
= 10𝑒8

Total mass 69 kg

By substituting (9)–(14) into (7a)–(7g) and balancing the like
harmonic terms, the algebraic equations of system can be
gained

K
𝑚
y
𝑚
+
K
1
y
3

2
+
K
2
y
4

2
− T
𝑚
= {0}
𝑛×1
,

K
𝑚
y
3
+ K
1
y
𝑚
− Ω
2y
1
− ΩCy

2
− T
1
= {0}
𝑛×1
,

K
𝑚
y
4
+ K
2
y
𝑚
− Ω
2y
2
+ CΩy

1
− T
2
= {0}
𝑛×1
,

(18)

where y
1
= {𝑞

𝑎𝑖
cos𝜑
𝑖
}
𝑛×1

, y
2
= {𝑞

𝑎𝑖
sin𝜑
𝑖
}
𝑛×1

, y
3
=

{𝑁
𝑎𝑖
𝑞
𝑎𝑖
cos𝜑
𝑖
}
𝑛×1

, y
4
= {𝑁
𝑎𝑖
𝑞
𝑎𝑖
sin𝜑
𝑖
}
𝑛×1

, y
𝑚
= {𝑁
𝑚𝑖
𝑞
𝑚𝑖
}
𝑛×1

,
T
1

= {𝑇
𝑎𝑖
cos𝜙
𝑖
}
𝑛×1

, T
2

= {𝑇
𝑎𝑖
sin𝜙
𝑖
}
𝑛×1

, K
1

=

{𝑘
𝑎𝑖𝑗

cos𝜙
𝑖𝑗
}
𝑛×1

, and K
2
= {𝑘
𝑎𝑖𝑗

sin𝜙
𝑖𝑗
}
𝑛×1

.
The matrices k

𝑚
and C are given in the Appendix.

4. Optimization of the Transmission System

4.1. Variables and Objective Function of Optimization. A
number of key design parameters have great influence on
the dynamic characteristics of the gear transmissions, so
they can be chosen as design variables, such as number
of each gear, module, gear width, and pressure angle. To
simplify optimization process, the module of each stage 𝑚

1
,

𝑚
2
, number of sun gears of each stage 𝑧

𝑠1
, 𝑧
𝑠2
, and pressure

angle of each stage𝛼
1
, 𝛼
2
are chosen as optimization variables

in this study. So, the recurrence variables vector for this
optimization procedure can be written as

𝑥 = [𝑚
1
, 𝑚
2
, 𝑧
𝑠1
, 𝑧
𝑠2
, 𝛼
1
, 𝛼
2
]
𝑇

. (19)

The dynamic characteristics standards of the gear trans-
mission include maximum dynamic loads, dynamic load
factor, stiffness, and displacement/velocity/acceleration of
vibration, each of these standards can be chosen as opti-
mization objective. Considering that the rotation center
of the planets in low-stage is unfixed, and reducing the

total weight of the transmission system simultaneously, the
displacement of rotational vibration of the low-stage carrier
and total mass of the gear set are chosen as optimization
objective. According to the basic idea of the multiobjective
optimization, two optimization objective functions unified
using the normalized weighting method [11] can be written
in form

𝑓 = 𝜆
1
𝑓
1
+ 𝜆
2
𝑓
2
, (20)

where 𝜆
1
and 𝜆

2
are weighting coefficient, here, 𝜆

1
= 0.3

and 𝜆
2
= 0.7 [12]. 𝑓

1
and 𝑓

2
are the ampler of the rotational

vibration displacement of the low-stage carrier and total
mass of the gear set, respectively. Due to limited space, the
expressions of 𝑓

1
and 𝑓

2
are not given in detail.

4.2. Constraints

(1) Distributing the number of teeth of each gear: con-
centric conditions, adjacent conditions, and assembly
conditions;

(2) contact fatigue strength and bending fatigue strength
constraints

𝑆
𝐻
(𝑖) ≥ 𝑆

𝐻min, 𝑆
𝐹
(𝑖) ≥ 𝑆

𝐹min,

𝑖 = 𝑠
1
, 𝑠
2
, 𝑟
1
, 𝑟
2
, 𝑝ℎ, 𝑝𝑙,

(21)

(3) contact ratio constraints

𝜀
𝑖𝑗
≥ 1.5, 𝑖 = 𝑠

1
, 𝑠
2
, 𝑟
1
, 𝑟
2
, 𝑗 = 𝑝ℎ, 𝑝𝑙, (22)

(4) transmission ratio without loop-power conditions

−32 ≤ 𝑖
1
+ 𝑖
2
− 𝑖
1
𝑖
2
≤ −30,

0 <
𝑖
2
− 𝑖
1
𝑖
2

𝑖
1
+ 𝑖
2
− 𝑖
1
𝑖
2

< 1,
(23)
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Table 3: Parameters of structure after optimization.

High-speed stage Low-speed stage
Sun gear Planet gear Ring gear Sun gear Planet gear Ring gear

Number of teeth 17 40 97 18 23 66
Module (mm) 2 3
Pressure angle (deg) 20∘ 20∘

Total mass (kg) 63.5 kg
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Figure 3: Response of low-speed stage carrier without optimization.
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Figure 4: Response of low-speed stage carrier after optimization.

where

𝑖
𝑛
= −
𝑍
𝑟𝑛

𝑍
𝑠𝑛

, 𝑛 = 1, 2, (24)

(5) minimum tooth thickness constraints

𝑆
𝑎𝑖
≥ 0.4𝑚

𝑗
, 𝑖 = 𝑠

1
, 𝑠
2
, 𝑟
1
, 𝑟
2
, 𝑝ℎ, 𝑝𝑙; 𝑗 = 1, 2. (25)

5. Results and Discussions

Some more logical parameters of the closed-form planetary
gear set are obtained according to optimization constraints
conditions previously mentioned:𝑚

1
= 2, 𝑚

2
= 3, 𝑍

𝑠1
= 17,

𝑍
𝑠2
= 18, 𝛼

1
= 𝛼
2
= 20
∘. Further, other parameters of

transmission can be computed as shown in Table 3. Total
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mass of gear set is 63.5 kg. Comparing the results between
before and after the optimization, it is clear that transmission
system reduces the total mass of 8.6% and the dynamic
characteristic significantly improves as well. It is also evident
from the comparison of Figure 3 with Figure 4 that the
displacement of each structure significantly reduces at the
same time. It is obvious that the scope of the amplitude of
displacement of low-stage carrier is −3 to 3 in Figure 4(a),
while that in Figure 3(a) is −5 to 3.

6. Conclusions

Considering the gear backlash, time-varying mesh stiffness
and excitation fluctuation, and so forth, a discrete nonlinear
dynamic model of a two stages closed-form planetary set was
proposed in this study. In order to facilitate the analysis and
comparison of system response between before and after opti-
mization, nonlinear differential equations of motion of the
dynamic model were solved using a Runge-Kutta numerical
integrationmethod. For optimization of transmission system,
the analytical solutions were obtained.The total optimization
objective function is obtained using the normalized weights
method.

A case shows that the total mass of transmission system
has significantly reduced and dynamic characteristic has dis-
tinctly improved. Effectiveness of the dynamicmodel and the
dynamic optimization mathematic model is demonstrated.

Appendix

Consider the following:

𝐺 (𝜇) =
{

{

{

(
2

𝜋
)(𝜇 sin−1𝜇 + √1 − 𝜇2) , 󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 ≤ 1,

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 > 1,

𝐻 (𝜇) =

{{{

{{{

{

−1, 𝜇 < −1,

(
2𝜇

𝜋
)(sin−1𝜇 + √1 − 𝜇2) , 󵄨󵄨󵄨󵄨𝜇

󵄨󵄨󵄨󵄨 ≤ 1,

1, 𝜇 > 1.

(A.1)

The elements of the stiffness matrix k
𝑚
are given as follows

𝑘 (1, 1) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

+
1

𝑀
𝑝ℎ

) ,

𝑘 (1, 𝑖) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

) , 𝑖 = 2, 3,

𝑘 (1, 4) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (1, 𝑖) =
𝑘
𝑟1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 5, 6,

𝑘 (1, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (2, 𝑖) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

) , 𝑖 = 1, 3,

𝑘 (2, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (2, 2) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

+
1

𝑀
𝑝ℎ

) ,

𝑘 (2, 𝑖) =
𝑘
𝑟1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 4, 6,

𝑘 (2, 5) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (2, 𝑖) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

) , 𝑖 = 1, 3,

𝑘 (2, 2) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

+
1

𝑀
𝑝ℎ

) ,

𝑘 (2, 𝑖) =
𝑘
𝑟1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 4, 6,

𝑘 (2, 5) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (2, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (3, 𝑖) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

) , 𝑖 = 1, 2,

𝑘 (3, 3) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑠1

+
1

𝑀
𝑐1

+
1

𝑀
𝑝ℎ

) ,

𝑘 (3, 𝑖) =
𝑘
𝑟1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 4, 5,

𝑘 (3, 6) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (3, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (4, 1) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (4, 𝑖) =
𝑘
𝑠1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 2, 3,

𝑘 (4, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (4, 4) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑝ℎ

+
1

𝑀
𝑐1

+
1

𝑀
𝑟1

) ,
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𝑘 (4, 𝑖) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

+
1

𝑀
𝑟1

) , 𝑖 = 5, 6,

𝑘 (4, 15) = −
𝑘
𝑟1𝑟2

𝑀
𝑟1
𝜔2
𝑛

,

𝑘 (5, 𝑖) =
𝑘
𝑠1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 1, 3,

𝑘 (5, 2) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (5, 𝑖) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

+
1

𝑀
𝑟1

) , 𝑖 = 5, 6,

𝑘 (5, 5) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑝ℎ

+
1

𝑀
𝑐1

+
1

𝑀
𝑟1

) ,

𝑘 (5, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (5, 15) = −
𝑘
𝑟1𝑟2

𝑀
𝑟1
𝜔2
𝑛

,

𝑘 (6, 𝑖) =
𝑘
𝑠1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 1, 2,

𝑘 (6, 3) =
𝑘
𝑠1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

−
1

𝑀
𝑝ℎ

) ,

𝑘 (6, 𝑖) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑐1

+
1

𝑀
𝑟1

) , 𝑖 = 4, 5,

𝑘 (6, 6) =
𝑘
𝑟1𝑛

𝜔2
𝑛

(
1

𝑀
𝑝ℎ

+
1

𝑀
𝑐1

+
1

𝑀
𝑟1

) ,

𝑘 (6, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑐1
𝜔2
𝑛

,

𝑘 (6, 15) = −
𝑘
𝑟1𝑟2

𝑀
𝑟1
𝜔2
𝑛

,

𝑘 (7, 𝑖) = −
𝑘
𝑠1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 1, 2, 3,

𝑘 (7, 𝑖) = −
𝑘
𝑟1𝑛

𝑀
𝑐1
𝜔2
𝑛

, 𝑖 = 4, 5, 6,

𝑘 (7, 7) =
𝑘
𝑐1𝑠2

𝜔2
𝑛

[
1

𝑀
𝑐1

+
1

𝑀
𝑠2

(
𝑟
𝑐1
cos𝛼
𝑟
𝑠2

)

2

] ,

𝑘 (7, 𝑖) = −
𝑘
𝑠2𝑛

𝑀
𝑠2
𝜔2
𝑛

𝑟
𝑐1
cos𝛼
𝑟
𝑠2

, 𝑖 = 9, 10, 11,

𝑘 (8, 8) =
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,

𝑘 (8, 𝑖) = −
𝑘
𝑠2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 9, 10, 11,

𝑘 (8, 𝑖) = −
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 12, 13, 14,

𝑘 (9, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑠2
𝜔2
𝑛

𝑟
𝑐1
cos𝛼
𝑟
𝑠2

,

𝑘 (9, 8) = −
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,

𝑘 (9, 9) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑠2

+
1

𝑀
𝑐2

+
1

𝑀
𝑝𝑙

) ,

𝑘 (9, 𝑖) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑠2

+
1

𝑀
𝑐2

) , 𝑖 = 10, 11,

𝑘 (9, 12) =
𝑘
𝑟2𝑛

𝜔2
𝑛

(
1

𝑀
𝑐2

−
1

𝑀
𝑝𝑙

) ,

𝑘 (9, 𝑖) =
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 13, 14,

𝑘 (10, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑠2
𝜔2
𝑛

𝑟
𝑐1
cos𝛼
𝑟
𝑠2

,

𝑘 (10, 8) = −
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,

𝑘 (10, 𝑖) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑠2

+
1

𝑀
𝑐2

) , 𝑖 = 9, 10,

𝑘 (10, 10) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑠2

+
1

𝑀
𝑐2

+
1

𝑀
𝑝𝑙

) ,

𝑘 (10, 𝑖) =
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 12, 14,

𝑘 (10, 13) =
𝑘
𝑟2𝑛

𝜔2
𝑛

(
1

𝑀
𝑐2

−
1

𝑀
𝑝𝑙

) ,

𝑘 (11, 7) = −
𝑘
𝑐1𝑠2

𝑀
𝑠2
𝜔2
𝑛

𝑟
𝑐1
cos𝛼
𝑟
𝑠2

,

𝑘 (11, 8) = −
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,

𝑘 (11, 𝑖) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑠2

+
1

𝑀
𝑐2

) , 𝑖 = 9, 10,

𝑘 (11, 11) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑠2

+
1

𝑀
𝑐2

+
1

𝑀
𝑝𝑙

) ,

𝑘 (11, 𝑖) =
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 12, 13,

𝑘 (11, 14) =
𝑘
𝑟2𝑛

𝜔2
𝑛

(
1

𝑀
𝑐2

−
1

𝑀
𝑝𝑙

) ,

𝑘 (12, 8) = −
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,
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𝑘 (12, 15) =
𝑘
𝑟1𝑟2
𝑟
𝑟1

𝑀
𝑟2
𝜔2
𝑛
𝑟
𝑟2

,

𝑘 (12, 9) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑐2

−
1

𝑀
𝑝𝑙

) ,

𝑘 (12, 𝑖) =
𝑘
𝑠2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 10, 11,

𝑘 (12, 12) =
𝑘
𝑟2𝑛

𝜔2
𝑛

(
1

𝑀
𝑝𝑙

+
1

𝑀
𝑐2

) ,

𝑘 (12, 𝑖) =
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 13, 14,

𝑘 (13, 8) = −
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,

𝑘 (13, 10) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑐2

−
1

𝑀
𝑝𝑙

) ,

𝑘 (13, 𝑖) =
𝑘
𝑠2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 9, 11,

𝑘 (13, 13) =
𝑘
𝑟2𝑛

𝜔2
𝑛

(
1

𝑀
𝑝𝑙

+
1

𝑀
𝑐2

) ,

𝑘 (13, 𝑖) =
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 12, 14,

𝑘 (13, 15) =
𝑘
𝑟1𝑟2
𝑟
𝑟1

𝑀
𝑟2
𝜔2
𝑛
𝑟
𝑟2

,

𝑘 (14, 8) = −
𝑘
𝑐2

𝑀
𝑐2
𝜔2
𝑛

,

𝑘 (14, 11) =
𝑘
𝑠2𝑛

𝜔2
𝑛

(
1

𝑀
𝑐2

−
1

𝑀
𝑝𝑙

) ,

𝑘 (14, 𝑖) =
𝑘
𝑠2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 9, 10,

𝑘 (14, 14) =
𝑘
𝑟2𝑛

𝜔2
𝑛

(
1

𝑀
𝑝𝑙

+
1

𝑀
𝑐2

) ,

𝑘 (14, 𝑖) =
𝑘
𝑟2𝑛

𝑀
𝑐2
𝜔2
𝑛

, 𝑖 = 12, 13,

𝑘 (14, 15) =
𝑘
𝑟1𝑟2
𝑟
𝑟1

𝑀
𝑟2
𝜔2
𝑛
𝑟
𝑟2

,

𝑘 (15, 𝑖) = −
𝑘
𝑟1𝑛

𝑀
𝑟1
𝜔2
𝑛

, 𝑖 = 4, 5, 6,

𝑘 (15, 𝑖) =
𝑘
𝑟2𝑛
𝑟
𝑟1

𝑀
𝑟2
𝑟
𝑟2
𝜔2
𝑛

, 𝑖 = 12, 13, 14,

𝑘 (15, 15) =
𝑘
𝑟1𝑟2

𝜔2
𝑛

(
1

𝑀
𝑟1

+
𝑟
𝑟1

𝑀
𝑟2
𝑟
𝑟2

) .

(A.2)

The elements of k
𝑚
not listed previously are taken as zeros.

The matrix C is in the similar form of k
𝑚
and no longer is

listed in detail here.

Notations

HBM: Harmonic balance method
𝑏: Half of clearance (backlash)
𝑘: Gear mesh stiffness
𝑟: Ring gear
𝑔: Discontinuous displacement function
𝐼: Polar mass moment of inertia
𝑖: Transmission ratio
𝑐: Carrier
𝑚: Actual mass
𝑡: Dimensional time
𝑢: Actual equivalent transverse displacement in

the direction of pressure line
𝑈: Relative equivalent transverse displacement

in the direction of pressure line
𝑠: Sun gear
𝑛
𝑝
: Number of planet

T: Torque
𝜃 : Angular displacement
𝐶: Damping coefficient
𝑍: Number of gear
𝑟: Base cycle radius
𝑀: Equivalent mass
𝑡: Nondimensional time
𝛼: Pressure angle.
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