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A new operational matrix of fractional order integration for Legendre wavelets is derived. Block pulse functions and collocation
method are employed to derive a general procedure for forming this matrix. Moreover, a computational method based on wavelet
expansion together with this operational matrix is proposed to obtain approximate solution of the fractional population growth
model of a species within a closed system. The main characteristic of the new approach is to convert the problem under study to a
nonlinear algebraic equation.

1. Introduction

In recent years, fractional calculus and differential equations
have found enormous applications in mathematics, physics,
chemistry, and engineering because of the fact that a realistic
modeling of a physical phenomenon having dependence
not only at the time instant but also on the previous time
history can be successfully achieved by using fractional
calculus.The applications of the fractional calculus have been
demonstrated by many authors. For examples, it has been
applied to model the nonlinear oscillation of earthquakes,
fluid-dynamic traffic, frequency dependent damping behav-
ior of many viscoelastic materials, continuum and statistical
mechanics, colored noise, solidmechanics, economics, signal
processing, and control theory [1–5].However, during the last
decade fractional calculus has attracted much more attention
of physicists and mathematicians. Due to the increasing
applications, some schemes have been proposed to solve
fractional differential equations. The most frequently used
methods are Adomian decomposition method (ADM) [6,
7], homotopy perturbation method [8], homotopy analysis
method [9], variational iteration method (VIM) [10], frac-
tional differential transform method (FDTM) [11, 12], frac-
tional difference method (FDM) [13], power series method
[14], generalized block pulse operational matrix method [15],

and Laplace transform method [16]. Also, recently the Haar
wavelets [17], Legendre wavelets [18, 19], and the Chebyshev
wavelets of first kind [20–23] and second kind [24] have been
developed to solve the fractional differential equations. It is
worth noting that wavelets are localized functions, which
are the basis for energy-bounded functions and in particular
for 𝐿
2
(𝑅), so that localized pulse problems can be easily

approached and analyzed [25–28].
Approximation by orthogonal family of basis functions

has found wide applications in science and engineering. The
most commonly used orthogonal families of functions in
recent years are sine-cosine functions, block pulse functions,
Legendre, Chebyshev, and Laguerre polynomials and also
orthogonal wavelets, for example Haar, Legendre, Cheby-
shev, and CAS wavelets. The main advantages of using an
orthogonal basis is that the problem under consideration
reduces to a system of linear or nonlinear algebraic system
equations [18]; thus this act not only simplifies the problem
enormously but also speeds up the computation work during
the implementation. This work can be done by truncating
the series expansion in orthogonal basis function for the
unknown solution of the problem and using the operational
matrices [29]. There are two main approaches for numerical
solution of fractional differential equations.
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One approach is based on using the operational matrix of
fractional derivative to reduce the problem under considera-
tion into a system of algebraic equations and solving this sys-
tem to obtain the numerical solution of the problem. Another
useful approach is based on converting the underlying frac-
tional differential equations into fractional integral equations,
and using the operational matrix of fractional integration, to
eliminate the integral operations and reducing the problem
into solving a system of algebraic equations. The operational
matrix of fractional Riemann-Liouville integration is given by

𝐼
𝛼
Ψ (𝑥) ≃ 𝑃

𝛼
Ψ (𝑥) , (1)

where Ψ(𝑥) = [𝜓
1
(𝑥), 𝜓

2
(𝑥), . . . , 𝜓

�̂�
]
𝑇, in which 𝜓

𝑖
(𝑥) (𝑖 =

1, 2, . . . , �̂�) are orthogonal basis functions which are orthog-
onal with respect to a specific weight function on a certain
interval [𝑎, 𝑏] and 𝑃

𝛼 is the operational matrix of fractional
integration ofΨ(𝑥). Notice that𝑃𝛼 is a constant �̂� × �̂�matrix
and 𝛼 is an arbitrary positive constant.

In view of successful application of wavelet operational
matrices in numerical solution of integral and differential
equations, together with the characteristics of wavelet func-
tions, we believe that they can be applicable in solving
fractional population growth model. In this paper, the oper-
ational matrix of fractional order integrations for Legendre
wavelets is derived, and a general procedure based on
collocation method and block Pulse functions (BPFs) for
forming this matrix is presented. Then, by using this matrix
a computational method for solving fractional population
growth model in a closed system is proposed. This paper is
organized as follows. In Section 2, some necessary definitions
of the fractional calculus are reviewed. In Section 3, the Leg-
endre wavelets with some of their properties are presented.
In Section 4, the proposed method for solving fractional
population growth model in a closed system is described.
Finally a conclusion is drawn in Section 5.

2. Preliminaries

In this section, we present some notations, definitions, and
preliminary facts that will be used further in this paper.

The Riemann-Liouville fractional integral operator 𝐼𝛼 of
order 𝛼 ≥ 0 on the usual Lebesgue space 𝐿1[0, 𝑏] is given by
[30]

(𝐼
𝛼
𝑢) (𝑥) =

{

{

{

1

Γ (𝛼)
∫
𝑥

0
(𝑥 − 𝑠)

𝛼−1
𝑢 (𝑠) 𝑑𝑠, 𝛼 > 0,

𝑢 (𝑥) , 𝛼 = 0.

(2)

The Riemann-Liouville fractional derivative of order 𝛼 > 0 is
normally defined as

𝐷
𝛼
𝑢 (𝑥) = (

𝑑

𝑑𝑥
)

𝑚

𝐼
𝑚−𝛼

𝑢 (𝑥) , (𝑚 − 1 < 𝛼 ≤ 𝑚) , (3)

where𝑚 is an integer.

The fractional derivative of order 𝛼 > 0 in the Caputo
sense is given by [30]

𝐷
𝛼

∗
𝑢 (𝑥) =

1

Γ (𝑚 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑠)
𝑚−𝛼−1

𝑢
(𝑚)

(𝑠) 𝑑𝑠,

(𝑚 − 1 < 𝛼 ≤ 𝑚) ,

(4)

where𝑚 is an integer, 𝑥 > 0, and 𝑢(𝑚) ∈ 𝐿
1
[0, 𝑏].

The useful relation between the Riemann-Liouville oper-
ator andCaputo operator is given by the following expression:

𝐼
𝛼
𝐷
𝛼

∗
𝑢 (𝑥) = 𝑢 (𝑥) −

𝑚−1

∑

𝑘=0

𝑢
(𝑘)

(0
+
)
𝑥
𝑘

𝑘!
, (𝑚 − 1 < 𝛼 ≤ 𝑚) ,

(5)

where𝑚 is an integer, 𝑥 > 0, and 𝑢(𝑚) ∈ 𝐿
1
[0, 𝑏].

3. The Legendre Wavelets

In this section,we briefly present someproperties of Legendre
wavelets.

3.1. Constructing the Legendre Wavelets. Here we introduce
a process to construct the Legendre wavelets on the unit
interval [0, 1], using recursive wavelet construction which
has been proposed in [31, 32] for piecewise polynomials on
[0, 1]. For this purpose, we first introduce some notations.
Throughout this work, N denotes the set of all natural
numbers,N

0
= N∪{0} andZ

𝜇
= {0, 1, . . . , 𝜇−1}, for a positive

integer 𝜇.
For an integer 𝜇 > 1, we consider the following

contractive mappings on the interval 𝐼 = [0, 1]:

𝜓
𝜖
(𝑡) =

𝑡 + 𝜖

𝜇
, 𝑡 ∈ [0, 1] , 𝜖 ∈ Z

𝜇
. (6)

It is obvious that the mappings {𝜓
𝜖
} satisfy the following

properties:

𝜓
𝜖
(𝐼) ⊂ 𝐼, ∀𝜖 ∈ Z

𝜇
,

⋃

𝜖∈Z𝜇

𝜓
𝜖
(𝐼) = 𝐼.

(7)

Now, let 𝐹
0
denote the finite dimensional linear space on

[0, 1] that is spanned by the Legendre polynomials 𝑃
0
(2𝑥 −

1), 𝑃
1
(2𝑥 − 1), . . . , and 𝑃

𝑀−1
(2𝑥 − 1), where𝑀 ∈ N and 𝑃

𝑚

are the Legendre polynomials of degree𝑚, namely,

𝐹
0
= span {𝑃

𝑚
(2𝑥 − 1) | 𝑥 ∈ [0, 1] , 𝑚 ∈ Z

𝜇
} . (8)

It is well known that the Legendre polynomials 𝑃
𝑚

are
orthogonal with respect to the weight function 𝑤(𝑥) = 1 on
the interval [−1, 1].

In order to construct an orthonormal basis for 𝐿2[0, 1],
for each 𝜖 ∈ Z

𝜇
we define an isometry 𝑇

𝜖
on 𝐿
2
[0, 1] as

follows:

(𝑇
𝜖
𝑓) (𝑥) = {

√𝜇𝑓 (𝜓
−1

𝜖
(𝑥)) , 𝑥 ∈ 𝜓

𝜖
(𝐼) ,

0, 𝑥 ∉ 𝜓
𝜖
(𝐼) .

(9)
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Starting from the space 𝐹
0
, we define a sequence of spaces

{𝐹
𝑘
| 𝑘 ∈ N

0
} using the recurrence formula

𝐹
𝑘+1

= ⨁

𝜖∈Z𝜇

𝑇
𝜖
𝐹
𝑘
, 𝑘 ∈ N

0
, (10)

where ⊕ denotes the direct sum; that is, if 𝐴 and 𝐵 are two
subspaces of 𝐿2[0, 1] with 𝐴 ∩ 𝐵 = {0}, then

𝐴 ⊕ 𝐵 = {𝑓 + 𝑔 : 𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵} . (11)

The sequence of spaces {𝐹
𝑘
| 𝑘 ∈ N

0
} is nested, that is, [32]:

𝐹
0
⊂ 𝐹
1
⊂ ⋅ ⋅ ⋅ ⊂ 𝐹

𝑘
⊂ 𝐹
𝑘+1

⊂ ⋅ ⋅ ⋅ ,

dim𝐹
𝑘
= 𝑀𝜇

𝑘
, 𝑘 ∈ N

0
.

(12)

Moreover, similar toTheorem2.4 in [33], it can be proved that

∞

⋃

𝑘=0

𝐹
𝑘
= 𝐿
2
[0, 1] . (13)

Now, we construct an orthonormal basis for each of the
spaces 𝐹

𝑘
. We first notice that

𝐺
0
= {√2𝑚 + 1𝑃

𝑚
(2𝑥 − 1) | 𝑥 ∈ [0, 1] , 𝑚 ∈ Z

𝜇
} (14)

is an orthonormal basis for 𝐹
0
, and moreover for 𝑓(𝑥) ∈

𝐿
2
[0, 1] with compact support and for 𝜖 ̸= 𝜖

 we have

supp {𝑇
𝜖
𝑓} ∩ supp {𝑇

𝜖
𝑓} = 0, 𝜖 ̸= 𝜖


, (15)

where supp(𝑓) denotes the support of the function 𝑓. It can
be simply seen that [31]

𝐺
𝑘
= {𝑇
𝜖0
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝜖𝑘−1
(√2𝑚 + 1𝑃

𝑚
(2𝑥 − 1)) |

𝑚 ∈ Z
𝑀
, 𝜖
ℓ
∈ Z
𝜇
, ℓ ∈ Z

𝑘
}

(16)

is an orthonormal basis for𝐹
𝑘
, where “∘” denotes composition

of functions. In other words, if for 𝑛 = 1, 2, . . . , 𝜇
𝑘
, 𝑘 ∈ N, we

set

𝜓
𝑛𝑚

(𝑥) = 𝜓 (𝑘,𝑚, 𝑛, 𝑥)

=

{

{

{

√2𝑚+1𝜇
𝑘/2
𝑃
𝑚
(2𝜇
𝑘
𝑥 − 2𝑛+1) , 𝑥∈[

𝑛 − 1

𝜇𝑘
,
𝑛

𝜇𝑘
) ,

0, otherwise,
(17)

then {𝜓
𝑛𝑚
(𝑥) | 𝑛 = 1, 2, . . . , 𝜇

𝑘
, 𝑚 ∈ 𝑍

𝑀
} forms an ortho-

normal basis for 𝐹
𝑘
.

3.2. Function Approximation. A function 𝑓(𝑥) defined over
[0, 1)may be expanded by the Legendre wavelets as

𝑢 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚

(𝑥) , (18)

where 𝑐
𝑛𝑚

= (𝑢(𝑥), 𝜓
𝑛𝑚
(𝑥)), and (⋅, ⋅) denotes the inner

product. If the infinite series in (18) is truncated, then it can
be written as

𝑢 (𝑥) ≃

𝜇
𝑘

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚

(𝑥) = 𝐶
𝑇
Ψ (𝑥) , (19)

where 𝑇 indicates transposition, 𝐶 and Ψ(𝑥) are �̂� =

𝜇
𝑘
𝑀 column vectors which are given by

𝐶 = [𝑐
10
, . . . , 𝑐

1𝑀−1
| 𝑐
20
, . . . , 𝑐

2𝑀−1
| ⋅ ⋅ ⋅ | 𝑐

𝜇
𝑘
0
, . . . , 𝑐

𝜇
𝑘
𝑀−1

]
𝑇

,

Ψ (𝑥) = [𝜓
10
(𝑥) , . . . , 𝜓

1𝑀−1
(𝑥) | 𝜓

20
(𝑥) , . . . ,

𝜓
2𝑀−1

(𝑥) | ⋅ ⋅ ⋅ | 𝜓
𝜇
𝑘
0
(𝑥) , . . . , 𝜓

𝜇
𝑘
𝑀−1

(𝑥)]
𝑇

.

(20)

Taking the collocation points

𝑡
𝑖
=
(2𝑖 − 1)

2�̂�
, 𝑖 = 1, 2, . . . , �̂�, (21)

we define the wavelet matrixΦ
�̂�×�̂�

as

Φ
�̂�×�̂�

= [Ψ(
1

2�̂�
) , Ψ (

3

2�̂�
) , . . . , Ψ (

2�̂� − 1

2�̂�
)] . (22)

Indeed Φ
�̂�×�̂�

has the following form:

Φ
�̂�×�̂�

= (

𝐴 0 0 . . . 0

0 𝐴 0 . . . 0

0 0 𝐴 . . . 0

...
... d d

...
0 0 . . . 0 𝐴

), (23)

where 𝐴 is an𝑀×𝑀matrix given by
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𝐴 =

(
(
(
(
(
(
(
(

(

𝜓
10
(

1

2�̂�
) 𝜓

10
(

3

2�̂�
) . . . 𝜓

10
(
2�̂� − 1

2�̂�
)

𝜓
11
(

1

2�̂�
) 𝜓

11
(

3

2�̂�
) . . . 𝜓

11
(
2�̂� − 1

2�̂�
)

...
...

...
...

𝜓
𝜇
𝑘
𝑀−1

(
1

2�̂�
) 𝜓
𝜇
𝑘
𝑀−1

(
3

2�̂�
) . . . 𝜓

𝜇
𝑘
𝑀−1

(
2�̂� − 1

2�̂�
)

)
)
)
)
)
)
)
)

)

. (24)

For example, for 𝜇 = 3, 𝑘 = 1, 𝑀 = 2, the Legendre matrix
can be expressed as:

Φ
6×6

= (

(

1.7321 1.7321 0.0 0.0 0.0 0.0

−1.5000 1.5000 0.0 0.0 0.0 0.0

0.0 0.0 1.7321 1.7321 0.0 0.0

0.0 0.0 −1.5000 1.5000 0.0 0.0

0.0 0.0 0.0 0.0 1.7321 1.7321

0.0 0.0 0.0 0.0 −1.5000 1.5000

)

)

. (25)

3.3. Operational Matrix of Fractional Order Integration. The
fractional integration of order 𝛼 of the vector function Ψ(𝑥)

can be expressed as

(𝐼
𝛼
Ψ) (𝑥) ≃ 𝑃

𝛼
Ψ (𝑥) , (26)

where 𝑃
𝛼 is the �̂� × �̂� operational matrix of fractional

integration of order 𝛼. In the following we obtain an explicit
form of the matrix 𝑃. For this purpose, we need to introduce
a new family of basis functions, namely, block pulse functions
(BPFs).

We define a �̂�-set of BPFs as [34, 35]

𝑏
𝑖
(𝑥) =

{

{

{

1,
𝑖

�̂�
≤ 𝑥 <

(𝑖 + 1)

�̂�
,

0, otherwise,
(27)

where 𝑖 = 0, 1, 2, . . . , (�̂� − 1).
The functions 𝑏

𝑖
(𝑥) are disjoint and orthogonal.

The Legendre wavelets may be expanded into a �̂�-set of
BPFs as

Ψ (𝑥) ≃ Φ
�̂�×�̂�

𝐵
�̂�
(𝑥) , (28)

where 𝐵
�̂�
(𝑥) = [𝑏

0
(𝑥), 𝑏
1
(𝑥), . . . , 𝑏

𝑖
(𝑥), . . . , 𝑏

�̂�−1
(𝑥)]
𝑇.

In [34], Kilicman et al. have given the block pulse opera-
tional matrix of fractional integration 𝑃𝛼

𝐵
as

(𝐼
𝛼
𝐵
�̂�
) (𝑥) ≃ 𝑃

𝛼

𝐵
𝐵
�̂�
(𝑥) , (29)

where

𝑃
𝛼

𝐵
=

1

�̂�𝛼

1

Γ (𝛼 + 2)

(

(

1 𝜉
1
𝜉
2
. . . 𝜉
�̂�−1

0 1 𝜉
1
. . . 𝜉
�̂�−2

0 0 1 . . . 𝜉
�̂�−3

0 0 0 d
...

0 0 0 0 1

)

)

, (30)

and 𝜉
𝑖
= (𝑖 + 1)

𝛼+1
− 2𝑖
𝛼+1

+ (𝑖 − 1)
𝛼+1.

Next, we derive the Legendre wavelets operational matrix
of fractional integration. By considering (26) and using (28),
and (29) we have

(𝐼
𝛼
Ψ) (𝑥) ≃ (𝐼

𝛼
Φ
�̂�×�̂�

𝐵
�̂�
) (𝑥) = Φ

�̂�×�̂�
(𝐼
𝛼
𝐵
�̂�
) (𝑡)

≃ Φ
�̂�×�̂�

𝑃
𝛼

𝐵
𝐵
�̂�
(𝑥) .

(31)

Thus, by considering (28) and (31), we obtain the Legendre
wavelets operational matrix of fractional integration as

(𝐼
𝛼
Ψ) (𝑥) ≃ Φ

�̂�×�̂�
𝑃
𝛼

𝐵
Φ
−1

�̂�×�̂�
. (32)

To illustrate the calculation procedure we choose 𝜇 = 3, 𝑘 =

1, 𝑀 = 2, and 𝛼 = 1/2; thus we have:
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𝑃
(1/2)

= (

(

0.43433 0.14689 0.35988 −0.069510 0.23430 −0.017626

−0.11016 0.17991 0.052129 −0.028562 0.013219 −0.0032248

0.0 0.0 0.43433 0.14689 0.35988 −0.069510

0.0 0.0 −0.11016 0.17991 0.052129 −0.028562

0.0 0.0 0.0 0.0 0.43433 0.14689

0.0 0.0 0.0 0.0 −0.11016 0.17991

)

)

. (33)

4. Application for Fractional Population
Growth Model

As we have already mentioned, the fractional order models
are more accurate than integer order models; that is, there
are more degrees of freedom in the fractional order models.
In this section, we will apply Legendre wavelets for solving a
fractional population growth model. The model is character-
ized by the nonlinear fractional Volterra integrodifferential
equation [36] as follows:

𝐷
𝛼

∗
𝑝 (𝑡) − 𝑎𝑝 (𝑡) + 𝑏[𝑝 (𝑡)]

2

+ 𝑐𝑝 (𝑡) ∫

𝑡

0

𝑝 (𝜏) 𝑑𝜏 = 0,

𝑝 (0) = 𝑝
0
, 0 < 𝛼 ≤ 1,

(34)

where 𝛼 is a constant parameter describing the order of
the time fractional derivative, 𝑎 > 0 is the birth rate
coefficient, 𝑏 > 0 is the crowding coefficient, 𝑐 > 0 is the
toxicity coefficient, 𝑝

0
is the initial population, and 𝑝(𝑡) is the

population of identical individuals at time 𝑡 which exhibits
crowding and sensitivity to the amount of toxins produced
[37]. The coefficient 𝑐 indicates the essential behavior of the
population evolution before its level falls to zero in the long
run. It is worth mentioning that when the toxicity coefficient
is zero, (34) reduces to the well-known logistic equation
[37, 38]. The last term contains the integral which indicates
the totalmetabolismor total amount of toxins produced since
time zero. The individual death rate is proportional to this
integral, and also the population death rate due to toxicity
must include a factor 𝑝. Due to the fact that the system
is closed, the presence of the toxic term always causes the
population level falling to zero in the long run, as it will
be seen later. The relative size of the sensitivity to toxins,
𝑐, determines the manner in which the population evolves
before its extinction. It is worth noting that in case 𝛼 = 1,
the fractional equation reduces to a classical logistic growth
model, so the proposed method can be also applied in this
situation. Here we apply the scale time and population by
introducing the non-dimensional variables 𝑡 = 𝑐𝑡/𝑏 and 𝑢 =

𝑏𝑝/𝑎, to obtain the following non-dimensional problem:

𝜅𝐷
𝛼

∗
𝑢 (𝑡) − 𝑢 (𝑡) + [𝑢 (𝑡)]

2
+ 𝑢 (𝑡) ∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 = 0,

𝑢 (0) = 𝑢
0
, 0 < 𝛼 ≤ 1,

(35)

where 𝑢(𝑡) is the scaled population of identical individuals
at time 𝑡 and 𝜅 = 𝑐/𝑎𝑏 is a prescribed non-dimensional

parameter.The only equilibrium solution of (35) is the trivial
solution 𝑢(𝑡) = 0, and the analytical solution for 𝛼 = 1 is [39]

𝑢 (𝑡) = 𝑢
0
exp(1

𝜅
∫

𝑡

0

(1 − 𝑢 (𝜏) − ∫

𝜏

0

𝑢 (𝑠) 𝑑𝑠) 𝑑𝜏) . (36)

In recent years, several numerical methods have been pro-
posed to solve the classical and fractional population growth
model, for instance, the reader is advised to see [36–43]
and references therein. Here we use the operational matrix
of fractional integration for solving nonlinear fractional
integrodifferential population model (35). For this purpose,
we first approximate𝐷𝛼

∗
𝑢(𝑡) as

𝐷
𝛼

∗
𝑢 (𝑡) ≃ 𝑈

𝑇
Ψ (𝑡) , (37)

where 𝑈 is an unknown vector which should be found and
Ψ(𝑡) is the vector which is defined in (20).

By using initial condition and (5), we have

𝑢 (𝑡) ≃ 𝑈
𝑇
𝑃
𝛼
Ψ (𝑡) + 𝑢

0
. (38)

Since Ψ(𝑡) ≃ Φ
�̂�×�̂�

𝐵
�̂�
(𝑡), from (38), we have:

𝑢 (𝑡) ≃ 𝑈
𝑇
𝑃
𝛼
Φ
�̂�×�̂�

𝐵
�̂�
(𝑡) + 𝑢

0 [1, 1, . . . , 1] 𝐵�̂� (𝑡) . (39)

Define

𝐴
𝑇
= [𝑎
1
, 𝑎
2
, . . . , 𝑎

�̂�
] = 𝑈

𝑇
𝑃
𝛼
Φ
�̂�×�̂�

+ 𝑢
0 [1, 1, . . . , 1] . (40)

By using (38) and (39), we have 𝑢(𝑡) ≃ 𝐴
𝑇
𝐵
�̂�
(𝑡). From (27),

we have

[𝑢 (𝑡)]
2
≃ [𝑎
2

1
, 𝑎
2

2
, . . . , 𝑎

2

�̂�
] 𝐵
�̂�
(𝑡) = 𝐴

𝑇
𝐵
�̂�
(𝑡) . (41)

Also, we have

∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 ≃ 𝐴
𝑇
𝑃
𝐵
𝐵
�̂�
(𝑡) = 𝐶

𝑇
𝐵
�̂�
(𝑡) , (42)

where 𝐶𝑇 = 𝐴
𝑇
𝑃
𝐵
. Now using (27), (39), and (42), we have

𝑢 (𝑡) ∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 ≃ �̃�
𝑇
𝐵
�̂�
(𝑡) , (43)

where

�̃�
𝑇
= [𝑎
1
𝑐
1
, 𝑎
2
𝑐
2
, . . . , 𝑎

�̂�
𝑐
�̂�
] . (44)

Now by substituting (37), (39), (41) and (43), into (35), we
obtain

(𝑘𝑈
𝑇
Φ
�̂�×�̂�

− 𝐴
𝑇
+ 𝐴
𝑇
+ �̂�
𝑇
) 𝐵
�̂�
(𝑡) ≃ 0, (45)
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Figure 1: Numerical solutions of the classical population growth
model for different values of 𝜅.

and by replacing ≃ by =, we obtain the following system of
nonlinear algebraic equations:

𝜅𝑈
𝑇
Φ
�̂�×�̂�

− 𝐴
𝑇
+ 𝐴
𝑇
+ �̂�
𝑇
= 0. (46)

Finally by solving this system and determining 𝐴, we obtain
the approximate solution of the problem as 𝑢(𝑡) = 𝐴

𝑇
Ψ(𝑡).

As a numerical example, we consider the nonlinear
fractional integrodifferential equation (35) with the initial
condition 𝑢(0) = 0.1, which is investigated in several
papers, for instance see [36–43]. Here our purpose is to study
the mathematical behavior of the solution of this fractional
population growth model as the order of the fractional
derivative changes. In particular, we seek to study the rapid
growth along the logistic curve that will reach a peak then
slow exponential decayed for different values of 𝛼. To see the
behavior solution of this problem for different values of 𝛼, we
will take advantage of the proposed method and consider the
following two special cases.

Case 1. We investigate the classical population growth model
(𝛼 = 1) for some different small values 𝜅. The behavior of the
numerical solutions for �̂� = 162 (𝜇 = 3, 𝑘 = 3, and 𝑀 =

6) is shown in Figure 1. From Figure 1 it can be seen that
as 𝜅 increases, the amplitude of 𝑢(𝑡) decreases, whereas the
exponential decay increases.

Case 2. In this case we investigate the fractional population
growth model (35) for different values of 𝛼 and 𝜅.

From Figures 2, 3, and 4 it can be simply seen that as the
order of the fractional derivative decreases, the amplitude of
𝑢(𝑡) decreases, whereas the exponential decay increases and
also it can be concluded that as 𝜅 increases, the maximum of
𝑢(𝑡
∗
) of 𝑢(𝑡) decreases. This tendency is similar to the case

𝛼 = 1, which we have already mentioned.
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Figure 2: Numerical solutions of the fractional population growth
model for 𝜅 = 0.1.
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Figure 3: Numerical solutions of the fractional population growth
model for 𝜅 = 0.3.

5. Conclusion

In this paper, the operational matrix of fractional order
integration for Legendre wavelets was derived. Block pulse
functions and collocation method were employed to derive
a general procedure for forming this matrix. Moreover, a
wavelet expansion together with this operational matrix
was used to obtain approximate solution of the fractional
population growthmodel of a species within a closed system.
The main characteristic of the new approach is to convert
the problem under study to a system of nonlinear algebraic
equations by introducing the operational matrix of fractional
integration for these basis functions. Analysis of the behavior
of the model showed that it increases rapidly along the
logistic curve followed by a slow exponential decay after
reaching a maximum point, and also when the order of
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Figure 4: Numerical solutions of the fractional population growth
model for 𝜅 = 0.5.

the fractional derivative 𝛼 decreases, the amplitude of the
solution decreases, whereas the exponential decay increases.
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