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A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of
magnetohydrodynamic(MHD) micropolar fluids with medium molecular weight along a permeable stretching surface embedded
in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction.The governing boundary equations
for momentum, angular momentum (microrotation), and energy and mass transfer are transformed to a set of nonlinear ordinary
differential equations by using similarity solutionswhich are then solved numerically by shooting technique. A comparison between
the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the
problemon velocity,microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent
parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One
important observation is that for some kinds of mixtures (e.g., H

2
, air) with light and mediummolecular weight, the magnetic field

and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.

1. Introduction

Micropolar fluids are fluids ofmicrostructure.They represent
fluids consisting of rigid, randomly oriented, or spherical
particles suspended in a viscousmedium, where deformation
of fluids particles is ignored. The dynamics of micropolar
fluids, originated from the theory of Eringen [1–3], has been
a popular area of research due to its application in a number
of processes that occur in industry. Such applications include
polymeric fluids, real fluids with suspensions, liquid crystal,
animal blood, and exotic lubricants. Extensive reviews of
theory of micropolar fluids and its applications can be found
in review articles by Ariman et al. [4, 5] and recent books
by Łukaszewicz [6] and Eringen [7]. The Boundary layer
concept in such fluid past a linear stretching surface has
been investigated by Abo-Eldahab and El Aziz [8]. The study
of heat and mass transfer flow of an electrically conducting
micropolar fluid past a porous plate under the influence of
a magnetic field has attracted many researchers due to its

enormous applications in many engineering problems, such
as MHD generators, nuclear reactors, geothermal energy
extractions, and the boundary layer control in the field
of aerodynamics. Eldabe et al. [9] studied the problem of
heat and mass transfer in hydromagnetic flow of the non-
Newtonian fluid with heat source over an accelerated surface
through a porous medium. Also, Eldabe and Mohamed [10]
studied numerically by using Chebyshev finite difference
method, the problem of thermal-diffusion, and diffusion-
thermo effects on mixed free-forced convection and mass
transfer boundary layer flow of non-Newtonian fluid with
temperature-dependent viscosity. Bourich et al. [11] studied
analytically and numerically the Soret effect on the onset of
convection in a vertical porous layer subjected to uniform
heat flux. Bhargava et al. [12] modeled the coupled fluid
flow, heat and mass transfer phenomena over a stretching
sheet with nonlinear velocity for micropolar fluid. Pal and
Chatterjee Sewli [13] analyzed the steady two-dimensional
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mixed convection and mass transfer flow past a stretching
surface in a micropolar fluid-saturated porous medium tak-
ing into account the Soret and Dufour effects in the presence
of thermal radiation.

The combined heat and mass transfer problems with
chemical reactions are of importance in many processes and
therefore have received a considerable amount of attention
in recent years. A reaction is said to be the first-order if the
rate of reaction is directly proportional to the concentration
itself. In many chemical engineering processes, a chemical
reaction between a foreign mass and the fluid does occur.
These processes take place in numerous industrial applica-
tions, such as the polymer production, the manufacturing of
ceramics or glassware. Das et al. [14] considered the effects of
first-order chemical reaction on the flow past an impulsively
started infinite vertical plate with constant heat flux andmass
transfer. Kandasamy et al. [15] discussed the heat and mass
transfer effect along wedge with heat source and concentra-
tion in the presence of suction/injection taking into account
the chemical reaction of the first-order. Pal and Chatterjee
[16] studied heat and mass transfer in MHD non-Darcian
flow of a micropolar fluid over a stretching sheet embedded
in a porous media with nonuniform heat source and thermal
radiation.The effects of chemical reaction and magnetic field
on heat andmass transfer flow over a vertical isothermal cone
surface in micropolar fluids with heat generation/absorption
are investigated by El-kabeir and Modather [17]. Recently,
Bakr [18] analyzed the effects of chemical reaction on MHD
free convection and mass transfer flow of a micropolar fluid
with oscillatory plate velocity and a constant heat source in a
rotating frame of reference. The previous studies are based
on the constant physical properties of the fluid. However,
it is known that the physical properties of the fluid may
change significantly with temperature [19]. The increase of
temperature leads to the increase in the transport phenomena
by reducing the viscosity across the momentum boundary
layer and due to which the heat transfer rate at the wall is
also affected. Therefore, to accurately predict the flow and
heat transfer rates, it is necessary to take into account the
temperature-dependent viscosity of the fluid. The effect of
temperature-dependent viscosity on heat and mass transfer
laminar boundary layer flow have been discussed by many
authors [20–25] in various situations. They showed that
when this effect was included, the flow characteristics might
change substantially compared with the constant viscosity
assumption. Salem [26] investigated variable viscosity and
thermal conductivity effects on MHD flow and heat transfer
in viscoelastic fluid over a stretching sheet. Seddeek and
Salama [27] studied the effects of variable viscosity and ther-
mal conductivity on an unsteady two-dimensional laminar
flow of viscous incompressible conducting fluid past a semi-
infinite vertical porous moving plate taking into account
the effect of a magnetic field in the presence of variable
suction.

Hence, based on the above discussion, the objective of
the present study is to study the effects of variable viscosity
on MHD mixed convective heat and mass transfer flow
of a micropolar fluid past a porous stretching sheet in a
non-Darcian porous medium with chemical reaction in the

presence of viscous dissipation.The chemical reaction in this
work is taken as a first-order one. The governing equations
were reduced to similarity boundary layer equations using
suitable transformations and then solved using the Runge-
Kutta numerical integrationwith amodified version of shoot-
ing technique. Numerical results are shown graphically for
the velocity, angular velocity, temperature and concentration
distributions as well as the local skin friction coefficient, local
Nusselt number and the local Sherwood number.

2. Mathematical Analysis

Consider steady two-dimensional magnetohydrodynamic
heat and mass transfer flow of a viscous incompressible
micropolar fluid over a continuously moving stretching sur-
face embedded in a non-Darcian porous medium as shown
in the schematic diagram in Figure 1. The surface is stretched
in the 𝑥 direction such that the 𝑥 component of the velocity
varies nonlinearly along it, that is, 𝑢

𝑤
(𝑥) = 𝑎𝑥

𝑛, where 𝑎 (>0)
is constant and 𝑛 is a power index. The positive 𝑥 coordinate
is measured along the direction of motion with the slot as the
origin, and the positive 𝑦 coordinate is measured normal to
the porous plate. Here, we assume that magnetic Reynolds
number of the fluid is small, so that the induced magnetic
field is neglected. Also, we assume that the fluid properties are
isotropic and constant, except for Newtonian fluid viscosity
𝜇
𝑛
which is assumed to vary as an inverse linear function of

temperature 𝑇 in form [28]

1

𝜇
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1

𝜇
∞

[1 + 𝛾 (𝑇 − 𝑇
∞
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) ,

(1)

where 𝐴 = 𝛾/𝜇
∞

and 𝑇
𝑟
= 𝑇
∞
− 1/𝛾 are constants, and their

values depends on the reference state on the fluid.
Under the above assumption and using the Boussinesq

approximation, the boundary layer equations for this prob-
lem can be written as follows:
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𝑢
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+ V
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𝜕
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which is subject to the boundary conditions

𝑢 = 𝑢
𝑤
= 𝑎𝑥
𝑛
, V = ±V

𝑤
,

𝑇 = 𝑇
𝑤
(𝑥) = 𝑇

∞
+ 𝐴𝑥, 𝜔 = 0,

𝐶 = 𝐶
𝑤

at 𝑦 = 0, 𝑢 → 0,

𝑇 → 𝑇
∞
, 𝑁 → 0,

𝐶 → 𝐶
∞

as 𝑦 → ∞,

(7)

where 𝑥 and 𝑦 are the coordinate directions, 𝑢, V, 𝜔,𝑇, and 𝐶
are the fluid velocity components in the 𝑥 and 𝑦 directions,
the component ofmicrorotation, temperature and concentra-
tion, respectively. 𝜇

𝑛
, 𝜇
𝑟
, 𝑘
1
, 𝜑, and 𝜌

∞
are Newtonian fluid

viscosity, the micropolar viscosity, the permeability of the
porous medium, the porosity of the porous medium and the
density of the ambient fluid. 𝜎 is the electrical conductivity of
the fluid, 𝐵

𝑜
is the strength of applied magnetic field, 𝛽 and

𝛽
∙ are coefficient of thermal and concentration expansions,

respectively,𝐺
1
is themicrorotation constant, 𝑐

𝑃
is the specific

heat of the fluid at constant pressure, 𝑘 is the thermal conduc-
tivity, 𝑄

𝑜
is the volumetric heat generation/absorption rate,

𝐷 is the molecular diffusivity of the species concentration,
𝐾 is the rate of chemical reaction, 𝑇

∞
is the temperature of

the ambient fluid, and V
𝑤
is the permeability of the porous

surface.
The governing equations (3)–(6) can be expressed in a

simpler form by introducing the following similarity trans-
formations:
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(8)

where 𝜓 is the stream function, 𝜃 and 𝜑 are the nondi-
mensional temperature and concentration parameters. Sub-
stituting (8) into (3)–(6) produces the following differential
equations:
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and the boundary condition (7) becomes

𝑓 (𝜂) = ±𝐹
𝑤
, 𝑓

(𝜂) = 1,

𝜃 (𝜂) = 1, 𝑔 (𝜂) = 0, 𝜑 (𝜂) = 1 at 𝜂 = 0,

𝐹
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(13)

where 𝜃
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) is the variable viscosity parameter,

𝛼
1
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𝑟
/𝜇
∞

is the vortex viscosity parameter, Da−1 = 𝜑]
∞
/𝑘
1
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0
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∞
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1
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∞
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∞
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number (characterizing viscous dissipation), Sc = ]
∞
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the Schmidt number, Δ = 𝐾/𝑎𝑥𝑛−1 is the chemical reaction
parameter, and 𝐹
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∞
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suction or injection parameter. Here𝐹
𝑤
is positive for suction

and negative for injection.
In the above equations, a prime denotes differentiation

with respect to 𝜂. For the limiting case 𝜃
𝑟
→ ∞ (uniform

viscosity), 𝐿 = 0 (Newtonian fluid), 𝑛 = 1 (linear surface
velocity), 𝜆 = 0 (without buoyancy force), (9), together with
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the boundary conditions 𝑓(0) = 𝐹
𝑤
, 𝑓(0) = 1 and 𝑓(∞) =

0, has an exact closed form solution in the form
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√
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𝑤

4

.

(14)

The physical quantities of interest are the skin friction
coefficient, the Nusselt number and the Sherwood number.
These are defined by
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are shear stress, surface heat flux, and surface mass flux,
respectively. Using the new similarity variables in (8) gives

𝑐
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√Re
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𝜑
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where Re
𝑥
= 𝑢
𝑤
𝑥/]
∞

is the local Reynolds number.

3. Results and Discussion

The set of nonlinear ordinary differential equations (9)–
(12) with the boundary conditions (13) have been solved by
means of fourth-order Runge-Kutta method with systematic
estimates of 𝐹(0), 𝑔(0), 𝜃(0), and 𝜑(0) being made by
using the shooting technique. In the present calculations,
the step sizes of Δ𝜂 = 0.01 and 𝜂max = 10 were found
to be satisfactory in obtaining sufficient accuracy within a
tolerance of less than 10−7 in nearly all cases. In order to assess
the accuracy of the present numerical method, we compared
our numerical results obtained for the dimensionless stream
function and its derivative taking into account that 𝐿 = 𝜆 = 0,
𝑛 = 1, and 𝜃

𝑟
→ ∞ in (9) with those obtained analytically.

The numerical and the analytical values of 𝑓(𝜂) and 𝑓(𝜂) for

𝑦

Extrusion
slot

𝑉𝑤

𝑇∞, 𝐶∞
𝑇

𝐶

𝑢
𝑇𝑤 = 𝑇∞ + 𝐴𝑥

𝑢𝑤 = 𝑎𝑥
𝑛

Figure 1: Schematic diagram of flow induced by a power-law
stretched surface.
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Figure 2: Comparison of the exact solution and numerical solution
for various values of𝑀.

some values of the magnetic field parameter𝑀 and porosity
parameter Da are shown in Figure 2. The numerical values
of 𝑓(𝜂) and 𝑓(𝜂) are in good agreement with the obtained
analytical values.

In order to obtain some physical insight of the problem,
numerical results are displayed with the help of graphical
illustrations. A representative set of results is shown in
Figures 3–22. Numerical calculations have been carried out
for different values of physical parameters such as the fluid
viscosity parameter 𝜃

𝑟
, the viscous dissipation parameter Ec,

the magnetic field parameter 𝑀, the coupling parameter 𝐿,
the porosity parameter Da, the buoyancy force parameter 𝜆,
the chemical reaction parameter Δ, the suction or injection
parameter 𝐹

𝑤
, and the Schmidt number Sc. In the graphs

provided, the dimensionless velocity, microrotation (angular
velocity), temperature and concentration profiles are com-
puted for fixed value of the Prandtl number Pr, the inertia
coefficient parameter 𝛼

1
, the buoyancy ratio parameter 𝑁,

the heat generation parameter 𝐸, and the microrotation
parameter 𝐺 which are taken as 0.71, 0.5, 0.5, 0.5, and 2,
respectively. The values of Schmidt number are chosen for
hydrogen (Sc = 0.22), water vapor (Sc = 0.6) and ammonia
(Sc = 0.78), which represent diffusion chemical species of
themost common interest in air at 20∘C and one atmospheric
pressure [29].

The effects of the variable viscosity parameter 𝜃
𝑟
and the

magnetic field parameter 𝑀 on the velocity, microrotation,
temperature and concentration profiles are shown in Figures
3, 4, and 5. It is observed from these figures that the velocity,
microrotation, and temperature profiles of the micropolar
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Figure 3: Velocity profile for different values of 𝜃
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Figure 4: Angular velocity profile for different values of 𝜃
𝑟
and𝑀.

fluid decrease, whereas the concentration of the micropolar
fluid increases as 𝜃

𝑟
increases in the absence/presence of the

magnetic field. In the case of magnetic field (𝑀 ̸= 0), varying
the temperature-dependent viscosity becomes more effective
on the velocity, microrotation, and temperature fields than in
the nonmagnetic case (𝑀 = 0). Further, the temperature-
dependent viscosity has only very slight influence on the
concentration profiles whenever no magnetic field is applied,
while the increase in concentration due to variable viscosity
is recognized at a certain nonzero value of𝑀.

Figures 6–8, respectively, show the velocity, microrota-
tion, temperature and concentration profiles for different
values of Darcy number Da in the absence and presence of
the Eckert number Ec. The presence of a porous medium
in the flow presents the resistance to the flow, and in the
limiting case when Da → ∞ value, the porosity disappears.
Therefore, as the inverse Darcy number Da−1 increases, the
resistance due to porous medium increases and the velocity
profiles decrease as shown in Figure 6. Also, we see from
this figure that the velocity increases with increasing viscous
dissipation parameter Ec. This effect is more pronounced
in the case of a purely fluid region (infinite Da) than in
the case of flow through a porous medium. Figure 7 shows
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Figure 6: Velocity profile for different values of Da and Ec.

that the microrotation velocity decreases with an increase in
the inverse Darcy number which means that the presence
of porous medium decelerates the rotary motions of the
microelements near the surface, but the reverse happens
away from the surface. Figure 8 shows that the temperature
and concentration distributions of the fluid increase due to
increase in the inverse Darcy number Da−1. In the presence
of viscous dissipation, Ec ̸= 0, the effect of Da−1 is to increase
the temperature more than in the case of Ec = 0 as a result of
viscous dissipation effect which acts as a heat source. Also, the
viscous dissipation parameter has only very slight influence
on the concentration profiles in the case of a highly porous
medium.

Figures 9–12 depict the influence of the chemical reaction
parameter Δwith different values of Sc on the behavior of the
velocity, microrotation, temperature and concentration pro-
files. Increasing the chemical reaction parameter Δ produces
a decrease in the species concentration for both hydrogen and
ammonia. This is due to the fact that destructive chemical
reaction reduces the solutal boundary layer thickness. This,
in turn, causes the concentration buoyancy effects to decrease
as Δ increases. Consequently, less flow is induced along the
surface resulting in decreases in the fluid velocity and slight
increases in the temperature profiles for both Sc = 0.22 and
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Sc = 0.78. In addition, increasing the Schmidt number Sc
leads to decreases in the concentration profiles. This result
can be explained by the fact that an increase in the value
of Sc(]

∞
/𝐷) for fixed value of ]

∞
means a decrease in

the molecular diffusivity 𝐷. Hence, concentration of species
is higher for lighter particles (Sc = 0.22) and lower for
heavier particles (Sc = 0.78). This behavior is clear from
Figure 11. Figure 10 shows that with increasing Δ and Sc, the
microrotation profiles increase near the porous plate, while
the situation is reversed far away from the porous plate; that
is, the microrotation profiles increase as Δ and Sc increase.
Also, we noticed that, the effect of Δ on the microrotation
profiles in the case of micropolar fluid with small Schmidt
number is stronger than its effect in the case of micropolar
fluid with large Schmidt number.

The variation of the velocity, temperature and concentra-
tion profiles are shown in Figures 13, 14, and 15 for various val-
ues of the suction/blowing parameter 𝐹

𝑤
and microrotation

parameter 𝐿. Here 𝐹
𝑤
> 0 corresponding to suction and 𝐹

𝑤
<

0 corresponding to injection at the plate. It is clear that for all
values of suction/blowing parameter 𝐹

𝑤
, the temperature and

concentration profiles within the boundary layer increase,
while the velocity components decrease as 𝐿 increases (the
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microrotation increases). The reason for this trend is as
follows: as the value of themicrorotation parameter increases,
the coupling between (9), (10), and (12) increases causing a
whole reduction in the fluid velocity, and consequently, heat
is expected to increase. Figure 16 displays the influence of
the coupling parameter 𝐿 and suction/injection parameter
𝐹
𝑤
on the microrotation profiles. It is seen from this figure

that increasing values of themicrorotation parameter 𝐿 result
in increasing the microrotation profiles near the plate but a
reverse process has occurred as one moves away from the
porous plate. From these figures it is observed that the effect
of microrotation parameter 𝐿 on the velocity, temperature,
and concentration ismore pronounced in the case of injection
than in the case of the impermeable plate (𝐹

𝑤
= 0) and

suction (𝐹
𝑤
= 1).

The combined effect of the variable viscosity parameter
𝜃
𝑟
and buoyancy force parameter 𝜆 on the local skin-friction

coefficient 𝑐
𝑓
𝑅
1/2

𝑥
, the local Nusselt number Nu

𝑥
𝑅
−1/2

𝑥
, and

the local Sherwood number Sh𝑅−1/2
𝑥

are shown in Figures
17, 18, and 19. In the absence of viscous dissipation, it is
observed that both the local skin-friction coefficient and
local Sherwood number decrease with increase of variable
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viscosity parameter 𝜃
𝑟
, whereas the local Nusselt number

increases with increase of 𝜃
𝑟
. In the presence of viscous

dissipation, the effect of 𝜃
𝑟
is to increase the rate of heat

transfer near the surface and decrease the same significantly
away from the surface. This reduction of heat transfer away
from the boundary would be more for large values of
buoyancy force parameter 𝜆. Also, for Ec = 2 the values
of skin friction coefficient and Nusselt number are smaller
than Ec = 0, while the values of Sherwood number are
higher for Ec = 2 than Ec = 0. In addition, the effect of
Ec is more pronounced on the local Nusselt number than
on the local skin-friction coefficient and the local Sherwood
number, because Ec occurs explicitly in (11) which represents
the equation for dimensionless temperature.

The effects of the coupling parameter 𝐿 and the Schmidt
number Sc on the local skin-friction coefficient, the local
Nusselt number, and the local Sherwood number are shown
in Figures 20, 21, and 22, respectively. It is observed that
for all values of 𝜆, the local skin-friction coefficient and
the local Nusselt number decrease as the Schmidt number
Sc increases. Also, as the value of the coupling parameter
increases, the coupling between equations of momentum and
energy increases causing the local skin-friction coefficient to
increase while the wall heat transfer is greatly decreased.This
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is due to extra mixing of fluid layers due to the enhanced
shear stress. This is accompanied by a slight increase in the
wall deposition flux. In addition, the effect of Sc on the
local skin friction and local Nusselt number becomes more
pronounced with increasing buoyancy force parameter 𝜆,
since the buoyancy force acts as a favorable pressure gradient.
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4. Conclusions

A mathematical analysis has been carried out to study
the MHD boundary layer flow of a micropolar fluid with
medium molecular weight along a permeable stretching
surface embedded in a non-Darcian porous medium with
viscous dissipation and chemical reaction.The fluid viscosity
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is assumed to vary as an inverse linear function of tem-
perature. The resulting partial differential equations, which
describe the problem, are transformed into ordinary differ-
ential equations by using a similarity transformations and
then solved numerically by shooting method. A comparison
between the analytical and the numerical solutions has been
included, and the results are found to be in excellent agree-
ment. A representative set of numerical results for velocity,
temperature and concentration profiles as well as the local
skin-friction coefficient, the local Nusselt number, and local
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Sherwood number is presented graphically and discussed. It
is found that the momentum boundary thickness as well as
thermal boundary layer thickness decrease with increasing in
the variable viscosity parameter 𝜃

𝑟
. It is of interest to note that

the heat transfer strongly depends on the viscous dissipation
Ec. In the presence of the latter, the effect of increasing values
of 𝜃
𝑟
is seen to increase the rate of heat transfer near surface

and to decrease the same significantly away from the surface.
This reduction of heat transfer away from the boundary
would be more for large values of buoyancy force parameter
𝜆. The ability of the microelements of the fluid to rotate
decreases as the variable viscosity parameter 𝜃

𝑟
increases,

and it increases away from the plate due to the presence of
viscous dissipation. The local friction coefficient is highly
affected by the viscous dissipation for small values of 𝜃

𝑟
.

However, for large 𝜃
𝑟
, the local friction coefficient is slightly

influenced by the viscous dissipation effect. Therefore, we
conclude that for amicropolar fluid of hydrogen-airmixtures,
the variable viscosity and viscous dissipation effects should
not be neglected. Increasing the coupling parameter tends to
increase the local friction coefficient but tends to decrease the
heat transfer rate and slightly increase the local Sherwood
number. Increasing the Schmidt number tends to increase
the local Sherwood number but tends to decrease the local
friction coefficient. Finally, our numerical computations also
indicate that the local skin-friction and the local Sherwood
number are lower for the case of Newtonian fluids (𝐿 = 0) as
compared with themicropolar fluids (𝐿 > 0). Also, the rate of
heat transfer for themicropolar fluid is considerably less than
that for the Newtonian fluid.
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