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The implementation of pairwise decomposition is discussed on an interconnected system with uncertainties. Under the concept
of system inclusion, two systems with the same expanded system achieved by the same expand transformation are considered as
approximations. It is proven that a coordinated controller can be found to stabilize both the two systems.This controller is contracted
from the coordinated controller of expanded system, with each pairwise subsystem having information structure constraint taken
into consideration. At last, this controller design process is applied on a four-area power system treated as a group of subsystems
with information structure constraints.

1. Introduction

Complex systems in real world are usually composed of
a large group of interconnected subsystems. The intercon-
nections among the subsystems are commonly presented
in dynamics, and not only their weight values but also
their connections with others keep evolving from time to
time. Decentralized control is an ideal control strategy to
handle the structural perturbations. Inclusion principle [1–
3] is widely used as a general mathematical framework of
decomposition, for example, automatic generation control
(AGC) for a four-area power system [4–8], formation control
of unmanned aerial vehicles [9], and structural vibration
control of tall buildings under seismic excitations [10–12].

Particularly, pairwise decomposition provided in [4–8]
can take full use of interconnections in the system, by treating
each pair of subsystemswith information structure constraint
as a basic connected unit. Based on the inclusion principle
framework, the system will be expanded into a much bigger
space in a recurrent reverse order, so that the system is com-
pletely decomposed. Then a pairwise coordinated controller
for the expanded system will be constructed by achieving
coordinated consensus of each pairwise subsystem in parallel.
After properly compensated, the controller can be contracted
into the original space to fix the original system.

However, to apply pairwise decomposition methodology,
an explicitly defined overall system model in particular
superposition form is needed, and this condition may not
always be satisfied due to system complexity.The work of this
paper is to present an implementation approach of pairwise
decomposition for interconnected system with state uncer-
tainties. As the basis of system expansion and contraction,
adequate knowledge of interconnection structure between
pairwise subsystem is necessary, and this is the presumption
to apply pairwise decomposition in this paper. For the system
whose model is uncertain, the inclusion principle can not
achieve its expansion exactly. But under the circumstance
that the interconnection structure of system is available, an
approximate expanded system can be constructed instead.
Motivated by the idea that the whole system could achieve
high performance only if each part could be consistent, an
expanded system can be constructed, which comprises all
pairwise subsystems with information structure constraints
of the original system, and this expanded system is treated
as an approximate expansion of the origin. According to the
inclusion conditions, the expanded system can be contracted
to the original space. A contraction dual to the expansion
can always be found, so that the contracted system and
original system are approximate in state dynamic. In this way,
the coordinated controller that can stabilize the contracted
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system is also suitable for the original system. Similar to the
system level, the coordinated controller of contracted system
is also established by contracting from that of expanded
system properly. In fact, this contracted controller can be
used directly on the original system. As long as the dynamic
of original system is adequately included in the expanded
system, the contracted controller can be used as a suboptimal
controller of the origin. The approximation of this paper
mainly represents how good the expanded system would
include the original system state. However, it is difficult to
describe the approximation without a comparison of control
performances. Considering the uncertainties of system state,
a static state feedback controller at each subsystem is designed
to robustly stabilize the system dynamics.This control design
process mainly depends on the decentralized system form;
it can suit a group of systems which can only use local
information, for example, the multiagent system. Moreover,
just the same as the ordinary pairwise decomposition, this
process is also able to deal with the information structure
constraints variation.

The organization of this paper is as follows. In the
next section, preliminaries of permuted inclusion principle
and system contraction are provided. The main result is
presented in Section 2, where the approximate expansion
under the concept of system inclusion is discussed, as well
as the controller design procedure. In Section 3, a simulation
example is provided to illustrate the proposed method on a
group of subsystems with information structure constraints.

2. Preliminaries

The controller design process provided in this paper mainly
relies on the permuted inclusion principle [6, 7] and system
contraction [7, 13] that are presented in the following.

2.1. Permuted Inclusion Principle. Suppose that system S is a
group of interconnected subsystems and each subsystem S

𝑖
is

connected to every other counterparts. Then system S can be
decomposed into the expanded space of𝑁(𝑁−1)/2 pairwise
subsystems with a pair recurrent reverse order subscripts as
follows:

S
𝑖𝑗
: S
12
, S
23
, S
13
, S
34
, S
24
, S
14
, . . . ,

S
(𝑁−1)𝑁

, S
(𝑁−2)𝑁

, . . . , S
2𝑁
, S
1𝑁
.

(1)

Notice that the pairwise subsystems are arranged by a
reverse order of subscript 𝑗, and this unnatural order enables
the last one or some subsystems of the sequence to disconnect
from, or connect to on the contrary, the overall system
without impact on the remaining orders. It is convenient
for representing the system information structure constraints
variations.

The expected pairwise subsystems order is established by
both row and column permutation matrices, which are com-
posed of a series of basic permutation matrices representing
a special case of nonsingular transformations. Assume that 𝐼

𝑘

is a subidentity matrix corresponding to the subsystem S
𝑘
, as

provided in [6, 7],

𝑃 =
←
Π

𝑁−2

𝑖=1

←
Π

𝑁−𝑖−1

𝑗=1

←
Π

𝑁(𝑁−𝑗)−𝑖(𝑗+1)

𝑘=1+𝑖(𝑖−1)
𝑝
𝑘(𝑘+1)

𝑃
−1

=
→

Π

𝑁−2

𝑖=1

→

Π

𝑁−𝑖−1

𝑗=1

→

Π

𝑁(𝑁−𝑗)−𝑖(𝑗+1)

k=1+𝑖(𝑖−1) 𝑝
𝑇

𝑘(𝑘+1)
,

(2)

where the signs “←” and “→ ” indicate right and left
directional multiplying operations, and

𝑝
𝑘(𝑘+1)

= blockdiag(𝐼
1
, . . . , 𝐼

𝑘−1
, [

0 𝐼
𝑘

𝐼
𝑘+1

0
] , 𝐼
𝑘+2

, . . . , 𝐼
�̃�
) ,

𝑝
−1

𝑘(𝑘+1)
= 𝑝
𝑇

𝑘(𝑘+1)

= blockdiag(𝐼
1
, . . . , 𝐼

𝑘−1
, [

0 𝐼
𝑘+1

𝐼
𝑘

0
] , 𝐼
𝑘+2

, . . . , 𝐼
�̃�
)

(3)

are the basic permutation matrices for the 𝑘 and 𝑘 + 1

groups of adjacent columns and rows, respectively. The �̃�

in (3) indicates the number of subsystems in the expanded
system, and here �̃� = 𝑁(𝑁 − 1). The literature [8] provides
an alternative matrix position-based form to construct this
permutation matrix 𝑃 more simply. Use 𝑃(𝑚, 𝑛)

𝑏
to notate

the block position in 𝑃 of subidentity matrices 𝐼
𝑖
and 𝐼

𝑗

corresponding to pairwise subsystem S
𝑖𝑗
in 𝑃; then it comes

𝑃((𝑁𝑖 − 𝑗 + 1) , [𝑗 (𝑗 − 1) − 2 (𝑖 − 1) − 1])
𝑏
= 𝐼
𝑖
,

𝑃([𝑁 (𝑗 − 1) − 𝑖 + 1] , [𝑗 (𝑗 − 1) − 2 (𝑖 − 1)])
𝑏
= 𝐼
𝑗
,

𝑖, 𝑗 = 1, 2, . . . , 𝑘, . . . , 𝑁, 𝑖 ̸= 𝑗.

(4)

Example 1. Consider an expansion for system S with full
network structure and 𝑁 = 3; its pairwise subsystems can
be ordered as

S
𝑖𝑗
: S
12
, S
23
, S
13
. (5)

According to (4), the block positions of 𝐼
𝑖
and 𝐼
𝑗
to S
𝑖𝑗
can

be obtained as

S
12

: 𝑃(2, 1)𝑏 = 𝐼
1
, 𝑃(3, 2)𝑏 = 𝐼

2
,

S
23

: 𝑃(4, 3)𝑏 = 𝐼
2
, 𝑃(5, 4)𝑏 = 𝐼

3
,

S
13

: 𝑃(1, 5)𝑏 = 𝐼
1
, 𝑃(6, 6)𝑏 = 𝐼

3
.

(6)

that is to say

𝑃 =

[
[
[
[
[
[
[

[

0 0 0 0 𝐼
1

0

𝐼
1

0 0 0 0 0

0 𝐼
2

0 0 0 0

0 0 𝐼
2

0 0 0

0 0 0 𝐼
3

0 0

0 0 0 0 0 𝐼
3

]
]
]
]
]
]
]

]

. (7)

It is equivalent to the result of (2) when𝑁 = 3.
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Consider an interconnected system S in compacted form
and its expanded system S̃

𝑃
as follows:

S : �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥,

S̃
𝑃
: ̇̃𝑥
𝑃
= 𝐴
𝑃
𝑥
𝑃
+ 𝐵
𝑃
�̃�
𝑃
, 𝑦

𝑃
= 𝐶
𝑃
𝑥
𝑃
,

(8)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚, and 𝑦(𝑡) ∈ R𝑙 are the state, input,
and output vectors of the system S; 𝑥

𝑃
(𝑡) ∈ R𝑛, �̃�

𝑃
(𝑡) ∈ R�̃�,

and 𝑦
𝑃
(𝑡) ∈ R�̃� are those of system S̃

𝑃
. It is supposed that

𝑛 ≤ 𝑛,𝑚 ≤ �̃�, and 𝑙 ≤ �̃�.
For the input-state-output inclusion principle mentioned

in [14, 15], a definition of the permuted inclusion principle is
given.

Definition 2. The system S̃
𝑃

includes the system S, or
S̃
𝑃

⊃ S, if there exists a quadruplet of full rank matrices
{𝑉
𝑃
, 𝑈
𝑃
, 𝑄
𝑃
, 𝑆
𝑃
} satisfying 𝑈

𝑃
𝑉
𝑃

= 𝐼
𝑛
, such that for any

𝑥
0
∈ R𝑛 and any 𝑢 ∈ R𝑚, the conditions 𝑥

𝑃0
= 𝑉
𝑃
𝑥
0
and

𝑢 = 𝑄
𝑃
�̃�
𝑃
imply 𝑥(𝑡; 𝑡

0
, 𝑥
0
, 𝑢) = 𝑈

𝑃
𝑥
𝑃
(𝑡; 𝑡
0
, 𝑥
𝑃0
, �̃�
𝑃
) and

𝑦[𝑥(𝑡)] = 𝑆
𝑃
𝑦
𝑃
[𝑥
𝑃
(𝑡)] for all 𝑡 ≥ 𝑡

0
.

Call the system S a contraction of system S̃
𝑃
. It is

supported by the inclusion principle that all information
about the behavior of S is included in S̃

𝑃
, such as stability and

optimality. One of the necessary and sufficient conditions for
the inclusion is restriction, the following theorem considers
the restriction type (d) ([2, 3, 7]).

Theorem 3. The system S is a typical restriction of the system
S̃
𝑃
, if there is a triplet of full rank matrices {𝑉

𝑃
, 𝑄
𝑃
, 𝑆
𝑃
} such

that

𝑉
𝑃
𝐴 = 𝐴

𝑃
𝑉
𝑃
, 𝑉

𝑃
𝐵𝑄
𝑃
= 𝐵
𝑃
, 𝐶 = 𝑆

𝑃
𝐶
𝑃
𝑉
𝑃
. (9)

Proof. The proof follows directly from the results in [6, 7, 14,
15].

The systems S and S̃
𝑃
are related by

𝐴
𝑃
= 𝑉
𝑃
𝐴𝑈
𝑃
+𝑀
𝑃

𝐴
, 𝐵
𝑃
= 𝑉
𝑃
𝐵𝑄
𝑃
+𝑀
𝑃

𝐵
,

𝐶
𝑃
= 𝑇
𝑃
𝐶𝑈
𝑃
+𝑀
𝑃

𝐶
,

(10)

where 𝑀𝑃
𝐴
, 𝑀𝑃
𝐵
, and 𝑀

𝑃

𝐶
are complementary matrices with

proper dimensions. See [6, 7] for details.

2.2. System Contraction. One of the difficulties in applying
system contraction by inclusion principle is that the con-
ditions may be too restrictive, and a complete contraction
from the given expanded system S̃

𝑃
to system S will not

always exist. It is indicated by the restriction conditions of
(9) that system S̃

𝑃
completely includes S if and only if it is

uncontrollable. A natural way to resolve this problem is to
introduce an incomplete contraction as an approximation.
Split the permuted state matrix 𝐴

𝑃
into two parts as

𝐴
𝑃
= 𝐴
𝑅𝑃

+ �̃�
𝐴𝑃
, (11)

where 𝐴
𝑅𝑃

is the part that can be contracted as (8) implies,
�̃�
𝐴𝑃

is a complementary matrix with proper dimension

standing for the remnant after contraction from the expanded
space. System S is a reduced-order model of system S̃

𝑃
,

according to the restriction conditions in (9) and (10), and
take the state matrix for example, this incomplete system
contraction requires that

𝑉
𝑃
𝐴 = (𝐴

𝑃
− �̃�
𝐴𝑃
)𝑉
𝑃
. (12)

There are arbitrary choices of the expanding transformation
matrix 𝑉

𝑃
. Since this paper is based on the pairwise decom-

position methodology, 𝑉
𝑃
is chosen as the same form of that

in [6, 7], which will be presented in next section. Anyway,
when 𝑉

𝑃
is confirmed according to the inclusion condition,

here goes

�̃�
𝐴𝑃
𝑉
𝑃
= 𝐴
𝑃
𝑉
𝑃
− 𝑉
𝑃
𝐴. (13)

To satisfy the restriction condition, there must be

𝐴 = (𝑉
𝑇

𝑃
𝑉
𝑃
)
−1

𝑉
𝑇

𝑃
𝐴
𝑃
𝑉
𝑃

(14)

so that ‖�̃�
𝐴𝑃
𝑉
𝑃
‖ will be minimum, and this results in the

minimal norm solution

�̃�
𝐴𝑃

= [𝐼 − 𝑉
𝑃
(𝑉
𝑇

𝑃
𝑉
𝑃
)
−1

𝑉
𝑇

𝑃
]𝐴
𝑃
𝑉
𝑃
(𝑉
𝑇

𝑃
𝑉
𝑃
)
−1

𝑉
𝑇

𝑃
. (15)

3. Pairwise Decomposition for a Group of
Interconnected Subsystems

Assume that system S is composed of a group of intercon-
nected subsystems as the coordinated control target,

S = {S
𝑖
} : �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥,

S
𝑖
: �̇�
𝑖
= 𝐴
𝑖𝑖
𝑥
𝑖
+ 𝐵
𝑖𝑖
𝑢
𝑖

+

𝑁

∑

𝑗=1

𝑗 ̸= 𝑖

𝑒
𝑖𝑗 (𝑡) 𝐴 𝑖𝑗𝑥𝑗, 𝑦

𝑖
= 𝐶
𝑖𝑖
𝑥
𝑖
,

𝑖 = 1, 2, . . . , 𝑁,

(16)

where 𝑥
𝑖
(𝑡) ∈ R𝑛𝑖 , 𝑢

𝑖
(𝑡) ∈ R𝑚𝑖 , and 𝑦

𝑖
(𝑡) ∈ R𝑙𝑖 are the

state, input, and output vectors of S
𝑖
at time 𝑡 ∈ R system

matrices 𝐴, 𝐵, and 𝐶 are compacted forms of 𝐴
𝑖𝑗
, 𝐵
𝑖𝑖
, and 𝐶

𝑖𝑖

in proper dimensions, respectively. Notations 𝑥
𝑖
(𝑡; 𝑡
0
, 𝑥
𝑖0
, 𝑢
𝑖
)

and 𝑦
𝑖
[𝑥
𝑖
(𝑡)] denote unique solutions of S

𝑖
for the initial time

𝑡
0
, the initial state vector𝑥

𝑖0
, and a fixed control input 𝑢

𝑖
, 𝑒
𝑖𝑗
(𝑡)

is element of the interconnection matrix 𝐸 = (𝑒
𝑖𝑗
) ∈ R𝑁×𝑁.

Under the concept of pairwise decomposition, if at least one
of interconnections 𝑒

𝑖𝑗
(𝑡) ̸= 0 or 𝑒

𝑗𝑖
(𝑡) ̸= 0, then it appears that

subsystems S
𝑖
and S
𝑗
are connected. Call

S
𝑖𝑗
:

{{{{

{{{{

{

�̇�
𝑖
= 𝐴
𝑖𝑖
𝑥
𝑖
+ 𝑒
𝑖𝑗 (𝑡) 𝐴 𝑖𝑗𝑥𝑗 + 𝐵

𝑖𝑖
𝑢
𝑖
, 𝑦

𝑖
= 𝐶
𝑖𝑖
𝑥
𝑖

�̇�
𝑗
= 𝐴
𝑗𝑗
𝑥
𝑗
+ 𝑒
𝑗𝑖 (𝑡) 𝐴𝑗𝑖𝑥𝑖 + 𝐵

𝑗𝑗
𝑢
𝑗
, 𝑦
𝑗
= 𝐶
𝑗𝑗
𝑥
𝑗

𝑖, 𝑗 = 1, 2, . . . , 𝑁,

𝑖 ̸= 𝑗

(17)

a pairwise subsystem with basic interconnection.
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The time-varying parameters 𝑒
𝑖𝑗
(𝑡) and 𝑒

𝑗𝑖
(𝑡) in (17) can

describe the dynamic weight values between the connected
subsystems S

𝑖
and S

𝑗
. They represent the information struc-

ture constraints of the interconnected system and play a very
important role in the system dynamic. In the literature [16], a
fundamental interconnection (adjacency) matrix 𝐸 = (𝑒

𝑖𝑗
) ∈

R𝑁×𝑁 is defined in order to describe the normal structure
of a given system graph. This notation can also be used here
to indicate whether there is information structure constraint
between a subsystem pair, by the rule

𝑒
𝑖𝑗
=

{{

{{

{

1, 𝑒
𝑖𝑗 (𝑡) ̸= 0

𝑒
𝑖𝑖
= 0.

0, 𝑒
𝑖𝑗 (𝑡) = 0,

(18)

When 𝑒
𝑖𝑗
= 1, it indicates that there is interconnection

from subsystem S
𝑖
to S
𝑗
, and 𝑒

𝑖𝑗
= 0 indicates not. This

binary interconnection matrix 𝐸 will be used later in the
inclusion principle framework. If one of 𝑒

𝑖𝑗
and 𝑒
𝑗𝑖
is equal to

0, the pairwise subsystem S
𝑖𝑗
is half connected; the original

information structures of S
𝑖𝑗
would be changed by using

the coordinated control mentioned earlier. In this case,
the sequential LQ optimization provided in [3, 17] can be
consulted to keep the information structure of S

𝑖𝑗
. Moreover,

note that 𝑒
𝑖𝑗
and 𝑒

𝑗𝑖
will both be valued 0 under some

circumstances, which means that the pairwise subsystem
S
𝑖𝑗
will be disjointed. The disconnected modes have been

discussed in [6, 7]. Particularly, when 𝑒
𝑖𝑗
and 𝑒
𝑗𝑖
evolute in a

dynamicalway and enforceS
𝑖𝑗
to disjoint and then joint again,

the discussion is provided in [8].
Theoretically, any existing control technique can be

applied to the coordinated control of this pairwise subsystem
S
𝑖𝑗
. Take pairwise subsystem S

𝑖𝑗
as this compact form

S
𝑖𝑗
: �̇�
𝑖𝑗
= 𝐴
𝐷𝑖𝑗

𝑥
𝑖𝑗
+ 𝐵
𝐷𝑖𝑗

𝑢
𝑖𝑗
, 𝑦

𝑖𝑗
= 𝐶
𝐷𝑖𝑗

𝑥
𝑖𝑗
, (19)

with 𝑥
𝑖𝑗
= [𝑥
𝑖
, 𝑥
𝑗
]
𝑇, 𝑢
𝑖𝑗
= [𝑢
𝑖
, 𝑢
𝑗
]
𝑇, and 𝑦

𝑖𝑗
= [𝑦
𝑖
, 𝑦
𝑗
]
𝑇, and

𝐴
𝐷𝑖𝑗

= [
𝐴
𝑖𝑖

𝑒
𝑖𝑗 (𝑡) 𝐴 𝑖𝑗

𝑒
𝑗𝑖 (𝑡) 𝐴𝑗𝑖 𝐴

𝑗𝑗

] ,

𝐵
𝐷𝑖𝑗

= [
𝐵
𝑖𝑖

0

0 𝐵
𝑗𝑗

] ,

𝐶
𝐷𝑖𝑗

= [
𝐶
𝑖𝑖

0

0 𝐶
𝑗𝑗

] .

(20)

Call

C
𝑖𝑗
: 𝑢
𝑖𝑗
= −𝐾
𝐷𝑖𝑗

𝑥
𝑖𝑗 (21)

the basic coordinated controller, if it can stabilize the closed
loop pairwise subsystem

S𝐶
𝑖𝑗
: �̇�
𝑖𝑗
= (𝐴
𝐷𝑖𝑗

− 𝐵
𝐷𝑖𝑗

𝐾
𝐷𝑖𝑗

) 𝑥
𝑖𝑗
, 𝑦

𝑖𝑗
= 𝐶
𝐷𝑖𝑗

𝑥
𝑖𝑗
. (22)

For every pair of subsystems S
𝑖𝑗
with information structure

constraints 𝑖 = 𝑗 − 𝑘, 𝑗 = 2, 3, . . . , 𝑁, 𝑘 = 1, 2, . . . , 𝑗 − 1, their
basic coordinated controllers can be constructed in this way.

As the fundamental idea of pairwise decomposition, a
given system should be expanded following the recurrent
reverse order first, so that a coordinated controller can be
designed to stabilize all of the pairwise subsystems and then
contracted to the original space. However, restricted by the
mathematical framework of inclusion principle, it is difficult
to expand the system with uncertainties in its dynamics.
Consider the procedure of pairwise decomposition, the
original states can be almost included in the block-diagonal
expanded system which is composed of state functions of all
pairwise subsystems,

S̃
𝑃𝐷

= {S
12
, S
23
, S
13
, S
34
, S
24
, S
14
, . . . , S

2𝑁
, S
1𝑁
} :

̇̃𝑥
𝑃
= 𝐴
𝑃𝐷
𝑥
𝑃
+ 𝐵
𝑃𝐷
�̃�
𝑃
, 𝑦

𝑃
= 𝐶
𝑃𝐷
𝑥
𝑃
,

𝐴
𝑃𝐷

= blockdiag (𝐴
𝐷𝑖𝑗

) ,

𝐵
𝑃𝐷

= blockdiag (𝐵
𝐷𝑖𝑗

) ,

𝐶
𝑃𝐷

= blockdiag (𝐶
𝐷𝑖𝑗

) .

(23)

This block-diagonal system is a reasonable approximate
expansion of the origin. To achieve this form, the inter-
connection structure of system S should be available, and
this is also the restriction in using inclusion principle. The
interconnection structure is supposed to be given by the fun-
damental interconnection matrix 𝐸 = (𝑒

𝑖𝑗
). By expanding the

original space of system S into a bigger space of system S̃
𝑃𝐷

in
recurrent reverse order, take the state matrix as an example,
the transformation matrices of pairwise decomposition can
be selected as

𝑉 = blockdiag (

∑
𝑁

𝑘=1
𝑒1𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼
𝑛1

𝐼
𝑛1
⋅ ⋅ ⋅ 𝐼
𝑛1
, . . . ,

∑
𝑁

𝑘=1
𝑒𝑁𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼
𝑛𝑁

𝐼
𝑛𝑁

⋅ ⋅ ⋅ 𝐼
𝑛𝑁
)

𝑇

,

𝑈 = blockdiag( 1

∑
𝑁

𝑘=1
𝑒
1𝑘

[

[

∑
𝑁

𝑘=1
𝑒1𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼
𝑛1
⋅ ⋅ ⋅ 𝐼
𝑛1

]

]

, . . . ,

1

∑
𝑁

𝑘=1
𝑒
𝑁𝑘

[

[

∑
𝑁

𝑘=1
𝑒𝑁𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐼
𝑛𝑁

⋅ ⋅ ⋅ 𝐼
𝑛𝑁

]

]

) ,

(24)

𝑅, 𝑄, 𝑇, and 𝑆 have the same structure as their counterparts,
respectively. Notice that there are arbitrary choices of these
transformation matrices, and their forms are bound up with
the inclusion form. Since the structure of expanded system
S̃
𝑃𝐷

is confirmed, then the transformation matrices are also
fixed, just as (24).

Consider the permuted inclusion principle; the transfor-
mation matrices will be permuted as

𝑉
𝑃
= 𝑃
−1

𝐴
𝑉, 𝑈

𝑃
= 𝑈𝑃
𝐴
,

𝑅
𝑃
= 𝑃
−1

𝐵
𝑅, 𝑄

𝑃
= 𝑄𝑃
𝐵
,

𝑇
𝑃
= 𝑃
−1

𝐶
𝑇, 𝑆

𝑃
= 𝑆𝑃
𝐶
.

(25)
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Therefore the state matrices of systems S and S̃
𝑃𝐷

are related
by (12), and the relationship of the state, input, and output
vectors can be obtained by Definition 2 as

𝑥 = 𝑈
𝑃
𝑥
𝑃
, 𝑢 = 𝑄

𝑃
�̃�
𝑃
, 𝑦 = 𝑆

𝑃
𝑦
𝑃
. (26)

At the same time, a virtual system S can be constructed
as another contraction of system S̃

𝑃𝐷
. The state dynamic of

system S is in a certain form, and S is raised as an estimation of
the original system S. According to the contraction condition,
it is possible to use the transformation matrix 𝑉

𝑃
such

that system S̃
𝑃𝐷

can be contracted to S by (12) after an
appropriate compensation. This process will also lead to the
same relationship as (26). In this way, systems S and S may
share the same state, input, and output vectors, since they
have the same expanded system S̃

𝑃𝐷
which is calculated by

the same transformation matrices. It can be concluded that
systems S and S represent a pair of systems with approximate
dynamics, and the bias between them is mainly reflected in
compensation �̃�

𝐴𝑃
of the contraction procedure.

Suppose that the expanded system S̃
𝑃𝐷

comprises every
state function of pairwise subsystem S

𝑖𝑗
in system S, and the

pairwise subsystems are arranged in the recurrent reverse
order as (23). Each S

𝑖𝑗
is stabilized by the basic coordinated

controller (21); then the coordinated controller for S̃
𝑃𝐷

can
be constructed in a block-diagonal form as

C̃
𝑃𝐷

= (C
𝑖𝑗
) : �̃�
𝑃
= −�̃�
𝐷
𝑥
𝑃
= −blockdiag (𝐾

𝐷𝑖𝑗
) 𝑥
𝑃
. (27)

It is clear that a redundant control set is established with
all pairwise controllers, which contains all necessary coor-
dinated information 𝐾

𝐷𝑖𝑗
for both system S and S. When

the structure form of the estimator S is determined, the
coordinated controller of system S can be obtained by
contracting �̃�

𝐷
together with a proper compensator �̃�

𝐾𝑃
.

The contraction is checked by the following theorem.

Theorem 4. For the systems mentioned above, system S̃
𝑃𝐷

is
the expansion for both systems S and S. The state feedback
controller 𝐶 : 𝑢 = −𝐾𝑥 can stabilize the closed loop system
of S, if the controller 𝐶 of system S can be contracted from 𝐶

𝑃
,

and it satisfies

𝐾 = 𝐾 = 𝑄
𝑃
(�̃�
𝐷
+ �̃�
𝐾𝑃

)𝑉
𝑃
. (28)

Proof. Since system S is a contraction system S̃
𝑃𝐷
, supported

by the contraction condition (12), the state function of system
S̃
𝑃𝐷

is rewritten as
̇̃𝑥
𝑃
= (𝐴
𝑃𝐷

− �̃�
𝐴𝑃
) 𝑥
𝑃
+ 𝐵
𝑃𝐷
�̃�
𝑃
, (29)

and it apparently indicates the controller form of (5). Accord-
ing to the inclusion principle, here goes

𝑥 = 𝑈
𝑃
𝑥
𝑃
, 𝑢 = 𝑄

𝑃
�̃�
𝑃
. (30)

moreover, the approximation between systems S and S may
indicate that 𝑥 = 𝑥 and 𝑢 = 𝑢, so that the controllers of
systems S and S̃

𝑃𝐷
are related as

𝑢 = −𝐾𝑥, �̃�
𝑃
= − (�̃�

𝐷
+ �̃�
𝐾𝑃
) 𝑥
𝑃
. (31)

Notice that 𝑈
𝑃
𝑉
𝑃
= 𝐼
𝑛
, then (30) and (31) will conclude

that𝐾 = 𝑄
𝑃
(�̃�
𝐷
+ �̃�
𝐾𝑃

)𝑉
𝑃
.

Remark 5. The literature [6] provides a sufficient condition
of connective stability. But since far more information might
be accumulated in the largest singular values of subsystem
matrices, the criterion of connective stability might be some-
what conservative.

The virtual system S is used as the estimator of system
S, and it may have many possible forms. This diversity
will mainly impact on the controller design process in
determining the compensator �̃�

𝐾𝑃
. One of the most chal-

lenging problems in controller design for multiagent systems
is the estimation of information structures among agents.
The further research of this paper on implementation of
pairwise decomposition in systems with dynamic informa-
tion structure constraints, as well as the estimation of the
interconnection structure, is undergoing. This issue is based
on inclusion principle for time-varying system ([18]) and
method in dealing with the structure perturbation under
the concept of pairwise decomposition ([8]). However, in a
particular case when the state function of each subsystem
satisfies the linear superposition principle, there is a way to
determine the structure of �̃�

𝐾𝑃
much more easily.

Consider the mathematical framework of permuted
inclusion principle; this position information can be con-
cluded with (8) by using the block row-order of sub-identity
matrices. Consider that system S is in full network structure,
the row-order of a particular pairwise subsystem S

𝑖𝑗
is

𝑐
𝑖
= 𝑗 (𝑗 − 1) − 2 (𝑖 − 1) − 1, 𝑐

𝑗
= 𝑗 (𝑗 − 1) − 2 (𝑖 − 1) .

(32)

Besides, the row-order of every pairwise subsystem can also
be concluded in this way as

𝑐
𝑖𝑘𝑖

= {
𝑘
𝑖
(𝑘
𝑖
− 1) − 2 (𝑖 − 1) − 1, 𝑖 < 𝑘

𝑖

𝑖 (𝑖 − 1) − 2 (𝑘
𝑖
− 1) , 𝑖 > 𝑘

𝑖

𝑐
𝑗𝑘𝑗

= {
𝑘
𝑗
(𝑘
𝑗
− 1) − 2 (𝑗 − 1) − 1, 𝑗 < 𝑘

𝑗

𝑗 (𝑗 − 1) − 2 (𝑘
𝑗
− 1) , 𝑗 > 𝑘

𝑗

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑘
𝑖
, 𝑘
𝑗
= 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗, 𝑘

𝑖
, 𝑘
𝑗

̸= 𝑖, 𝑗.

(33)

so that the complementary matrix �̃�
𝐾𝑃

can be constructed
by the following lemma.

Lemma 6. Suppose that system S is in full network structure;
the row-order of subsystems in each pairwise subsystem is
concluded as (32) and (33), and �̃�

𝐾𝑃
complements the infor-

mation structure constraints bias between system S and system
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S. Then �̃�
𝐾𝑃

can be presented by the information structure of
corresponding pairwise subsystem S

𝑖𝑗
as

�̃�
𝐾𝑃

(𝑐
𝑖𝑘𝑖
, 𝑐
𝑗
)
𝑏
= 𝐾
𝑖𝑗
, �̃�

𝐾𝑃
(𝑐
𝑗𝑘𝑗
, 𝑐
𝑖
)
𝑏

= 𝐾
𝑗𝑖

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑘
𝑖
, 𝑘
𝑗
= 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗, 𝑘

𝑖
, 𝑘
𝑗

̸= 𝑖, 𝑗.

(34)

This matrix structure-based lemma is convenient for
calculation, especially for real-time control in practice.

Example 7. Also consider system S with 𝑁 = 3 subsystems,
and its recurrent reverse order is presented as (5). According
to (32) and (33), the calculation is proceeded as

S
12

: 𝑐
𝑖
= 1, 𝑐

𝑗
= 2,

𝑘
𝑖
= 𝑘
𝑗
= 3, 𝑐

𝑖𝑘𝑖
= 5, 𝑐

𝑗𝑘𝑗
= 3,

⇒ �̃�
𝐾𝑃(5, 2)𝑏 = 𝐾

12
, �̃�

𝐾𝑃(3, 1)𝑏 = 𝐾
21

S
23

: 𝑐
𝑖
= 3, 𝑐

𝑗
= 4,

𝑘
𝑖
= 𝑘
𝑗
= 1, 𝑐

𝑖𝑘𝑖
= 2, 𝑐

𝑗𝑘𝑗
= 6,

⇒ �̃�
𝐾𝑃(2, 4)𝑏 = 𝐾

23
, �̃�

𝐾𝑃(6, 3)𝑏 = 𝐾
32

S
13

: 𝑐
𝑖
= 5, 𝑐

𝑗
= 6,

𝑘
𝑖
= 𝑘
𝑗
= 2, 𝑐

𝑖𝑘𝑖
= 1, 𝑐

𝑗𝑘𝑗
= 4,

⇒ �̃�
𝐾𝑃(1, 6)𝑏 = 𝐾

13
, �̃�

𝐾𝑃(4, 5)𝑏 = 𝐾
31
.

(35)

So that the matrix �̃�
𝐾𝑃

can be constructed by Lemma 6:

�̃�
𝐾𝑃

=

[
[
[
[
[
[
[

[

0 0 0 0 0 𝐾
13

0 0 0 𝐾
23

0 0

𝐾
21

0 0 0 0 0

0 0 0 0 𝐾
31

0

0 𝐾
12

0 0 0 0

0 0 𝐾
32

0 0 0

]
]
]
]
]
]
]

]

. (36)

4. Automatic Generation Control (AGC) for a
Four-Area Power System

A four-area power system is shown in Figure 1; assume that
areas 1, 2, and 3 contain three reheat turbine type thermal
units and area 4 contains a hydro unit, respectively. Each
pairwise subsystem is interconnected by tie line indicated
by solid lines, and its information structure constraint is
indicated by dotted ellipse. Details of the system description
can be found in [19, 20]. References [4–8] implement the
pairwise decomposition methodology in the procedure of
coordinated control to this four-area power system AGC. As
a counterpart, the controller design procedure of the new
pairwise decomposition modality in this paper is presented
here. Consider the systemdynamic bias between system S and
system S taken as approximation; each pairwise subsystem

is robustly stabilized in terms of linear matrix inequalities
(LMI) ([21, 22]).

Suppose that the system graph is undirected and 𝑒
𝑖𝑗
(𝑡) =

𝑒
𝑗𝑖
(𝑡) = 1 for description convenience. The pairwise subsys-

tem model is provided in (17) as

S
𝑖𝑗
: [

�̇�
𝑖

�̇�
𝑗

] = [
𝐴
𝑖𝑖

𝐴
𝑖𝑗

𝐴
𝑗𝑖

𝐴
𝑗𝑗

]([
𝑥
𝑖

𝑥
𝑗

] + [
𝑤
𝑖

𝑤
𝑗

])

+ [
𝐵
𝑖𝑖

0

0 𝐵
𝑗𝑗

] [
𝑢
𝑖

𝑢
𝑗

] + [
𝐺
𝑖𝑖

0

0 𝐺
𝑗𝑗

] [
𝜉
𝑖

𝜉
𝑗

] ,

[
𝑦
𝑖

𝑦
𝑗

] = [
𝐶
𝑖𝑖

0

0 𝐶
𝑗𝑗

] [
𝑥
𝑖

𝑥
𝑗

]

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗,

(37)

where 𝑥
𝑖𝑗

= [𝑥
𝑇

𝑖
, 𝑥
𝑇

𝑗
]
𝑇, 𝑢
𝑖𝑗

= [𝑢
𝑇

𝑖
, 𝑢
𝑇

𝑗
]
𝑇, 𝜉
𝑖𝑗

= [𝜉
𝑇

𝑖
, 𝜉
𝑇

𝑗
]
𝑇,

and 𝑦
𝑖𝑗
= [𝑦
𝑇

𝑖
, 𝑦
𝑇

𝑗
]
𝑇 are the state, control input, disturbance,

and output vectors, respectively. 𝑤
𝑖𝑗

= [𝑤
𝑇

𝑖
, 𝑤
𝑇

𝑗
]
𝑇 is the

unmodeled or uncertain state dynamic. 𝐴
𝐷𝑖𝑗

= (𝐴
𝑖𝑗
), 𝐵
𝐷𝑖𝑗

=

(𝐵
𝑖𝑖
), 𝐺
𝐷𝑖𝑗

= (𝐺
𝑖𝑖
), and 𝐶

𝐷𝑖𝑗
= (𝐶
𝑖𝑖
) are system matrices with

proper dimensions, respectively. The numerical values of the
system matrices are given by

𝐴
11

=

[
[
[
[
[
[
[

[

−0.05 6 0 0 0 −6

0 −0.1 −1.01 1.11 0 0

0 0 −3.33 3.33 0 0

−2.08 0 0 −5 5 0

−0.255 0 0 0 0 −0.06

1.33 0 0 0 0 0

]
]
]
]
]
]
]

]

,

𝐴
12

= [
0
5×1

0
5×5

−0.444 0
1×5

] , 𝐴
13

= [

[

0
4×1

0
4×4

0
4×1

0 0
1×4

0.06

−0.444 0
1×4

0

]

]

,

𝐴
14

= 𝐴
21

= 𝐴
32

= 𝐴
13
, 𝐴
23

= A
31

= 𝐴
41

= 𝐴
12
,

𝐴
44

=

[
[
[
[
[
[
[

[

−0.0769 6.15 0 0 0 −6.15

8.78 × 10
−4

−2 2.2 −0.198 2.11 × 10
−3

0

−4.39 × 10
−4

0 −0.1 0.0989 1.05 × 10
−3

0

−8.56 × 10
−3

0 0 −0.0205 0.0205 0

−0.0255 0 0 0 0 −0.06

0.444 0 0 0 0 0

]
]
]
]
]
]
]

]

,

𝐵
11

= 𝐵
22

= 𝐵
33

= [0 0 0 5 0 0]
𝑇
,

𝐵
44

= [0 0 0 0.0205 0 0]
𝑇
,

𝐺
11

= 𝐺
22

= 𝐺
33

= [−6 0 0 0 0 0]
𝑇
,

𝐺
44

= [−6.15 0 0 0 0 0]
𝑇
,

𝐶
11

= 𝐶
22

= 𝐶
33

= 𝐶
44

= 𝐼
6
.

(38)
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Figure 1: Schematic diagram of the four-area power system.
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Figure 2: Deviations of frequency among the power system.
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𝐴
22

and 𝐴
33

are the same as 𝐴
11

except that 𝐴
22
(6, 1) =

𝐴
33
(6, 1) = 0.888, respectively.
The quadratic constraints are imposed on the state uncer-

tainty 𝑤
𝑖𝑗
as follows:

𝑤
𝑇

𝑖𝑗
𝑤
𝑖𝑗
≤ 𝛼
2

𝑖𝑗
𝑥
𝑇

𝑖𝑗
𝑊
𝑇

𝑖𝑗
𝑊
𝑖𝑗
𝑥
𝑖𝑗
, (39)

where 𝛼
𝑖𝑗
is a positive number to be maximized and 𝑊

𝑖𝑗

is a full rank constant matrix; it can be set as an identity
matrix in case that the information of uncertainty is unavail-
able. Pairwise subsystem (37) is robustly stabilizable with
arbitrarily large basic coordinated controller degree 𝛼 by the
basic coordinated controller (21), a LMI problem that can be
obtained as

minimize 𝛾
𝑖𝑗

subject to 𝑌
𝑖𝑗
> 0

[
[

[

𝐴
𝐷𝑖𝑗

𝑌
𝑖𝑗
+ 𝑌
𝑖𝑗
𝐴
𝑇

𝐷𝑖𝑗
+ 𝐵
𝐷𝑖𝑗

𝐿
𝑖𝑗
+ 𝐿
𝑇

𝑖𝑗
𝐵
𝑇

𝐷𝑖𝑗
𝐴
𝐷𝑖𝑗

𝑌
𝑖𝑗
𝑊
𝑇

𝑖𝑗

𝐴
𝑇

𝐷𝑖𝑗
−𝐼 0

𝑊
𝑇

𝑖𝑗
𝑌
𝑖𝑗

0 −𝛾
𝑖𝑗
𝐼

]
]

]

< 0,

(40)

where 𝐿
𝑖𝑗
= 𝐾
𝐷𝑖𝑗

𝑌
𝑖𝑗
and 𝛾

𝑖𝑗
= 1/𝛼

2

𝑖𝑗
. Further details of this

robust control procedure can be found in [21, 22].
According to the permuted inclusion principle, the

expanded system S̃
𝑃
is supposed to contain those particular

pairwise subsystems listed as following:

S̃
𝑃
= {S
12
, S
23
, S
13
, S
14
} . (41)

Then compose the coordinated controller of system S̃
𝑃

by arranging the basic coordinated controllers of pairwise
subsystems S

12
, S
23
, S
13
, and S

14
in this exact recurrent reverse

order,

�̃�
𝐷
= blockdiag (𝐾

𝐷12
, 𝐾
𝐷23

, 𝐾
𝐷13

, 𝐾
𝐷14

)

= blockdiag([𝐾11 𝐾
12

𝐾
21

𝐾
22

] , [
𝐾
22

𝐾
23

𝐾
32

𝐾
33

] ,

[
𝐾
11

𝐾
13

𝐾
31

𝐾
33

] , [
𝐾
11

𝐾
14

𝐾
41

𝐾
44

]) .

(42)

Choose the transformation matrices by (24)

𝑉 = blockdiag ([𝐼𝐴
1

𝐼
𝐴

1
𝐼
𝐴

1
]
𝑇

, [𝐼
𝐴

2
𝐼
𝐴

2
]
𝑇

, [𝐼
𝐴

3
𝐼
𝐴

3
]
𝑇

, 𝐼
𝐴

4
)

𝑄 = blockdiag(1
3
[𝐼
𝐵

1
𝐼
𝐵

1
𝐼
𝐵

1
] ,

1

2
[𝐼
𝐵

2
𝐼
𝐵

2
] ,

1

2
[𝐼
𝐵

3
𝐼
𝐵

3
] , 𝐼
𝐵

4
),

(43)

and the permutation matrix 𝑃
𝐴
can be constructed by (2); 𝑃

𝐵

is in the same structure as 𝑃
𝐴
,

𝑃
𝐴
=

[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0 𝐼
𝐴

1
0

0 0 0 0 𝐼
𝐴

1
0 0 0

𝐼
𝐴

1
0 0 0 0 0 0 0

0 𝐼
𝐴

2
0 0 0 0 0 0

0 0 𝐼
𝐴

2
0 0 0 0 0

0 0 0 𝐼
𝐴

3
0 0 0 0

0 0 0 0 0 𝐼
𝐴

3
0 0

0 0 0 0 0 0 0 𝐼
𝐴

4

]
]
]
]
]
]
]
]
]
]
]
]

]

, (44)

where the dimensions of 𝐼𝐴
𝑘
and 𝐼

𝐵

𝑘
are determined by the

system state and control input vector, respectively. In this
simulation example, 𝐼𝐴

𝑘
= 𝐼
6×6

, 𝐼𝐵
𝑘
= 1.

Use (34) to construct the complementary matrix �̃�
𝐾𝑃

as
follows:

�̃�
𝐾𝑃

=

[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 𝐾
13

0 𝐾
14

0 0 0 𝐾
23

0 0 0 0

𝐾
21

0 0 0 0 0 0 0

0 0 0 0 𝐾
31

0 0 0

0 𝐾
12

0 0 0 0 0 𝐾
14

0 0 𝐾
32

0 0 0 0 0

0 𝐾
12

0 0 0 𝐾
13

0 0

0 0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

. (45)

Finally, the coordinated controller of S can be contracted as

𝐾 = 𝐾 = 𝑄
𝑃
(�̃�
𝐷
+ �̃�
𝐾𝑃

)𝑉
𝑃

=
[
[
[

[

𝐾
11

𝐾
12

𝐾
13

𝐾
14

𝐾
21

𝐾
22

𝐾
23

0

𝐾
31

𝐾
32

𝐾
33

0

𝐾
41

0 0 𝐾
44

]
]
]

]

.

(46)

Figures 2 and 3 illustrate the frequency and tie-line power
perturbations of the group of subsystems.The respond curves
are very similar to those of [4–7].

5. Conclusion

This paper presents a theoretical study of the pairwise decom-
position, which can be seen as a reverse modality of this
methodology. The proposed approach is able to coordinated
the interconnected system with uncertainties, and it can
achieve high quality control performance as well. Moreover,
this process is convenient for a group of interconnected sub-
systems without a superposition-form overall system model,
which is in the case that only local information is available.
Further research is ongoing, and one task is to determine the
structure of system S as an estimator of the original system
S. For this purpose, an update law which can fit the features
of pairwise decomposition is needed as well as a calculation
framework to deal with the structure perturbations effectively
enough. The proposed approach can also motivate the appli-
cation of pairwise decomposition to a nonlinear time-variant
system.
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Figure 3: Deviations of tie-line power among the power system.
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Stanković, “Pair-wise decomposition and coordinated control
of complex systems,” Information Sciences, vol. 185, no. 1, pp. 78–
99, 2012.

[7] X.-B. Chen, System Inclusion Principle and Its Application,
Science Press, Beijing, PRC, 2012, (Chinese).

[8] X.-B. Chen and C. Ma, “Coordinated control of a four-area
power system under structural perturbation,” in Proceedings of
the 9th Asian Control Conference, Istanbul, Turkey, 2013.
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