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The paper deals with the state consensus problem of high-order discrete-time linear multiagent systems (DLMASs) with fixed
information topologies. We consider three aspects of the consensus analysis and design problem: (1) the convergence criteria of
global state consensus, (2) the calculation of the state consensus function, and (3) the determination of the weighted matrix and the
feedback gain matrix in the consensus protocol. We solve the consensus problem by proposing a linear transformation to translate
it into a partial stability problem. Based on the approach, we obtain necessary and sufficient criteria in terms of Schur stability of
matrices and present an analytical expression of the state consensus function. We also propose a design process to determine the
feedback gain matrix in the consensus protocol. Finally, we extend the state consensus to the formation control. The results are
explained by several numerical examples.

1. Introduction

In recent years, the consensus problem of multiagent systems
(MASs) has been becoming a significant research topic
because of its broad practical applications, including thework
load balance in a network of parallel computers [1], the clock
synchronization [2], distributed decision [3], consensus fil-
tering and estimation in sensor networks [4–6], rendezvous,
and the formation of various moving objects [7–11] such as
underwater vehicles, aircrafts, satellites, mobile robots, and
intelligent vehicles in automated highway systems, to name
only a few. Hence, its study has captured attention of the
researchers from different disciplines.

MASs are comprised of locally interacting agents
equipped with dedicated sensing, computing, and communi-
cation devices.The consensus problem ofMASs is to design a
distributed control law for each agent, using only information
from itself and its neighbors, such that all agents achieve
an agreement on some quantities of interest. To design and
analyse this class of systems, one needs to consider three
essential elements: (1) a dynamic model describing the states
of the agents, which can be either continuous time or discrete
time, linear or nonlinear, homogeneous or heterogeneous,

time varying or time invariant, low order or high order;
(2) an information topology describing communication
network between the agents, which can be either undirected
or directed, fixed or switched; (3) a protocol (control input)
for each of the agents describing how the agents interact
on each other according to the given information topology,
which can be synchronous or asynchronous, with or without
time delay.

Up to now, numerous researches have been done for
continuous-time MASs in different settings from the above
cases [10, 12–18]. This paper focuses on the study of high-
order discrete-time linear multiagent systems (DLMASs)
by proposing a linear transformation to translate the con-
sensus problem into a partial stability problem. Although
this approach can be extended to any setting from the
above cases, we pay our attention only to the case of fixed
information topology and in the absence of time delay for
giving prominence to the trait of the approach. Here we give
an overview mainly to the DLMASs.

Reference [19] first proposed an interestingmodel for self-
propelled particle systems, where all agents move in a plane
with the same speed but different headings, and showed that
in the model all agents might eventually move in the same
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direction despite the absence of centralized coordination.
Reference [20] further gave a mathematically rigorous quali-
tative analysis. Then, a theoretical explanation was given for
the consensus behavior of Vicsek model on the basis of graph
theory in [21, 22]. A necessary and sufficient condition was
given for the average consensus criterion in [23]. Reference
[24] further considered the case of switching network topolo-
gies for the average consensus. The average consensus was
investigated for the systems with uncertain communication
environments and time-varying topologies in [25] and with
communication constraints in [26]. Reference [27] presented
convergence results for the time-varying protocol in the
absence or presence of communication delays. Reference
[28] proposed an asynchronous time-varying consensus pro-
tocol. Reference [29] further discussed nonlinear systems
with time-dependent communication links. References [30,
31] addressed the case with both time-varying delays and
switching information topologies and provided a class of
effective consensus protocols by repeatedly using the same
state information at two time steps.

The researches mentioned above were limited to first-
order systems. The extension to second-order systems was
done for the systems with time-varying delays and time-
varying interaction topology in [32], and for the systems
with nonuniform time-delays and dynamically changing
topologies in [33].

Recent researches were turned to the high-order
DLMASs in [34–39]. Reference [34] studied a class of
dynamic average consensus algorithms that allow a group of
agents to track the average of their reference inputs. Reference
[35] proposed an observer-type protocol based on the relative
outputs of neighboring agents. Reference [36] studied the
convergence speed for the high-order systems with random
networks and arbitrary weights. Reference [37] addressed the
high-order systems with or without delays. These researches
were focused on the consensus convergence criteria for the
proposed protocols. Another significant topic is the design
of the gain matrices of the protocols in [38, 39].

This paper deals with both analysis and design problems
of the state consensus for general high-order DLMASs.
Compared with the existing works, the contributions of the
paper are summarized as follows. Firstly, motivated by [12],
we improve the protocol by adding a self-feedback of the
agent to achieve the expected consensus dynamics, whereas
[13] introduced the internal model to change the given
dynamic to achieve the expected consensus dynamics and
[14, 15] introduced the virtual leader to guide the multiagent
systems to achieve the expected consensus dynamics. Sec-
ondly, we propose a state linear transformation to translate
the consensus problem into a partial stability problem. The
approach is motivated by the error variable method or the
state space decomposition method in [12, 16]. However, our
improvement can more spontaneously and conveniently deal
with various settings of the consensus problems. Based on the
partial stability theory, we educe new necessary and sufficient
consensus convergence criteria in terms of stability of matri-
ces and moreover give an explicit analytical expression of the
state consensus function based on the different contributions
of the initial states of the agents and the protocols. Thirdly,

based on stability theorem, we give a design procedure to
determine the gain matrices in the protocol on the basis of
algebraic Riccati inequality similarly to [38, 39]. Fourthly, we
extend the state consensus results to the formation control
problem.

The remainder of the paper is organized as follows.
Section 2 introduces some basic concepts and notations,
and formulates the problem under investigation. Section 3
firstly introduces a linear transformation which translates the
consensus problem of the multiagent systems into a partial
stability problem of the corresponding transformed system,
and then educes a new necessary and sufficient condition
for the multiagent system to achieve global state consensus
and presents an analytical expression of the state consensus
function. Section 4 shows a design procedure to determine
the gain matrices in the state consensus protocol. Section 5
extends the approach for the analysis and design of the
state consensus to the formation control problem. Section 6
gives numerical examples to explain the theoretical results.
Section 7 concludes the paper. All the proofs of the results
are deposited in the appendix for the sake of reading.

2. Problem Description

Before stating the consensus problem, we give some basic
concepts and notations. Let R𝑛×𝑛 and C𝑛×𝑛 be the sets of
𝑛 × 𝑛 real matrices and complex matrices, respectively.
Matrices, if not explicitly stated, have appropriate dimensions
in all settings. The superscript “𝑇” means transpose for real
matrices, and the superscript “𝐻” means conjugate transpose
for complex matrices. 𝐼

𝑛
presents the identity matrix of

dimension 𝑛, and sometimes 𝐼 is used for simplicity. 1
𝑁

denotes the vector of dimension 𝑁 with all entries equal to
one. 0 is applied to denote zero matrices/vectors of any size,
with zero components. A matrix 𝐴 ∈ C𝑛×𝑛 is said to be
Schur stable if all of its eigenvalues have magnitude less
than 1. The Kronecker product is denoted by ⊗ and the
Hadamard product by ∘ in [40]. The following properties of
theKronecker productwill be used: (1) (𝐴⊗𝐵)(𝐶⊗𝐷) = 𝐴𝐶⊗

𝐵𝐷; (2) (𝐴+𝐵)⊗𝐶 = 𝐴⊗𝐶+𝐵⊗𝐶; (3) (𝐴⊗𝐵)
−1

= 𝐴−1⊗𝐵−1.
We consider DLMASs with 𝑁 homogeneous agents and

assume they are described by

𝑥
+

𝑖
= 𝐴𝑥
𝑖
+ 𝐵𝑢
𝑖
, 𝑖 = 1, . . . , 𝑁, (1)

where 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, (𝐴, 𝐵) is assumed to be
stabilizable, 𝑥

𝑖
= 𝑥
𝑖
(𝑘) ∈ R𝑛 is the state of the current time 𝑘,

𝑥
+

𝑖
= 𝑥
𝑖
(𝑘 + 1) denotes the state at the next time 𝑘 + 1, and

𝑢
𝑖
= 𝑢
𝑖
(𝑘) ∈ R𝑚 is the control input of the current time 𝑘.

The control input 𝑢
𝑖
will be constructed based on the

available information of the agent 𝑖. LetN
𝑖
denote the index

set of the agents which can send their state information to
the agent 𝑖. We call the set N = {N

𝑖
: 𝑖 = 1, . . . , 𝑁} the

information topology of theDLMASs (1). It is well known that
one can use a digraph 𝐺 = (𝑉, 𝐸) to express the information
topology N, where 𝑉 = {1, . . . , 𝑁} is the index set of 𝑁
agents, 𝐸 ⊆ 𝑉 × 𝑉 is the set of directed edges to describe
the information interaction between agents; that is, (𝑗, 𝑖) ∈

𝐸 ⇔ 𝑗 ∈ N
𝑖
. Based on the directed edges, one can construct
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an adjacency matrix 𝐴 = [𝑎
𝑖𝑗
]
𝑁×𝑁

, whose entries are defined
as 𝑎
𝑖𝑗

= 0 for 𝑗 = 𝑖, 𝑎
𝑖𝑗

= 1 for 𝑗 ∈ N
𝑖
, and 𝑎

𝑖𝑗
= 0 for 𝑗 ∉

N
𝑖
.The corresponding in-degreematrix and graph Laplacian

are defined as 𝐷 = diag{deg
1
, . . . , deg

𝑁
} and 𝐿 = 𝐷 − 𝐴,

respectively, where deg
𝑖
= ∑
𝑁

𝑗=1
𝑎
𝑖𝑗
is the in-degree of the

vertex 𝑖. A directed spanning tree of the digraph 𝐺 is a tree
covering all the vertices of the digraph. The following results
are well known.

Lemma 1 (see [22]). The Laplacian matrix 𝐿 ∈ R𝑁×𝑁 has the
following properties: (1) all of the eigenvalues of 𝐿 are either in
the open right half complex plan or equal to 0; (2) 0 is a simple
eigenvalue of 𝐿 if and only if the digraph 𝐺 contains a directed
spanning tree.

Given the information topology N, we construct the
following linear consensus protocol:

𝑢
𝑖
= 𝐾
1
𝑥
𝑖
+ 𝐾
2
∑
𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑥
𝑗
− 𝑥
𝑖
) , 𝑖 = 1, . . . , 𝑁, (2)

where 𝐾
1
, 𝐾
2

∈ R𝑚×𝑛 are feedback gain matrices to be
determined, which are relative to the consensus state and the
convergence rate, respectively. 𝑊 =: [𝑤

𝑖𝑗
]
𝑁×𝑁

is a weighted
matrix associated with the information topology N. For the
sake of expression, we also define the weighted adjacency
matrix 𝐴

𝑤
= 𝐴 ∘ 𝑊 by using Hadamard product of matrices

and the weighted Laplacian 𝐿
𝑤

= 𝐷
𝑤

− 𝐴
𝑤
with weights

𝑤
𝑖𝑗
, where 𝐷

𝑤
= diag{deg

1
, . . . , deg

𝑁
} is the corresponding

weighted in-degree matrix with weighted in-degrees deg
𝑖
=

∑
𝑗∈N𝑖

𝑤
𝑖𝑗
.

Definition 2. For the given information topology N, the
DLMASs (1) are said to achieve global state consensus via the
protocol (2) if for any given initial state 𝑥

𝑖
(0), 𝑖 = 1, . . . , 𝑁,

there exists an 𝑛-dimensional vector function 𝜉(𝑘) depending
on the initial states such that lim

𝑘→∞
‖𝑥
𝑖
(𝑘) − 𝜉(𝑘)‖ = 0. The

function 𝜉(𝑘) is called a state consensus function.

In this paper, we will address the following three aspects
of the state consensus problem: (i) to give criteria of global
state consensus, that is, for any given information topology
N, weighted matrix 𝑊 and feedback gain matrices 𝐾

1
and

𝐾
2
to find the conditions of the DLMASs (1) achieving global

state consensus via the protocol (2); (ii) to calculate the state
consensus function 𝜉(𝑘) if the DLMASs (1) achieve global
state consensus via the protocol (2); (iii) to determine the
matrices𝐾

1
and𝐾

2
such that the DLMASs (1) achieve global

state consensus via the protocol (2).
First of all, we transform the state consensus problem

to the partial stability problem. Then, based on the partial
stability theorem framework, we educe new necessary and
sufficient consensus convergence criteria and state a proce-
dure to determine the gain matrices in the protocol on the
basis of algebraic Riccati inequality. We also give an explicit
analytical expression of the state consensus function based
on the respective contributions of the initial states and the
protocols. Finally, we extend the results to formation control.

3. State Consensus Analysis

In this section, we first introduce a linear transformation
which translates the consensus problem of the multiagent
systems into a partial stability problem of the corresponding
transformed system. Then, we educe a necessary and suffi-
cient condition for the DLMASs (1) to achieve global state
consensus via the protocol (2), and present an analysis
expression of the state consensus function. Finally, we discuss
some interesting remarks and corollaries based on the result.

Let 𝑥 = [𝑥
𝑇

1
, . . . , 𝑥𝑇

𝑁
]
𝑇. The dynamics of the DLMASs (1)

with the protocol (2) is described by

𝑥
+

= Ψ𝑥, (3)

where

Ψ = 𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
. (4)

We propose a state linear transformation for the linear
system (3) as follows:

𝑥 = 𝑇𝑥, (5)

where the block matrix 𝑇 ∈ R𝑛𝑁×𝑛𝑁 is defined as

𝑇 =: [
𝑇̃

1𝑇
𝑁
⊗ 𝐼
𝑛

] , 𝑇̃ =
[
[
[

[

𝑇
1

...
𝑇
𝑁−1

]
]
]

]

. (6)

And the matrix 𝑇
𝑖
= [𝑇
𝑖1
, . . . , 𝑇

𝑖𝑁
], 𝑖 = 1, . . . , 𝑁−1, is chosen

such that the following two conditions are satisfied:

(1) the row vectors in each of the matrices 𝑇
𝑖
are linearly

independent, respectively;
(2) the identities 𝑇

𝑖
(1
𝑁

⊗ 𝐼
𝑛
) = 0, 𝑖 = 1, . . . , 𝑁 − 1, are

held.

Lemma 3. The inverse 𝑇−1 of the matrix 𝑇 admits the
following form:

𝑇
−1

=

[
[
[
[
[
[

[

𝑇
11

⋅ ⋅ ⋅ 𝑇
1,𝑁−1

𝑁−1𝐼
𝑛

... d
...

...
𝑇
𝑁−1,1

⋅ ⋅ ⋅ 𝑇
𝑁−1,𝑁−1

𝑁−1𝐼
𝑛

𝑇
𝑁,1

⋅ ⋅ ⋅ 𝑇
𝑁,𝑁−1

𝑁−1𝐼
𝑛

]
]
]
]
]
]

]

=: [𝑇
1

⋅ ⋅ ⋅ 𝑇
𝑁−1

𝑁−11
𝑁
⊗ 𝐼
𝑛
]

=: [𝑇̂ 𝑁−11
𝑁
⊗ 𝐼
𝑛
] ,

(7)

where 𝑇
𝑖𝑗
, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁 − 1, are the 𝑛 × 𝑛 blocks

indefinitely described.

Using the linear transformation (5), we transform the
linear system (3) into the following system:

𝑥
+

= 𝑇Ψ𝑇
−1

𝑥, (8)
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or the form of two equations

𝑦
+

= 𝑇̃Ψ𝑇̂𝑦 + 𝑁
−1

𝑇̃Ψ (1
𝑁
⊗ 𝐼
𝑛
) 𝑧,

𝑧
+

= (1𝑇
𝑁
⊗ 𝐼
𝑛
)Ψ𝑇̂𝑦 + 𝑁

−1

(1𝑇
𝑁
⊗ 𝐼
𝑛
)Ψ (1

𝑁
⊗ 𝐼
𝑛
) 𝑧,

(9)

where 𝑥 = [𝑦𝑇, 𝑧𝑇]
𝑇, 𝑦 = [𝑥

𝑇

1
, . . . , 𝑥

𝑇

𝑁−1
]
𝑇, and 𝑧 = 𝑥

𝑁
.

We show that the state consensus problemof theDLMASs
(1) with the protocol (2) can be transformed into a partial
stability problem.

Definition 4 (see [41]). The linear system (8) is said to be
asymptotically stable with respect to 𝑦 (or asymptotically 𝑦-
stable in short) if lim

𝑘→∞
𝑦(𝑘) = 0 for any bounded initial

state 𝑥(0) of the system (8).

Lemma 5. Under the given information topology N, the
DLMASs (1) achieve global state consensus via the protocol (2)
if and only if the equilibrium point 𝑥 = 0 of the linear system
(8) is asymptotically 𝑦-stable. Moreover, the state consensus
function of the agents is 𝜉(𝑘) = 𝑁

−1

∑
𝑁

𝑖=1
𝑥
𝑖
(𝑘) = 𝑁

−1

𝑥
𝑁
(𝑘).

Lemma 5 builds a bridge between the consensus problem
and the partial stability problem. Now we focus on the
asymptotical𝑦-stability of the linear system (8).We can verify
the following lemma.

Lemma 6. The system (9) is of the following form:

𝑦
+

= 𝐴𝑦, 𝑦 ∈ R
𝑛(𝑁−1)

,

𝑧
+

= 𝐶𝑦 + 𝐷𝑧, 𝑧 ∈ R
𝑛

,

(10)

where 𝐴 = 𝑇̃(𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
)𝑇̂, 𝐶 = −(1T

𝑁
𝐿
𝑤
⊗

𝐵𝐾
2
)𝑇̂, and𝐷 = 𝐴 + 𝐵𝐾

1
.

Combining Lemma 5 with Lemma 6, we directly get the
following theorem.

Theorem 7. Under the given information topology N, the
DLMASs (1) achieve global state consensus via the protocol (2)
if and only if matrix 𝐴 in (10) is Schur stable. Moreover, the
state consensus function is

𝜉 (𝑘) = 𝑁
−1

((

𝑘−1

∑
𝑗=0

(𝐴 + 𝐵𝐾
1
)
𝑗

𝐶𝐴
𝑘−1−𝑗

) 𝑇̃

+1𝑇
𝑁
⊗ (𝐴 + 𝐵𝐾

1
)
𝑘

)𝑥 (0) .

(11)

Subsequently, we give some interesting remarks and cor-
ollaries based on the result.

Remark 8. Since 𝑇̂𝑇̃ = (𝐼
𝑁

− 𝑁−11
𝑁
1𝑇
𝑁
) ⊗ 𝐼
𝑛
, the result of

Theorem 7 is in fact independent of the choice of thematrix𝑇

although both𝐴 and formula (11) inTheorem 7 contain 𝑇̃ and
𝑇̂. Hence, for simplicity, we take it in the following form:

𝑇 =

[
[
[
[
[
[
[

[

1 −1 0 ⋅ ⋅ ⋅ 0

0 1 −1 ⋅ ⋅ ⋅ 0
...

... d
...

...
0 ⋅ ⋅ ⋅ 0 1 −1

1 1 1 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]
]

]

⊗ 𝐼
𝑛

:= [
𝑇̃
0

1𝑇
𝑁

] ⊗ 𝐼
𝑛
.

(12)

The corresponding inverse matrix is

𝑇
−1

=
1

𝑁

[
[
[
[
[
[
[

[

𝑁 − 1 𝑁 − 2 ⋅ ⋅ ⋅ 1 1

−1 𝑁 − 2 ⋅ ⋅ ⋅ 1 1
...

... d
...

...
−1 −2 ⋅ ⋅ ⋅ 1 1

−1 −2 ⋅ ⋅ ⋅ − (𝑁 − 1) 1

]
]
]
]
]
]
]

]

⊗ 𝐼
𝑛

:= [𝑇̂
0

𝑁−11
𝑁
] ⊗ 𝐼
𝑛
.

(13)

Thus, we can write 𝐴 and 𝐶 into

𝐴 = 𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1
) − 𝑇̃
0
𝐿
𝑤
𝑇̂
0
⊗ 𝐵𝐾
2
,

𝐶 = −1T
𝑁
𝐿
𝑤
𝑇̂
0
⊗ 𝐵𝐾
2
.

(14)

Corollary 9. Under the given information topology N, the
DLMASs (1) achieve global consensus via the protocol (2) if and
only if all the matrices𝐴+𝐵𝐾

1
−𝜆
𝑖
𝐵𝐾
2
are Schur stable, where

𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁 − 1, are the eigenvalues of the matrix 𝑇̃

0
𝐿
𝑤
𝑇̂
0
.

Moreover, the state consensus function is expressed by

𝜉 (𝑘) = (𝜂
𝑇

⊗ (𝐴 + 𝐵𝐾
1
)
𝑘

) 𝑥 (0) , 𝑖 = 1, . . . , 𝑁, (15)

where 𝜂 satisfies 𝜂𝑇𝐿
𝑤
= 0 and 𝜂𝑇1

𝑁
= 1.

One can verify that as 𝑘 → ∞ the state consensus
functions in formulas (11) and (15) are the same.

Remark 10. From Schur stability of 𝐴 in the formula (14),
we can conclude that if 𝐴 + 𝐵𝐾

1
is not Schur stable, it

is a necessary condition of the consensus that the digraph
𝐺 expressing the information topology N has a directed
spanning tree. In fact, since the condition of directed span-
ning tree is equivalent to Hurwitz stability of −𝑇̃

0
𝐿
𝑤
𝑇̂
0
, a

lack of directed spanning tree means that −𝑇̃
0
𝐿
𝑤
𝑇̂
0
has a

zero eigenvalue. In this case, we transform 𝐴 into its Jordan
form via the matrix 𝑈 ⊗ 𝐼

𝑛
, where 𝑈 is the matrix such that

𝑈−1𝑇̃
0
𝐿
𝑤
𝑇̂
0
𝑈 = 𝐽 is the Jordan form, and thus we have

(𝑈
−1

⊗ 𝐼
𝑛
)𝐴 (𝑈 ⊗ 𝐼

𝑛
) = 𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐽 ⊗ 𝐵𝐾

2
. (16)

One can verify that the eigenvalues of 𝐴 + 𝐵𝐾
1
are the

members of the eigenvalues of 𝐴, and thus 𝐴 is not Schur
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stable if 𝐴 + 𝐵𝐾
1
is not Schur stable. On the other hand, if

𝐴 + 𝐵𝐾
1
is Schur stable, one can take 𝐾

2
= 0 to make the

DLMASs (1) achieve global consensus, which implies that
for any initial states all the agents always converge to the
equilibrium point 0.

Hence, from the formula (16) we can educe another global
consensus criterion.

Corollary 11. If 𝐴 + 𝐵𝐾
1
is not Schur stable, then under the

given information topologyN, the DLMASs (1) achieve global
state consensus via the protocol (2) if and only if 𝑇̃

0
𝐿
𝑤
𝑇̂
0
has

𝑁 − 1 eigenvalues with positive real part 𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁 − 1,

and the matrices 𝐴+𝐵𝐾
1
− 𝜆
𝑖
𝐵𝐾
2
, 𝑖 = 1, . . . , 𝑁 − 1, are Schur

stable.

Remark 12. If the state consensus function in (11) is a constant
vector equal to the average of the initial states of all the
agents, the consensus is called the average consensus. From
the formula (11) we educe the following result on the average
consensus.

Corollary 13. TheDLMASs (1) achieve global average consen-
sus via the protocol (2) if and only the matrix 𝐴 is Schur stable
and (∑

𝑘−1

𝑗=0
(𝐴+𝐵𝐾

1
)
𝑗

𝐶𝐴
𝑘−1−𝑗

)𝑇̃ +1𝑇
𝑁
⊗ (𝐴+𝐵𝐾

1
)
𝑘

= 1𝑇
𝑁
⊗𝐼
𝑛
.

If 𝐴 + 𝐵𝐾
1
= 𝐼
𝑛
, then the last condition in Corollary 13

becomes 1𝑇
𝑁
𝐿
𝑤

= 0, or equivalently, the digraph 𝐺 is
either undirected connected or directed strong connected
and balanced. More specially, if 𝐿

𝑤
is a symmetric matrix

(equivalently, the digraph𝐺 becomes undirected connected),
the condition 1𝑇

𝑁
𝐿
𝑤

= 0 is satisfied and thus the average
consensus is achieved.

Remark 14. When 𝐴 = 𝐼
𝑛
, 𝐾
1
= 0, and 𝐵 = 𝐼

𝑛
, the DLMASs

(1) are called a single-integrator one. In this case,𝐴 = 𝐼
(𝑁−1)𝑛

−

𝑇̃
0
𝐿
𝑤
𝑇̂
0
⊗𝐾
2
and𝐶 = −1𝑇

𝑁
𝐿
𝑤
𝑇̂
0
⊗𝐾
2
. We educe the following

result.

Corollary 15. Under the given information topology N, the
single-integratorDLMASs (1) achieve global state consensus via
the protocol (2) if and only if the following two conditions are
held simultaneously: (1) the matrix −𝑇̃

0
𝐿
𝑤
𝑇̂
0
is Hurwitz stable;

that is, the digraph 𝐺 admits a directed spanning tree; (2) the
products 𝜆

𝑖
𝜇
𝑗
, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 1, . . . , 𝑛, are in the open

unit circle of the complex plane with the centre at (1, 0), where
𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁 − 1, are the eigenvalues of the matrix 𝑇̃

0
𝐿
𝑤
𝑇̂
0

and 𝜇
𝑗
, 𝑗 = 1, . . . , 𝑛, are the eigenvalues of the matrix 𝐾

2
.

The corresponding consensus function (11) becomes a constant
vector

𝜉 = 𝑁
−1

(1𝑇
𝑁
⊗ 𝐼
𝑛
− 1𝑇
𝑁
𝐿
𝑤
𝑇̂
0
(𝑇̃
0
𝐿
𝑤
𝑇̂
0
)
−1

𝑇̃
0
⊗ 𝐼
𝑛
) 𝑥 (0) .

(17)

Moreover, the single-integrator DLMASs (1) achieve global
average consensus via the protocol (2) if and only both of the
above conditions are satisfied and in addition 1𝑇

𝑁
𝐿
𝑤
= 0.

Remark 16. When𝐴 = [ 1 1
0 1

]⊗𝐼
𝑛
,𝐵 = [ 0

1
]⊗𝐼
𝑛
, and𝐾

1
= 0, the

DLMASs (1) are called a double-integrator one, whose state
vector can be seen as consisting of the position and velocity
in the 𝑛 dimensional space R𝑛.

Corollary 17. Under the given information topology N, the
double-integrator DLMASs (1) achieve global state consensus
via the protocol (2) if and only if 𝐴 is Schur stable. Moreover,
the consensus function is

𝜉 (𝑘)

= 𝑁
−1

{(𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+[
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

−[
0 𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) 𝑇̃

+1𝑇
𝑁
⊗ [

𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

]}𝑥 (0) .

(18)

The consensus function above can be decomposed into
the position consensus function

𝜉
1
(𝑘) = 𝑁

−1

{([𝐼
𝑛

0] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+ [0 𝑘𝐼
𝑛
] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

− [0 𝐼
𝑛
] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) 𝑇̃

+1𝑇
𝑁
⊗ [𝐼
𝑛

𝑘𝐼
𝑛
] } 𝑥 (0) ,

(19)

which is a linear function of discrete time 𝑘, and the constant
velocity consensus function is as follows:

𝜉
2
(𝑘) = 𝑁

−1

{([0 𝐼
𝑛
] 𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

) 𝑇̃

+1𝑇
𝑁
⊗ [0 𝐼

𝑛
] } 𝑥 (0) .

(20)

Similarly, we can define the velocity average consensus,
that is, if the DLMASs (1) achieve global consensus via the
protocol (2), and the velocity consensus function is a constant
vector equal to the average of the initial velocities of all the
agents.

Corollary 18. Under the given information topology N, the
double-integrator DLMASs (1) achieve global velocity average
consensus via the protocol (2) if and only the matrix𝐴 is Schur
stable and [0 𝐼

𝑛
] 𝐶 = 0.

It is obvious that if 1𝑇
𝑁
𝐿
𝑤

= 0, then 𝐶 = 0; that is, the
last condition in Corollary 18 is satisfied, and thus, the state
consensus function becomes

𝜉 (𝑘) = 𝑁
−11𝑇
𝑁
⊗ [

𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

] 𝑥 (0) . (21)
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4. Design of Gain Matrices

In this section, we discuss the third problem, that is, how to
determine the weighted matrix 𝑊 and the gain matrices
𝐾
1
and 𝐾

2
, such that the DLMASs (1) achieve global state

consensus via the protocol (2).
Theorem 7 shows that the matrices 𝑊, 𝐾

1
, and 𝐾

2

should be taken to ensure that the matrix 𝐴 is Schur stable.
Furthermore, from Corollary 11 we see that if the matrix
𝑊 with respect to the information topology N has been
given, we need only to design the gain matrices 𝐾

1
and 𝐾

2

to ensure that the matrices𝐴+𝐵𝐾
1
−𝜆
𝑖
𝐵𝐾
2
are Schur stable,

where 𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁 − 1, are the eigenvalues of the matrix

𝑇̃
0
𝐿
𝑤
𝑇̂
0
. The matrix 𝐾

1
is often taken to obtain an expected

consensus dynamics. The matrix 𝐾
2
is designed to achieve

state consensus and expected convergence rate. Its design
needs the following lemma.

Lemma 19 (see [38]). Supposing that the matrix𝐴 = 𝐴+𝐵𝐾
1

is not Schur stable but (𝐴, 𝐵) is stabilizable, then there is a
critical value 𝛿

𝑐
∈ (0, 1], such that for any number 𝛿 with

0 < 𝛿 < 𝛿
𝑐
the modified Riccati inequality

𝐴
𝑇

𝑃𝐴 − 𝑃 − (1 − 𝛿
2

)𝐴
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃𝐴 < 0 (22)

admits a positive definite matrix solution 𝑃, where 𝛿
𝑐
depends

on the unstable eigenvalues of the matrix 𝐴.

We define functions 𝛿
𝑖
(𝜔) = 1 − 𝜔𝜆

𝑖
and 𝛿(𝜔) =

max
𝑖∈{1,...,𝑁−1}

|𝛿
𝑖
(𝜔)|. Motivated by [38], we get the following

theorem.

Theorem 20. Supposing that the matrix (𝐴, 𝐵) is stabilizable,
the gain matrix 𝐾

1
has been taken such that the expected

consensus dynamic matrix𝐴+𝐵𝐾
1
is not Schur stable, and the

weighted matrix 𝑊 with respect to the information topology
N is given such that −𝑇̃

0
𝐿
𝑤
𝑇̂
0
is Hurwitz stable with 𝑁 − 1

eigenvalues −𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁 − 1; then, for the DLMASs (1) to

achieve state consensus via the protocol (2), the matrix 𝐾
2
can

be designed as 𝐾
2
= 𝜔(𝐵𝑇𝑃𝐵)

−1

𝐵𝑇𝑃(𝐴 + 𝐵𝐾
1
), where 𝜔 is an

arbitrary constant satisfying 𝛿 = 𝛿(𝜔) < 𝛿
𝑐
, 𝛿
𝑐
∈ (0, 1] is a

critical value which depends on the unstable eigenvalues of the
matrix 𝐴 + 𝐵𝐾

1
, and 𝑃𝑇 = 𝑃 > 0 is a solution of the algebraic

Riccati inequality (22).

Based on Theorem 20, we give the following algorithm
of determining the feedback gain matrices 𝐾

1
and 𝐾

2
in the

protocol (2).

Algorithm 21. Design procedure of the gain matrices 𝐾
1
and

𝐾
2
.

Step 1. Verify the stabilizability condition of (𝐴, 𝐵) and the
spanning tree condition of the information topology N. If
neither of them is satisfied, then stop. Otherwise, design the
weighted Laplacian 𝐿

𝑤
such that −𝑇̃

0
𝐿
𝑤
𝑇̂
0
is Hurwitz stable

with𝑁 − 1 eigenvalues −𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁 − 1.

Step 2. Design𝐾
1
such that 𝐴 = 𝐴 + 𝐵𝐾

1
is the matrix of the

expected consensus dynamics of the DLMASs (1) and is not
Schur stable.

Step 3. Calculate all the eigenvalues of 𝐴, which are com-
posed of the stable eigenvalues 𝜆𝑠

𝑖
(𝐴), 𝑖 = 1, . . . , 𝑛

𝑠
and

unstable ones 𝜆𝑢
𝑖
(𝐴), 𝑖 = 1, . . . , 𝑛

𝑢
, 𝑛
𝑠
+ 𝑛
𝑢
= 𝑛.

Step 4. Calculate the critical value 𝛿
𝑐
∈ (0, 1]. If 𝐵 is invert-

ible, then 𝛿
𝑐
= (max

𝑖={1,...,𝑛𝑢}
|𝜆𝑢
𝑖
(𝐴)|)
−1. If 𝐵 is of rank one,

then 𝛿
𝑐
= (∏

𝑖={1,...,𝑛𝑢}
|𝜆𝑢
𝑖
(𝐴)|)
−1. Otherwise, apply Wonham

decomposition to the unstable part (𝐴
𝑢
, 𝐵
𝑢
) of (𝐴, 𝐵) to

convert the multiple input system to 𝑚 single input subsys-
tems, where 𝑚 is the number of the Jordan blocks of matrix
𝐴
𝑢
. Specifically, there is a nonsingular real matrix 𝑄 with

a compatible dimension such that 𝐴 = 𝑄−1𝐴
𝑢
𝑄 and 𝐵 =

𝑄−1𝐵
𝑢
take the form

𝐴 =

[
[
[
[

[

𝐴
1

∗ ∗ ∗

0 𝐴
2

⋅ ⋅ ⋅ ∗
...

... d
...

0 0 ⋅ ⋅ ⋅ 𝐴
𝑚

]
]
]
]

]

, 𝐵 =

[
[
[
[

[

𝑏
1

∗ ∗ ∗

0 𝑏
2

⋅ ⋅ ⋅ ∗
...

... d
...

0 0 ⋅ ⋅ ⋅ 𝑏
𝑚

]
]
]
]

]

, (23)

where the symbol ∗ denotes possibly nonzero parts and
(𝐴
𝑗
, 𝑏
𝑗
) with 𝐴

𝑗
∈ R𝑛𝑗×𝑛𝑗 and 𝑏

𝑗
∈ R𝑛𝑗 for all 𝑗 ∈ {1, . . . , 𝑚}

is controllable and ∑
𝑚

𝑗=1
𝑛
𝑗

= 𝑛
𝑢
. In this case, 𝛿

𝑐
is lower

bounded by 𝛿
𝑐
≥ (∏

𝑖
|𝜆𝑢
𝑖
(𝐴
𝑚
∗)|)
−1

) = 𝛿󸀠
𝑐
, where the index

𝑚∗ is defined by 𝑚∗ = argmax
𝑗={1,...,𝑚}

(∏
𝑖
|𝜆𝑢
𝑖
(𝐴
𝑗
)|) and 𝐴

𝑗

is the Jordan block of the unstable part of matrix 𝐴.

Step 5. Calculate the value 𝜔 such that 𝛿(𝜔) = max
𝑖∈{1,...,𝑁−1}

|𝛿
𝑖
(𝜔)|.

Step 6. Solve (22) with 𝛿 = 𝛿(𝜔) for a positive definite
matrix 𝑃.

Step 7. Calculate the matrix𝐾
2
= 𝜔(𝐵𝑇𝑃𝐵)

−1

𝐵𝑇𝑃(𝐴 + 𝐵𝐾
1
).

5. Application to Formation Control

In this section, the consensus approach is modified to solve
the formation control problem of the DLMASs (1). Let ℎ =

[ℎ𝑇
1

ℎ𝑇
2

⋅ ⋅ ⋅ ℎ𝑇
𝑁
]
𝑇

∈ R𝑛𝑁 describe a constant formation of
the agent network in a reference coordinate frame, where
ℎ
𝑖
∈ R𝑛 is the formation variable corresponding to the agent 𝑖.

The variable ℎ
𝑖
− ℎ
𝑗
denotes the relative formation vector

between the agents 𝑖 and 𝑗, which is assumed to be indepen-
dent of the reference coordinate.

We modify the consensus protocol (2) and propose a
distributed formation protocol as follows:

𝑢
𝑖
= 𝐾
1
𝑥
𝑖
+ 𝐾
2
∑
𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑥
𝑗
− 𝑥
𝑖
− (ℎ
𝑗
− ℎ
𝑖
)) , 𝑖 = 1, . . . , 𝑁.

(24)

Definition 22. Under the given information topologyN, the
DLMASs (1) achieve the given formation ℎ via the protocol
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(24) if ‖(𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)) − (ℎ

𝑖
− ℎ
𝑗
)‖ → 0 as 𝑘 → ∞, for

all 𝑖, 𝑗 = 1, . . . , 𝑁, that is, if there is a function 𝜉(𝑘) such that
‖𝑥
𝑖
(𝑘)−ℎ

𝑖
−𝜉(𝑘)‖ → 0 as 𝑘 → ∞, for all 𝑖 = 1, . . . , 𝑁, where

𝜉(𝑘) is called reference state consensus function.

Theorem 23. Under the given information topology N, the
DLMASs (1) achieve the formation ℎ via the protocol (24) if
and only if the matrix 𝐼

𝑁−1
⊗ (𝐴 + 𝐵𝐾

1
) − 𝑇̃
0
𝐿
𝑤
𝑇̂
0
⊗ 𝐵𝐾
2
is

Schur stable and (𝑇̃
0
⊗ (𝐴 + 𝐵𝐾

1
− 𝐼
𝑛
))ℎ = 0. Moreover, the

reference state consensus function is

𝜉 (𝑘) = 𝑁
−1

((

𝑘−1

∑
𝑗=0

(𝐴 + 𝐵𝐾
1
)
𝑗

𝐶𝐴
𝑘−1−𝑗

) 𝑇̃

+1𝑇
𝑁
⊗ (𝐴 + 𝐵𝐾

1
)
𝑘

)𝑥 (0) .

(25)

Similarly to Corollary 11, we get the following corollary
for the formation control.

Corollary 24. Under the given information topology N, the
DLMASs (1) achieve the formation ℎ via the protocol (24) if
and only if all the matrices 𝐴 + 𝐵𝐾

1
− 𝜆
𝑖
𝐵𝐾
2
are Schur stable

and (𝑇̃
0
⊗ (𝐴+𝐵𝐾

1
− 𝐼
𝑛
))ℎ = 0, where 𝜆

𝑖
, 𝑖 = 1, . . . , 𝑁− 1, are

the eigenvalues of the matrix 𝑇̃
0
𝐿
𝑤
𝑇̂
0
.

Remark 25. Note that not all kinds of formation structure
can be achieved for the DLMASs (1) by using the protocol
(24). The achievable formation structures have to satisfy the
constraints (𝑇̃

0
⊗(𝐴+𝐵𝐾

1
−𝐼
𝑛
))ℎ = 0.The formation protocol

(24) for a given achievable formation ℎ can be constructed
analogously by using the Algorithm 21 in Section 4.

6. Numerical Examples

In this section, we give some illustrative examples.

Example 26 (state consensus analysis). We consider the
DLMASs (1) consisting of four agents described by the fol-
lowing matrices:

𝐴 =

[
[
[
[
[
[
[

[

2
√2

2

−√2

2

−1

2

√2

4

3√2

4

1 0 0

]
]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[

[

1

−1

2

1

]
]
]
]
]

]

. (26)

Supposed that we are given the information topology N =

{{4}, {1}, {2}, {3}}, the weights𝑤
𝑖𝑗
= 0.5, and the gain matrices

𝐾
1
= [−1, −√2/2, √2/2] and 𝐾

2
= [0.4444, −0.4714, 0.1571],

we are required to verify the consensus convergence.
The matrix 𝐴 is Schur stable since its eigenvalues are

0.3482±0.7182𝑖, 0.8746±0.2786𝑖, 0.7885±0.4643𝑖, 0.7728±
0.5782𝑖, and 0.0001. Therefore, according to Theorem 7, the
DLMASs (1) with the matrices in (26) achieve global consen-
sus via the protocol (2) under the given information topology
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Figure 1: State trajectories of DLMASs.

N and the gain matrix 𝐾
1
, 𝐾
2
. For the initial states 𝑥

1
(0) =

[0, 0.6, 0.6]
𝑇, 𝑥
2
(0) = [1.2, 1.5, 1.8]

𝑇, 𝑥
3
(0) = [1.8, 2.4, 2.1]

𝑇,
and 𝑥

4
(0) = [3.0, 2.7, 3.6]

𝑇, the corresponding state con-
sensus function in (11) is 𝜉(𝑘) = [1.5, 2.7094 cos(0.7854𝑘 −

1.6296), 2.7094 cos(0.7854𝑘 − 0.0588)]
𝑇. Figure 1 shows the

state trajectories of the agents and the trajectory of the state
consensus function marked by circles.

Example 27 (gain matrices design for a formation control).
The consensus problemofmultiagent systems hasmany prac-
tical applications, such as formation control of mobile robots
and cooperative control of unmanned airborne vehicles. In
this example, we consider that DLMASs consisting of four
mobile robots are described as

𝑥
+

𝑖
= 𝑥
𝑖
+ V
𝑖
,

V+
𝑖
= V
𝑖
+ 𝑢
𝑖
, 𝑖 = 1, . . . , 4,

(27)

where 𝑥
𝑖
∈ R2, V

𝑖
∈ R2, and 𝑢

𝑖
∈ R2 are the position, the

velocity, and the acceleration input of the robot 𝑖, respectively.
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Figure 2: Position and velocity trajectories of mobile robots.

The information topology and the weights are the same as
in Example 26. The eigenvalues of the matrix 𝑇̃

0
𝐿
𝑤
𝑇̂
0
are

𝜆
1
= 0.5 + 0.5𝑖, 𝜆

2
= 0.5 − 0.5𝑖, and 𝜆

3
= 1. We choose ℎ

1
=

[6, 6, 0, 0]
𝑇, ℎ
2
= [−6, 6, 0, 0]

𝑇, ℎ
3
= [−6, −6, 0, 0]

𝑇, and ℎ
4
=

[6, −6, 0, 0]
𝑇 for the formation ℎ of the mobile robots. Note

that (𝐴, 𝐵) in (27) is stabilizable. The eigenvalues of matrix 𝐴

are 1 (4 multiples). We assume that the expected consensus
dynamics of the agents is not changed, and thus, we have
𝐾
1
= 0. It is easy to verify that the formation ℎ satisfies the

constraints (𝑇̃
0
⊗ (𝐴 + 𝐵𝐾

1
− 𝐼
𝑛
))ℎ = 0. One can get 𝛿

𝑐
= 1

through Step 4 of the Algorithm 21. By Step 5, one can obtain

𝜔 = 1.0, and the corresponding 𝛿(𝜔) = √2/2 < 𝛿
𝑐
. The

modified Riccati inequality (22) admits a solution

𝑃 =
[
[
[

[

88 17 0 0

17 248 0 0

0 0 88 17

0 0 17 248

]
]
]

]

× 10
−4

. (28)

The corresponding control gain is calculated as follows:

𝐾
2
= [

0 0 0.0686 1.0686

0.0686 1.0686 0 0
] . (29)
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Figure 3: Formation of four mobile robots.

The eigenvalues of matrix 𝐴 are 0.5336 ± 0.5392𝑖 (2 mul-
tiples), 0.9321 ± 0.0049𝑖 (2 multiples), 0.9314 (2 multiples),
and 0 (2 multiples), that is, the matrix 𝐴 is Schur stable. By
Theorem 23, the system (27) via the protocol (24) achieves
the formation ℎ.

For the initial states 𝑥
1
(0) = [−9, 0.6, −18, 1.8]

𝑇, 𝑥
2
(0) =

[12, 1.5, 27, 0.9]
𝑇, 𝑥
3
(0) = [−21, 1.8, 24, 2.4]

𝑇, and 𝑥
4
(0) =

[21, 3, 27, 3.6]
𝑇, we get the reference state consensus function

𝜉(𝑘) = [0.75 + 1.725𝑘, 1.725, 15 + 2.175𝑘, 2.175]
𝑇 according

to (25). Figure 2 shows the position and velocity trajectories
of the mobile robots and the trajectory of the reference state
consensus function marked by dots, and Figure 3 shows the
formation evolution trajectories. From Figure 3 it is clear to
see that the mobile robots achieve the expected formation,
where the symbol diamond denotes the initial position, and
the symbol circle denotes the position at the moment 𝑘 = 80

of the mobile robots, respectively.

7. Conclusions

We considered the state consensus problem of high-order
discrete-time linear multiagent systems with fixed directed
information topology. A linear transformation approach was
proposed to translate the consensus problem of multiagent
systems into a partial stability problem of the corresponding
transformed systems. We have shown that the approach is
powerful in dealing with the three aspects of the consensus
problem: (1) the criteria of global state consensus, (2) the cal-
culation of the state consensus function, and (3) the deter-
mination the weighted matrix and the feedback gain matrix.
Precisely, we have educed new necessary and sufficient con-
sensus criteria in terms of Schur stability of a matrix related
to the weighted Laplacian matrix and presented an analytical
expression of the state consensus function. In addition,

we have stated a design process of determining the feedback
gain matrix under the condition of each agent being stabi-
lizable. The consensus algorithm has been further applied to
solve the formation control problem of multiagent systems.

Though the work in this paper focuses on the high-
order discrete-time linear multiagent systems with fixed
information topology and without time delay, it is undoubted
that the approach can be easily extended to more complex
cases, which will be dealt with in the future works.

Appendix

Proof of Lemma 3. Assuming the inverse to be 𝑇−1 =

[𝑇
1

⋅ ⋅ ⋅ 𝑇
𝑁−1

𝑇
𝑁
]
𝑇

with columns 𝑇
𝑖
, 𝑖 = 1, . . . , 𝑁, we

prove that the equality 𝑇
𝑁

= 𝑁−11
𝑁
⊗ 𝐼
𝑛
is correct. Since the

matrix 𝑇𝑇 is invertible and thus each column of 𝑇
𝑁
can be

linearly represented by the columns of the matrix 𝑇𝑇, so the
matrix 𝑇

𝑁
can be represented by 𝑞

1
+ 𝑞
2
, where each column

of the matrix 𝑞
1
can be linearly represented by matrices 𝑇𝑇

𝑖
,

𝑖 = 1, . . . , 𝑁 − 1, and 𝑞
2
by those of the matrix 1

𝑁
⊗ 𝐼
𝑛
. Left

multiplying 𝑇
𝑁

= 𝑞
1
+ 𝑞
2
by 𝑞𝑇
1
gets 𝑞𝑇

1
𝑇
𝑁

= 𝑞𝑇
1
𝑞
1
+ 𝑞𝑇
1
𝑞
2
.

Because of 𝑇𝑇−1 = 𝐼
𝑁𝑛

, one has 𝑇
𝑖
𝑇
𝑁

= 0, 𝑖 = 1, . . . , 𝑁 − 1,
which implies 𝑞𝑇

1
𝑇
𝑁

= 0. On the other hand, from the
equalities 𝑇

𝑖
(1
𝑁
⊗ 𝐼
𝑛
) = 0, 𝑖 = 1, . . . , 𝑁 − 1, one gets 𝑇

𝑖
𝑞
2
= 0,

𝑖 = 1, . . . , 𝑁 − 1, which means 𝑞𝑇
1
𝑞
2
= 0. Hence, from the

equality 𝑞𝑇
1
𝑇
𝑁

= 𝑞𝑇
1
𝑞
1
+ 𝑞𝑇
1
𝑞
2
, one deduces 𝑞𝑇

1
𝑞
1
= 0, that is,

𝑞
1
= 0 and thus 𝑇

𝑁
= 𝑞
2
. In other words, one can write 𝑇

𝑁

into 𝑇
𝑁

= (1
𝑁
⊗ 𝐼
𝑛
)𝛼, where 𝛼 is a matrix of the order 𝑛 × 𝑛.

From the identity𝑇𝑇 = 𝐼
𝑁𝑛

, one has (1
𝑁
⊗𝐼
𝑛
)
𝑇

= 𝐼
𝑛
, and thus,

from𝑇
𝑁

= (1
𝑁
⊗𝐼
𝑛
)𝛼 one can get 𝐼

𝑛
= 𝑁𝛼, that is, 𝛼 = 𝑁−1𝐼

𝑛
.

Finally, one has the expression 𝑇
𝑁

= 𝑁−11
𝑁
⊗ 𝐼
𝑛
.

Proof of Lemma 5. In fact, if there is 𝜉(𝑘; 𝑥(0)) such that
lim
𝑘→∞

‖𝑥
𝑖
(𝑘; 𝑥
𝑖
(0)) − 𝜉(𝑘; 𝑥(0))‖ = 0, 𝑖 = 1, . . . , 𝑁, it follows

that lim
𝑘→∞

‖𝑥
𝑖
(𝑘)‖ = 0, 𝑖 = 1, . . . , 𝑁 − 1, in virtue of

𝑥
𝑖
= 𝑇
𝑖
(𝑥 − 1

𝑁
⊗ 𝜉), 𝑖 = 1, . . . , 𝑁, and therefore the necessary

has been proved. Conversely, by virtue of Lemma 3, one can
verify 𝑥

𝑖
= ∑
𝑁−1

𝑗=1
𝑇
𝑖𝑗
𝑥
𝑗
+ 𝑁−1𝑥

𝑁
, 𝑖 = 1, . . . , 𝑁 − 1. So from

lim
𝑘→∞

‖𝑥
𝑖
(𝑘)‖ = 0, 𝑖 = 1, . . . , 𝑁 − 1, it follows that

lim
𝑘→∞

‖𝑥
𝑖
(𝑘) − 𝜉(𝑘)‖ = 0, 𝑖 = 1, . . . , 𝑁, where 𝜉(𝑘) =

𝑁−1∑
𝑁

𝑖=1
𝑥
𝑖
(𝑘) = 𝑁−1𝑥

𝑁
(𝑘), and thus, the sufficiency has

been verified.

Proof of Lemma 6. By observation, we only need to show that
𝑇̃Ψ(1
𝑁

⊗ 𝐼
𝑛
) = 0, (1𝑇

𝑁
⊗ 𝐼
𝑛
)Ψ𝑇̂ = −(1𝑇

𝑁
𝐿
𝑤

⊗ 𝐵𝐾
2
)𝑇̂, and

(1𝑇
𝑁
⊗ 𝐼
𝑛
)Ψ(1
𝑁
⊗ 𝐼
𝑛
) = 𝑁(𝐴 + 𝐵𝐾

1
). In fact, since 𝐿

𝑤
1
𝑁

= 0,
(1𝑇
𝑁
⊗ 𝐼
𝑛
)𝑇̂ = 0, and 𝑇̃(1

𝑁
⊗ 𝐼
𝑛
) = 0, we have that

𝑇̃Ψ (1
𝑁
⊗ 𝐼
𝑛
)

= 𝑇̃ (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
) (1
𝑁
⊗ 𝐼
𝑛
)

= 𝑇̃ (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
)) (1
𝑁
⊗ 𝐼
𝑛
)

= 𝑇̃ (1
𝑁
⊗ (𝐴 + 𝐵𝐾

1
)) = 0,
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(1𝑇
𝑁
⊗ 𝐼
𝑛
)Ψ𝑇̂

= (1𝑇
𝑁
⊗ 𝐼
𝑛
) (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
) 𝑇̂

= (1𝑇
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 1𝑇
𝑁
𝐿
𝑤
⊗ 𝐵𝐾
2
) 𝑇̂

= − (1𝑇
𝑁
𝐿
𝑤
⊗ 𝐵𝐾
2
) 𝑇̂,

(1𝑇
𝑁
⊗ 𝐼
𝑛
)Ψ (1

𝑁
⊗ 𝐼
𝑛
)

= (1𝑇
𝑁
⊗ 𝐼
𝑛
) (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
) (1
𝑁
⊗ 𝐼
𝑛
)

= (1𝑇
𝑁
⊗ 𝐼
𝑛
) (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
)) (1
𝑁
⊗ 𝐼
𝑛
)

= (1𝑇
𝑁
1
𝑁
) ⊗ (𝐴 + 𝐵𝐾

1
) = 𝑁 (𝐴 + 𝐵𝐾

1
) .

(A.1)

Thus, system (9) becomes

𝑦
+

= 𝑇̃Ψ𝑇̂𝑦,

𝑧
+

= − (1𝑇
𝑁
𝐿
𝑤
⊗ 𝐵𝐾
2
) 𝑇̂𝑦 + (𝐴 + 𝐵𝐾

1
) 𝑧.

(A.2)

Denoting𝐴 = 𝑇̃Ψ𝑇̂,𝐶 = −(1𝑇
𝑁
𝐿
𝑤
⊗𝐵𝐾
2
)𝑇̂, and𝐷 = 𝐴+𝐵𝐾

1
,

where Ψ = 𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
, we get (10).

Proof of Theorem 7. The necessary and sufficient condition
is verified directly by using the Lemmas 5 and 6. Now we
focus on the calculation of the state consensus function. The
first equation in (10) gives 𝑦(𝑘) = 𝐴

𝑘

𝑦(0). From the second
equation in (10) we have

𝑧 (𝑘) = 𝐶𝑦 (𝑘 − 1) + 𝐷𝑧 (𝑘 − 1)

= 𝐶𝑦 (𝑘 − 1) + 𝐷𝐶𝑦 (𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝐷
𝑘−1

𝐶𝑦 (0) + 𝐷
𝑘

𝑧 (0) .

(A.3)

Substituting 𝑦(𝑘) = 𝐴
𝑘

𝑦(0), 𝑦(0) = 𝑇̃𝑥(0), 𝐷 = 𝐴 + 𝐵𝐾
1

and 𝑧(0) = (1𝑇
𝑁

⊗ 𝐼
𝑛
)𝑥(0) into the above formula, one gets

𝑧(𝑘) = ((∑
𝑘−1

𝑗=0
(𝐴 + 𝐵𝐾

1
)
𝑗

𝐶𝐴
𝑘−1−𝑗

)𝑇̃ + 1𝑇
𝑁
⊗ (𝐴 + 𝐵𝐾

1
)
𝑘

)𝑥(0).
Thus, by Lemma 5 one has the state consensus function in
(11).

Proof of Corollary 9. First of all, one easily verifies that the
Schur stability of 𝐴 is equivalent to Schur stability of all the
matrices 𝐴 + 𝐵𝐾

1
− 𝜆
𝑖
𝐵𝐾
2
by transforming 𝐴 into its Jordan

form. We focus on the calculation of the state consensus
function. Rewrite the system (3) as𝑥+ = (𝐼

𝑁
⊗(𝐴+𝐵𝐾

1
)−𝐿
𝑤
⊗

𝐵𝐾
2
)𝑥. So for the left eigenvector 𝜂with the property 𝜂𝑇1

𝑁
=

1 of the Laplacian 𝐿
𝑤
with respect to the zero eigenvalue, we

obtain (𝜂𝑇⊗𝐼
𝑛
)𝑥+ = (𝐴+𝐵𝐾

1
)(𝜂𝑇⊗𝐼

𝑛
)𝑥.When the consensus

is achieved, we have that 𝜉(𝑘) = (𝜂𝑇 ⊗ 𝐼
𝑛
)𝑥(𝑘) and thus the

state consensus function is 𝜉(𝑘) = (𝐴 + 𝐵𝐾
1
)
𝑘

(𝜂𝑇 ⊗ 𝐼
𝑛
)𝑥(0),

which can be written into the form (15).

Proof of Corollary 15. In this case, the two conditions in
Corollary 11 become: (1) the matrix −𝑇̃

0
𝐿
𝑤
𝑇̂
0
is Hurwitz

stable, that is, the digraph 𝐺 admits a directed spanning tree;
(2) for all the eigenvalues 𝜆

𝑖
, 𝑖 = 1, . . . , 𝑁 − 1, of the matrix

𝑇̃
0
𝐿
𝑤
𝑇̂
0
, all the matrix 𝐼

𝑛
− 𝜆
𝑖
𝐾
2
are Schur stable. Let 𝜇

𝑗
, 𝑗 =

1, . . . , 𝑛, be the eigenvalues of thematrix𝐾
2
. Hence, the Schur

stability of the matrix 𝐼
𝑛
− 𝜆
𝑖
𝐾
2
is equivalent to that the

products 𝜆
𝑖
𝜇
𝑗
, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 1, . . . , 𝑛, are in the open

unit circle of the complex plane with the centre at (1, 0).
Now we calculate the state consensus function. In

this case, the state consensus function becomes 𝜉(𝑘) =

𝑁
−1{𝐶(𝐼

(𝑁−1)𝑛
− 𝐴
𝑘

)(𝐼
(𝑁−1)𝑛

− 𝐴)
−1

𝑇̃ + 1𝑇
𝑁

⊗ 𝐼
𝑛
}𝑥(0). Since

𝐴 is Schur stable, instead of the previous state consensus
function 𝜉(𝑘), we take the following state consensus value 𝜉 =

𝑁−1{𝐶(𝐼
(𝑁−1)𝑛

−𝐴)
−1

𝑇̃ + 1𝑇
𝑁
⊗ 𝐼
𝑛
}𝑥(0). Since 𝑇̃ = 𝑇̃

0
⊗ 𝐼
𝑛
,𝐴 =

𝐼
(𝑁−1)𝑛

− 𝑇̃
0
𝐿
𝑤
𝑇̂
0
⊗𝐾
2
, and 𝐶 = −1𝑇

𝑁
𝐿
𝑤
𝑇̂
0
⊗𝐾
2
, and noticing

that (𝑇̃
0
𝐿
𝑤
𝑇̂
0
⊗ 𝐾
2
)
−1

= (𝑇̃
0
𝐿
𝑤
𝑇̂
0
)
−1

⊗ 𝐾−1
2
, the previous

state consensus value can be written into (17).

Proof of Corollary 17. Since

𝐴
𝑗

= [
1 𝑗

0 1
] ⊗ 𝐼
𝑛
, (A.4)

Equation (11) becomes

𝜉 (𝑘)

= 𝑁
−1

((

𝑘−1

∑
𝑗=0

[
𝐼
𝑛

𝑗𝐼
𝑛

0 𝐼
𝑛

]𝐶𝐴
𝑘−1−𝑗

) 𝑇̃

+1𝑇
𝑁
⊗ [

𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

])𝑥 (0)

= 𝑁
−1

((𝐶

𝑘−1

∑
𝑗=0

𝐴
𝑘−1−𝑗

+

𝑘−1

∑
𝑗=0

[
0 𝑗𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗

) 𝑇̃

+1𝑇
𝑁
⊗ [

𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

])𝑥 (0) .

(A.5)

Letting

𝑋 =

𝑘−1

∑
𝑗=0

[
0 𝑗𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗

(A.6)

and 𝑗󸀠 = 𝑗 + 1, we get

𝑋 =

𝑘

∑

𝑗
󸀠
=1

[
0 (𝑗󸀠 − 1) 𝐼

𝑛

0 0
]𝐶𝐴

𝑘−1−𝑗
󸀠
+1

=

𝑘

∑

𝑗
󸀠
=1

[
0 𝑗󸀠𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗

󸀠
+1

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛
− 𝐴
𝑘

)

=

𝑘−1

∑

𝑗
󸀠
=0

[
0 𝑗󸀠𝐼
𝑛

0 0
]𝐶𝐴
𝑘−1−𝑗

󸀠
+1

+ [
0 𝑘𝐼
𝑛

0 0
]𝐶

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛
− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−1
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= 𝑋𝐴 + [
0 𝑘𝐼
𝑛

0 0
]𝐶 − [

0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛
− 𝐴
𝑘

)

× (𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

.
(A.7)

Thus, we have the following:

𝑋 = [
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛
− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

.

(A.8)

Substituting it into (A.5), we get

𝜉 (𝑘)

= 𝑁
−1

{ (𝐶 (𝐼
2(𝑁−1)𝑛

− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+ [
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

− [
0 𝐼
𝑛

0 0
]𝐶 (𝐼

2(𝑁−1)𝑛
− 𝐴
𝑘

) (𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) 𝑇̃

+1𝑇
𝑁
⊗ [

𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

]}𝑥 (0) .

(A.9)

If 𝐴 is Schur stable, the consensus function above can be
replaced by

𝜉 (𝑘)

= 𝑁
−1

{(𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

+ [
0 𝑘𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−1

−[
0 𝐼
𝑛

0 0
]𝐶(𝐼
2(𝑁−1)𝑛

− 𝐴)
−2

) 𝑇̃

+1𝑇
𝑁
⊗ [

𝐼
𝑛

𝑘𝐼
𝑛

0 𝐼
𝑛

]}𝑥 (0) .

(A.10)

Proof of Theorem 20. Supposed that the matrices 𝐿
𝑤
and 𝐾

1

have been given, by Corollary 11, we need only to verify that
the matrix 𝐾

2
ensures that all the matrices 𝐴 + 𝐵𝐾

1
− 𝜆
𝑖
𝐵𝐾
2

are Schur stable, where 𝜆
𝑖
, 𝑖 = 1, . . . , 𝑁−1, are the eigenvalues

of the matrix 𝑇̃
0
𝐿
𝑤
𝑇̂
0
.

It is clear that there exists𝜔 > 0 such that |𝛿
𝑖
(𝜔)| ≤ 𝛿(𝜔) <

𝛿
𝑐
, 𝑖 = 1, . . . , 𝑁 − 1. We can verify that the following sys-

tems 𝜉
𝑖
(𝑘 + 1) = (𝐴 + 𝐵𝐾

1
− 𝜆
𝑖
𝐵𝐾
2
)𝜉
𝑖
(𝑘), 𝑖 = 1, . . . , 𝑁 − 1,

admit a common Lyapunov function 𝑉(𝜉
𝑖
) = 𝜉
𝐻

𝑖
𝑃𝜉
𝑖
. In fact,

let 𝐾
2
= 𝜔(𝐵

𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 + 𝐵𝐾
1
), then we have that

Δ𝑉 (𝜉
𝑖
)

= 𝑉 (𝜉
𝑖
(𝑘 + 1)) − 𝑉 (𝜉

𝑖
(𝑘))

= 𝜉
𝐻

𝑖
(𝑘)(((𝐴 + 𝐵𝐾

1
)− 𝜆
𝑖
𝜔𝐵 (𝐵

𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 + 𝐵𝐾
1
))
𝐻

× 𝑃 ( (𝐴 + 𝐵𝐾
1
) − 𝜆
𝑖
𝜔𝐵(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃

× (𝐴 + 𝐵𝐾
1
)) − 𝑃) 𝜉

𝑖
(𝑘)

= 𝜉
𝐻

𝑖
(𝑘) ((𝐴 + 𝐵𝐾

1
)
𝑇

𝑃 (𝐴 + 𝐵𝐾
1
) − 𝑃

− ((𝜆
𝐻

𝑖
+ 𝜆
𝑖
) 𝜔 + 𝜆

𝐻

𝑖
𝜆
𝑖
𝜔
2

)

×(𝐴 +𝐵𝐾
1
)
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

𝐵
𝑇

𝑃(𝐴 +𝐵𝐾
1
) ) 𝜉
𝑖
(𝑘)

= 𝜉
𝐻

𝑖
(𝑘) ((𝐴 + 𝐵𝐾

1
)
𝑇

𝑃 (𝐴 + 𝐵𝐾
1
) − 𝑃

− (1 −
󵄨󵄨󵄨󵄨𝛿𝑖 (𝜔)

󵄨󵄨󵄨󵄨
2

) (𝐴 + 𝐵𝐾
1
)
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

× 𝐵
𝑇

𝑃 (𝐴 + 𝐵𝐾
1
)) 𝜉
𝑖
(𝑘)

≤ 𝜉
𝐻

𝑖
(𝑘) ((𝐴 + 𝐵𝐾

1
)
𝑇

𝑃 (𝐴 + 𝐵𝐾
1
) − 𝑃

− (1 − 𝛿
𝑖
(𝜔)) (𝐴 + 𝐵𝐾

1
)
𝑇

𝑃𝐵(𝐵
𝑇

𝑃𝐵)
−1

× 𝐵
𝑇

𝑃 (𝐴 + 𝐵𝐾
1
)) 𝜉
𝑖
(𝑘)

< 0.
(A.11)

That is, all the matrices𝐴+𝐵𝐾
1
−𝜆
𝑖
𝐵𝐾
2
, 𝑖 = 1, . . . , 𝑁−1, are

Schur stable.

Proof of Theorem 23. Let 𝑥
𝑖
= 𝑥
𝑖
− ℎ
𝑖
, 𝑖 = 1, . . . , 𝑁. Then the

DLMASs (1) reach the formation ℎ if and only if ‖(𝑥
𝑖
(𝑘) −

𝑥
𝑗
(𝑘)‖ → ∞ as 𝑘 → ∞, for all 𝑖, 𝑗 = 1, . . . , 𝑁. So the

formation problem on the variables 𝑥
𝑖
is transformed to the

consensus problem on the variables 𝑥
𝑖
.

From (1), one gets 𝑥+
𝑖
= 𝑥+
𝑖
− ℎ
𝑖
= 𝐴(𝑥

𝑖
+ ℎ
𝑖
) + 𝐵𝑢

𝑖
− ℎ
𝑖
,

𝑖 = 1, . . . , 𝑁. Substituting the protocol (24) and writing it into
the vector form, we have that

𝑥
+

= (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
) 𝑥

+ (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
− 𝐼
𝑛
)) ℎ.

(A.12)

Introducing the state linear transformation 𝑥 = 𝑇𝑥 for the
linear system (A.12), one obtains

𝑥
+

= 𝑇 (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
) − 𝐿
𝑤
⊗ 𝐵𝐾
2
) 𝑇
−1

𝑥

+ 𝑇 (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
− 𝐼
𝑛
)) ℎ.

(A.13)

Let 𝑦 = [𝑥
𝑇

1
, . . . , 𝑥

𝑇

𝑁−1
]
𝑇, then

𝑦
+

= (𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1
) − 𝑇̃
0
𝐿
𝑤
𝑇̂
0
⊗ 𝐵𝐾
2
) 𝑦

+ (𝑇̃
0
⊗ 𝐼
𝑁
) (𝐼
𝑁
⊗ (𝐴 + 𝐵𝐾

1
− 𝐼
𝑛
)) ℎ

(A.14)

is held. Since 𝑦 = 0 must be the equilibrium point if the
DLMASs (1) reach the formation ℎ, one has (𝑇̃

0
⊗ (𝐴 +

𝐵𝐾
1
− 𝐼
𝑛
))ℎ = 0. The residuary proof is similar to that of

Theorem 7.
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[19] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
“Novel type of phase transition in a system of self-driven
particles,” Physical Review Letters, vol. 75, no. 6, pp. 1226–1229,
1995.

[20] A. V. Savkin, “Coordinated collective motion of groups of
autonomous mobile robots: analysis of Vicsek’s model,” IEEE
Transactions on Automatic Control, vol. 49, no. 6, pp. 981–982,
2004.

[21] A. Jadbabaie, J. Lin, andA. S.Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001,
2003.

[22] W. Ren and R. W. Beard, “Consensus seeking in multiagent
systems under dynamically changing interaction topologies,”
IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–
661, 2005.

[23] L. Xiao and S. Boyd, “Fast linear iterations for distributed aver-
aging,” Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[24] D. B. Kingston and R. W. Beard, “Discrete-time average-con-
sensus under switching network topologies,” in Proceedings of
the American Control Conference, pp. 3551–3557, June 2006.

[25] T. Li and J. F. Zhang, “Consensus conditions of multi-agent
systems with time-varying topologies and stochastic commu-
nication noises,” IEEE Transactions on Automatic Control, vol.
55, no. 9, pp. 2043–2057, 2010.

[26] T. Li,M. Y. Fu, L. H. Xie, and J. F. Zhang, “Distributed consensus
with limited communication data rate,” IEEE Transactions on
Automatic Control, vol. 56, no. 2, pp. 279–292, 2011.

[27] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N.
Tsitsiklis, “Convergence inmultiagent coordination, consensus,
and flocking,” in Proceedings of the 44th IEEE Conference on
Decision and Control, and the European Control Conference
(CDC-ECC ’05), pp. 2996–3000, December 2005.

[28] L. Fang, P. J. Antsaklis, and A. Tzimas, “Asynchronous consen-
sus protocols: Preliminary results, simulations and open ques-
tions,” in Proceedings of the 44th IEEE Conference on Decision
and Control, and the European Control Conference (CDC-ECC
’05), pp. 2194–2199, December 2005.

[29] L. Moreau, “Stability of multiagent systems with time-depend-
ent communication links,” IEEE Transactions on Automatic
Control, vol. 50, no. 2, pp. 169–182, 2005.

[30] F. Xiao and L. Wang, “State consensus for multi-agent systems
with switching topologies and time-varying delays,” Interna-
tional Journal of Control, vol. 79, no. 10, pp. 1277–1284, 2006.

[31] F. Xiao and L. Wang, “Consensus protocols for discrete-time
multi-agent systems with time-varying delays,”Automatica, vol.
44, no. 10, pp. 2577–2582, 2008.



Mathematical Problems in Engineering 13

[32] Y. P. Gao, J. W.Ma, M. Zuo, T. Q. Jiang, and J. P. Du, “Consensus
of discrete-time second-order agents with time-varying topol-
ogy and time-varying delays,” Journal of the Franklin Institute,
vol. 349, no. 8, pp. 2598–2608, 2012.

[33] P. Lin and Y. M. Jia, “Consensus of second-order discrete-
time multi-agent systems with nonuniform time-delays and
dynamically changing topologies,”Automatica, vol. 45, no. 9, pp.
2154–2158, 2009.

[34] M. H. Zhu and S. Mart́ınez, “Discrete-time dynamic average
consensus,” Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[35] Z. K. Li, Z. H. Duan, and G. R. Chen, “Consensus of discrete-
time linear multi-agent systems with observer-type protocols,”
Discrete and Continuous Dynamical Systems B, vol. 16, no. 2, pp.
489–505, 2011.

[36] F. L. Sun, Z. H. Guan, X. S. Zhan, and F. S. Yuan, “Consensus of
second-order and high-order discrete-timemulti-agent systems
with random networks,” Nonlinear Analysis: Real World Appli-
cations, vol. 13, no. 5, pp. 1979–1990, 2012.

[37] Q. Z. Huang, “Consensus analysis of multi-agent discrete-time
systems,” Acta Automatica Sinica, vol. 38, no. 7, pp. 1127–1133,
2012.

[38] K. Y. You and L.H. Xie, “Network topology and communication
data rate for consensusability of discrete-time multi-agent sys-
tems,” IEEE Transactions on Automatic Control, vol. 56, no. 10,
pp. 2262–2275, 2011.

[39] G. X. Gu, L. Marinovici, and F. L. Lewis, “Consensusability of
discrete-time dynamic multiagent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 8, pp. 2085–2089, 2012.

[40] R. A. Horn andC. R. Johnson,Matrix Analysis, CambridgeUni-
versity Press, Cambridge, UK, 1985.

[41] V. I. Vorotnikov, Partial Stability and Control, Birkhäuser, Basel,
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