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Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise generated by radar coherent wave. In
this paper, a new despeckling algorithm based on directionlets using multiscale products is proposed. We first take an anisotropic
directionlet transform on the logarithmically transformed SAR images and multiply the coefficients at adjacent scales to enhance the
details of image under consideration. Then, different from traditional thresholding methods, a threshold is applied to the multiscale
products of the directionlet coefficients to suppress noise. Since the multiplication amplifies the significant features of signal and
dilute noise, the proposed method reduces noise effectively while preserving edge structures. Finally, we compare the performance
of the proposed algorithm with other despeckling methods applied to synthetic image and real SAR images. Experimental results

demonstrate the effectiveness of the proposed method in SAR images despeckling.

1. Introduction

Over the last two decades, there is still growing interests
in SAR imaging for its importance in various applications,
such as search-and-rescue, high-resolution surface mapping,
automatic target recognition, and mine detection. Moreover,
SAR imaging systems are capable of information acquisition
under all weather conditions. However, SAR images are
always corrupted by a multiplicative noise called “speckle”
[1] due to coherent radiation in the process of imaging. The
presence of speckle noise in SAR images reduces the detection
ability of targets and makes scene analysis and understanding
very difficult. Thus, the removal of the speckle is a critical step
in tasks such as segmentation, detection, and classification.

Many spatial-domain adaptive despeckling algorithms
[2-6] have been proposed in the past few years. Most of
these methods model the multiplicative noise and scene with
certain models, design a despeckling filter or estimator based
on some criterions, and finally recover the noise-free images
from the observations. For example, in the Lee filter [4], the
multiplicative model is first approximated by a linear com-
bination of the local mean and the observed pixel. Then, the
minimum mean-square error (MMSE) criterion is applied to
determine the weighting constant used to construct the filter.

Despite working well in SAR images, these traditional filters
usually exhibit limitation in preserving sharp features of the
images.

To address these drawbacks, a multiscale geometric anal-
ysis tool called wavelet transform has been proposed and
widely used in image processing successfully [7-9]. Wavelet-
based denoising methods usually either recover the noise-
free image by considering wavelet coefficients as some models
and constructing an estimator based on a criterion or apply
hard or soft threshold to the single-scale wavelet coefficients
directly. It has been shown that the wavelet thresholding
algorithms can provide a better reduction of speckle noise
comparing to spatial-domain filters [10]. However, these
thresholding methods also have the following three main
drawbacks: (1) The standard two-dimensional (2D) discrete
wavelet transform (DW'T) is an isotropic transform, in which
the filtering and subsampling operations are iterated with
the same number of steps along both the horizontal and
vertical directions at each scale. This means that it cannot
capture edges and contours properly. (2) The downsampling
in DWT is a time-variant translation and has difficulties
in preserving discontinuities of image [9]. (3) Applying the
general threshold directly to the detail coefficients can not
distinguish edges from noise effectively. Moreover, most of



them do not take advantage of the interscale or intrascale
dependency of the coefficients.

A large number of studies have been developed to address
these problems. In [11], Zhou and Shui proposed directional
windows based on contourlet transform by taking advantages
of captured directional information of the images. They
used local Wiener filtering in the contourlet domain and
achieved better performance in removing noise. Argenti et al.
despeckled SAR images successfully based on undecimated
wavelet transform (or stationary wavelet transform (SWT))
[12]. They used the Laplacian-Gaussian distribution to model
the probability density function (PDF) of SWT coeflicients
and obtained the despeckled image by using the maximum
a posteriori (MAP) criterion. In [7], Xie et al. proposed
a Bayesian estimator by modeling the wavelet coefficients
as Gaussian mixture density combining the Markov [13-15]
random field modeling. However, all the works mentioned
above only focus on the solution of one of these issues
involved in wavelet-based methods.

In this paper, a novel SAR image despeckling algorithm
is proposed based on two new mathematic tools called
directionlet transform and multiscale products, which can
reduce noise while preserving edge effectively. This is com-
pletely different from [16] which assumed the directionlet
coeflicients following a priori Cauchy model and employs a
MAP estimator to remove noise. Our contributions consist
of the following: (1) to distinguish signal from noise more
efficiently, the proposed algorithm applies threshold to the
multiscale products instead of the single-scale directionlet
coeflicients directly; and (2) a novel noise level estimator used
to determine an adaptive threshold is adopted in this paper.

This paper is organized as follows. In Section 2, a brief
introduction of speckle model is provided. The directionlet
transform and undecimated directionlet transform are pre-
sented in Section 3. Section 4 presents the directionlet-based
SAR despeckling scheme including multiscale products and
the shrinkage function. Moreover, the estimation of threshold
is also discussed. The performance of our proposed algorithm
is evaluated and compared with the existing despeckling
methods in Section 5. Conclusions are drawn in Section 6.

2. Speckle Model

In this work, we are interested in SAR intensity image model
under the assumption that the speckle is fully developed. Let
I(x, y) denote a SAR observation, and let S(x, ) and #(x, y)
denote noise-free image and the corrupting multiplicative
speckle noise, respectively. Then, the SAR image model can
be expressed as

I(xy)=S(xy)n(xy). )

Since the statistical properties of speckle noise #(x, y)
have been studied by Goodman [1], a large number of
models were proposed to analyse the SAR images, such
as negative exponential distribution, gamma distribution
[17], log-normal distribution [10], and generalized gamma
distribution [18]. In [19], Arsenault and April have shown
that when the image intensity is logarithmically transformed,
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FIGURE L: Frequency decomposition of AWT, where two decomposi-
tion levels are used. 1D wavelet transform steps along two directions
(horizontal and vertical) are not equal to each scale.

the speckle noise is approximately Gaussian additive noise,
and it tends to a normal probability much faster than the
intensity distribution. Thus, it is reasonable to model the
log-transformed speckle noise as a Gaussian additive noise.
Taking the logarithm of both sides of (1) yields

fley)=g(xy)+e(xy), )

where f(x,y), g(x, y), and e(x, y) signify the log values
of I(x, y), S(x, y), and #(x, y), respectively. To ensure that
€(x, y) follows a Gaussian distribution, we use the log-normal
distribution as the speckle noise model in this work. A log-
normal random variable [20] can be generated using

M
nlog-normal = exp (nnormal \/2 10g <;> +In m) > (3)

where M and m are the mean and the median values of the
distribution, respectively, and 7., is @ standard normal
random variable. The equivalence between L (number of
looks) in a speckle image and m in (3) has been given in [10].

3. Undecimated Directionlet Transform

3.1. Directionlet Transform. As it is well known, the
anisotropic wavelet transform (AWT) whose frequency
decomposition is shown in Figurel outperforms the
standard 2D DWT in the representation of edges and
contours. However, the filtering and subsampling of AWT
are only along the horizontal and vertical directions, which
limits the capability of representation of oriented contours to
some extent. To improve the performance of representation, a
skewed anisotropic wavelet transform (S-AWT(M ,,n,,n,))
called directionlet transform, which is based on integer
lattices, was proposed by Velisavljevic [21, 22]. A full-rank
integer lattice A consists of the points obtained as linear
combinations of two linearly independent vectors denoted
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as d, (transform direction) and d, (alignment direction),
and the coefficients are also integers. The lattice can be
represented by a generator matrix

m=[20]- (8] @

where a,, b, a,,and b, € Z.

According to lattice theory [23], any cubic lattice Z* can
be partitioned into | det(M, )| cosets of the lattice A, where
each coset is determined by the shift vectors v, for k =
0,1,...,|det(M,)| — 1. When the 1-D WT is applied on
the pixels along the transform direction determined by d,,
after subsampling, the retained points belong to sublattice
A" (A" ¢ A) corresponding to a generator matrix given by

M, = [2d, dz]T. Such a subsampling operation allows for
alignment of the retained pixels in the direction determined
by the second vector d, and efficient iteration of transform
steps. Notice that if the lattice A is partitioned into more than
one coset, the filtering and subsampling should be performed
in each coset separately.

The directionlet transform obtained as a combination of
the lattice-based filtering and subsampling and the frequency
decomposition used in the AWT results in the skewed AWT
(S-AWT). Recall that, the S-AWT(M,,n,,n,) has n, and n,
transforms in one iteration step along the transform and
alignment directions, respectively, and the skewed transforms
are applied to all cosets of the lattice A separately. The basic
functions of the S-AWT are called directionlets since they are
anisotropic and have a specific direction.

3.2. Undecimated Directionlet Transform. It has been shown
that undecimated transforms led to a better performance
than critically sampled transforms [24], especially in the
application of signal denoising. For this reason, undecimated
directionlets transform (UDT) is employed in our proposed
despeckling algorithm. UDT is also an anisotropic transform
based on lattice, but it is designed to overcome the lack
of translation-invariance of the directionlet transform. It is
carried out by removing the downsamplers and upsamplers
of the 1-D WT in directionlet transform and upsampling the
filter coefficients by a factor of 2/~" at the jth level. In other
words, a zero is placed between the adjacent coefficients of
H;(G;) at jth level to form the next level filter H;,,(Gj,,).

4. The Proposed Despeckling Algorithm
Using Multiscale Products

In this section, our goal is the design of dirctionlet-based
despeckling algorithm for SAR images using multiscale prod-
ucts. To design the despeckling algorithm, we first discuss the
multiscale products of directionlet transform.

4.1. Multiscale Products. Signal and noise have totally dif-
ferent behaviors in wavelet domain. This behavior can be
analyzed by using the mathematical concept of Lipschitz

regularity [25]. The relation between wavelet coeflicients and
Lipschitz component satisfies [26]

Wy f (0] < K(27)", (5)
where j is the decomposition scale, K is a positive constant,
and « is the Lipschitz component. Equation (5) implies that if
the uniform Lipschitz regularity « is positive, the amplitudes
of the wavelet coefficients should increase with the increasing
scale. On the contrary, wavelet transform magnitudes should
decrease for negative o with the increasing scale. Thus,
multiplication of the DWT coeflicients between adjacent
scales can lead to enhancement of edge structures while
weakening noise. In this paper, the multiscale products are
defined as

k2
Pif(x) = [ [Wif (0, (6)
i=k,

where k, and k, are nonnegative integers.

In [27], Bao and Zhang have pointed out that it is
sufficient to implement the multiplication of two adjacent
scales in practice; thus, we let k; = 0 and let k, = 1; then,
the DWT multiscale products are

Pif (x) = Wif (x)- W f (). ?)

Obviously, the number of the multiscale products varies
with the type of transform. For UDT, the multiscale products
have 2"*"2 — 1 components

Pif(x,y) =W f (x,) - Wi f (%), (8)

where d represents the subband direction.

4.2. Despeckling Algorithm. In this subsection, we present
the complete despeckling algorithm based on multiscale
products. It has been known that denoising with hard
threshold sometimes exhibits oscillation (i.e., pseudo-Gibbs
phenomenon) in the vicinity of discontinuities. Although
soft-threshold denoising produces less oscillation than hard
threshold, it is more prone to blurring the edges of image.
Thus, to get satisfied results, we employ a garrote shrinkage
function [28] that provides a good compromise between the
hard and the soft shrinkage functions to eliminate noise. The
proposed algorithm is summarized as follows.

(1) Apply the undecimated version of S-AWT(M;, 2, 1),
fori=1,2,..., N, to the logarithmically transformed
noisy SAR image f(x, ) up to J scales.

(2) For each coset,

(i) multiply ~ the  directionlet  coeflicients
at adjacent two scales to obtain the
multiscale products PJf’l flx,y) = Win f(x, )
Wi f(x,y),j = 1,2,...,],d = LHL,LHH,
HHL,LLH,HLL,HLH,HHH (L stands for
lowpass filtering and H stands for highpass
filtering);



(ii) compute the threshold T]’.i p and apply it to
d 1 Td
P? f(x, y) to identify W} f(x, y) by

Wi f (xy)

po
f(xy)_Wdf( )’ Pff('x’y)ZT]dp

0, P]‘.if (x,y) < Tfp.
€

(3) Do the inverse S-AWT using VAV;I f(x,y) to recon-

struct the f;(x, y); then perform an exponential trans-
form and obtain the denoised images I;(x, y).

(4) Compute the final despeckled image I(x, y) using
I(x,y) = 1N 335, Ti(x, ).

It can be seen that the performance of despeckling
algorithm depends crucially on the threshold value Tf p-

Thus, the main task of the rest is how to estimate T]‘.j p
properly.

4.3. Estimation of Threshold and Noise Standard Deviation.
To derive an appropriate threshold, it is absolutely necessary
to study the statistical characteristics of the multiscale prod-
ucts before making an estimate. Recall that the directionlet
coefficients of speckle noise have been assumed to be Gaus-
sian distribution with zero mean in the preceding section.
Let Wfle(x, y)and ijile(x, y) be zero-mean jointly Gaussian
distribution with covariance matrix
2
C= [ %

Pj,j+1;710;+1 (10)
Pj,j+190 j+1

6j+1

where p] j+1 is the correlation coefficient between Wfie(x ¥)
and W; He(x ). For the coefficients of directionlets, p; ;,,
= [y - vl y)dxdy

\/ [[wi(x, y))?dxdy - [[ (.1 (x, y)’dxdy, where y(x, y)
and v, (x, y) are the directionlets used at j and j + 1 levels,

W e(x, y)- ]He(x ¥)

is calculated by p; ;.

respectively. The product Z?e(x, y) =
has the following PDF [29]:

1 L X
p@ = exp < P >
001 0i0j41 ( - Pj,j+1)

03071 (1= P} j01)

where K|, is the zero-th order modified Bessel function of the
second kind.

The standard deviation of Zde(x, y)iso, = 1+2p3, -
00,1- By computing the Values of probability P;(c) = P{z <

¢ - 0,}, where constant ¢ varies from 1 to 5 by step length 1,

(1)
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the probability Pj(c) will be very close to 1 when ¢ > 5 [27].

It implies that 50, will suppress most of the data in Z‘;e(x, V).
In the present work, we use

Tip=5\1+20,,, 0,05, (12)

as the multiscale products threshold to distinguish signal
from noise.

As to the determination of noise level, the standard
deviation of additive noise is generally estimated by o =
MAD(|d(x, y)|)/0.6745, where d(x, y) € HHH, and MAD
denotes the median absolute deviation operation. Despite the
good characteristics (high breakdown point, good efficiency,
etc.) of the MAD, its performance degrades significantly
when the proportion of outliers increases. In other words,
the MAD estimator is inaccurate for those images containing
massive fine structures. To address this problem, we intro-
duce a new robust scale estimator of the noise standard
deviation. This estimator is called the d-dimensional adaptive
trimmed estimator (DATE) [30] which automatically adapts
to the observations where the signals have unknown prob-
ability distributions and unknown probabilities of presence
less than or equal to one-half in presence of independent
additive white Gaussian noise. Here, we briefly review and
summarize the DATE algorithm as follows. (1) Input a finite
subsequence sequence {Y7,Y,,...,Yy} of a sequence Y =
(Y )en of independent d-dimensional real random vectors,
a lower bound p € [0, 00) for the minimum signal-to-noise
ratio (SNR), and a probability value Q < 1 — N/(N - 2)%.(2)

Compute n,;, according to h = 1/4/4N(1 — Q) and

N
Pmin = 5~ hN, (13)

2
and set A = V2I((d + 1)/2)/T(d/2). (3) Denote by
Y1) Y25 - - > Yy the sequence of observations Y1, Y5, ..., Yy

sorted by increasing norm, and compute &(p) =

cosh™ (exp(p>/2)) = (1/2)p + (1/p)log(1 + /1 — exp(-p?))
ifd=1and&(p) = (l/p)Igl(exp(pz/Z)) ifd = 2, where I, is
the zero-th order modified Bessel function of the first kind.
(4) Search a smallest integer nin {n N} such that

min> * >

My, y (1)
”Y(n) " < ( Lo "YZHX.)HYNH )E( ) ||Y(n+1)|| > (14)

1 n
- Y ifn#0
a2l )

0 ifn=0,

if there exists a such integer n; then set n* = n. Otherwise, set
n" = . (5) Compute the estimate oy, , of the noise

standard deviation by using

o {||Y1||||Yz|| ..... ||YN||}( ) (16)
{Y1,Y550 YN} /\
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FIGURE 2: Results obtained by despeckling the Syn-SAR image. (a) Original. (b) Speckled by 9-look noise. (c) Despeckled using WHT.
(d) Despeckled using WMP. (e) Despeckled using Cauchy. (f) Despeckled using the proposed method.

5. Experimental Results

In this section, experiments are taken on both synthetic
images and real SAR images. We compare the performance of
our proposed algorithm with other methods including hard
thresholding method based on DWT (referred to as WHT),
multiscale products method based on DWT (referred to as
WMP), and the method used in [16] (referred to as Cauchy).

5.1. Experiment on Synthetic Data. To study the performance
of the proposed algorithm in smoothing and edge preserva-
tion, we expected the experimental speckle-free image con-
taining different types with various contents. Thus, an aerial
image (called “Syn-SAR”) which was obtained by cropping
“westconcordorthophoto” found in MATLAB Toolbox has
been chosen. We obtained the speckled image by multiplying
the originals with speckle noise modeled in (3). In our
experiments, the test image was of size 256 x 256, and
we considered three different levels of simulated speckle

noise corresponding to L = 3,5, and 9. To simulate the
speckle, we adopt the following two-step approach: (1) choose
M = 1 and generate a standard normal distribution; then
determine a one-to-one correspondences between m and L by
combining (3) and L = (M /o)?, where M and o are the mean
and the standard deviation of the log-normal distribution,
respectively; (2) then, for a specific L, we use the calculated
m and the standard normal distribution #,,,,,,,; t0 generate
the simulated speckle.

In the WHT, WMP, Cauchy, and the proposed algo-
rithm, the orthogonal wavelet of Daubechies’ Symmlet 4 was
employed and the image was decomposed into four resolu-
tion levels. Considering the computational complexity, a set
of four directionlet transforms S-AWT(M;,2,1) (i = 1,2)
has been used in the proposed method. The corresponding
generator matrices are M, = [}9], M, = [} 1], M; =
[93], and M, = [7!!]. Notice that the four transforms are
oriented along 0°, 45°, 90°, and —45°, respectively. Moreover,
in the process of estimating noise standard deviation, two
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FIGURE 3: (a) Noisy Suburban image. Despeckled images using (b) WHT; (c) WMP; (d) Cauchy; (e) proposed method; (f) ratio image after
WHT despeckling; (g) ratio image after WMP despeckling; (h) ratio image after Cauchy despeckling; (i) ratio image after the proposed method

despeckling.

parameters p and Q involved in DATE are set as 4 and 0.95,
respectively.

To evaluate the performances of these despeckling
approaches, we computed the signal-to-mean squared error
(S/MSE) ratio to measure the quality of noise suppression.
The S/MSE is defined as [10]

5L
= 2
i (8-s)
where N is the image size and S and S are the original and

the denoised images, respectively. This measure corresponds
to the classical SNR in the case of additive noise.

=101 , 17
MSE; 810 (17)

In addition to the above evaluation measure, we also
used a parameter 3 to evaluate the performance of edge
preservation. It is originally defined as [31]

r(AS—E,E—ﬁ)

B =

= ®
| (85 - 55,85 - 85) -1 (85 - 55, 55 - &5)

where AS and AS are the highpass-filtered versions of the
original image S and the denoised image S, respectively,
obtained with a window size of 3 x 3 standard approximation
of the Laplacian operator. The overline operator represents
the mean value, and I'(S;, S,) = Zgl Sii Sy The correlation
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FIGURE 4: (a) Noisy Mountain image. Despeckled images using (b) WHT; (c) WMP; (d) Cauchy; (e) proposed method; (f) ratio image after
WHT despeckling; (g) ratio image after WMP despeckling; (h) ratio image after Cauchy despeckling; (i) ratio image after the proposed method

despeckling.

measure, f3, should be close to unity for an optimal effect of
edge preservation.

Figure 2(a) illustrates the original test image Syn-SAR.
The values of S/MSE and f8 obtained by applying all the
methods to the test image are listed in Tablel. It can be
seen from the table that the proposed method provides larger
values of S/MSE in comparison to other methods; thus, it
indicates a better ability to suppress the speckle noise. Table 1
also shows that the values of f obtained by our approach
are larger than those obtained by the other three methods. It
should be noted that the performance of WMP is increasingly
superior to Cauchy with the increase of noise intensity; this is
probably because multiscale products play a more important
role in diluting noise. For a visual comparison, the speckled

images (L = 9) and the corresponding despeckled images are
shown in Figures 2(b)-2(f), respectively. They also indicate
that the proposed method achieves better visual quality than
the WHT, WMP, and Cauchy methods. Obviously, the result
of visual comparison is consistent with the values of S/MSE
and f3 measures.

5.2. Experiments on Real SAR Images. In order to further
study the advantages of the proposed method, we also
perform experiments on real SAR images. The wavelet used
in the mentioned approaches and the initial values of p
and Q involved in DATE are set same as to the preceding
simulations. The two noisy images Suburban and Mountain
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TABLE 1: S/MSE and f values obtained by all despeckling methods applied on the Syn-SAR image.
Method ENL =3 ENL=5 ENL=9
S/MSE (dB) B S/MSE (dB) B S/MSE (dB) B
Speckled 9.6235 0.1140 11.9799 0.1748 16.8858 0.2046
WHT 14.9322 0.1562 15.7528 0.1819 16.9868 0.2283
WMP 15.9533 0.2310 16.9628 0.2808 18.5386 0.3967
Cauchy 15.4109 0.2282 16.9491 0.2963 19.4615 0.4750
Proposed 16.5515 0.2422 177322 0.3101 19.7430 0.4861

TaBLE 2: ENL and mean of ratio image for suburban and mountain
images.

Method WHT WMP Cauchy Proposed
Suburban

ENL 99.2117 103.0979 101.8755 106.5053

Mean 1.0385 1.0364 1.0381 1.0261
Mountain

ENL 45.3968 58.2193 60.2685 60.7680

Mean 1.0323 1.0285 1.0225 1.0204

with size 256 x 256 are shown in Figures 3(a) and 4(a),
respectively. Since the noise-free images are not available, the
values of the S/MSE and 8 can not be appropriately used
to evaluate the improvement of our method. Fortunately, we
can use the equivalent number of looks (ENL) and the ratio
image (I /T) [32] to assess the despeckling performances. It
is important to note that the ENL must be calculated in
a homogeneous region which has been highlighted with a
rectangle in the original images and that the ratio should
have the characteristics of pure speckle if the speckle is fully
developed in areas.

To assess the quality of despeckled images, we show
the resultant images in Figures 3(b)-3(i) and 4(b)-4(i) and
list the values of ENL and mean of ratio image in Table 2.
From the figures and the table, we can see that the proposed
method achieves the best performance. The results seem
to be consistent with the previous simulation results. We
attribute the better performance of the proposed method to
the application of directionlet-based multiscale products with
the ability of amplifying the significant features and diluting
noise and to the superior performance of garrote shrinkage
function.

6. Conclusion

In this paper, a new SAR image despeckling method using
multiscale products based on directionlets was proposed. We
multiplied the adjacent scale subbands to amplify significant
features and then applied the threshold to multiscale prod-
ucts instead of to the single-scale directionlet coefficients
directly. The experimental results on test SAR image showed
that the proposed method reduces speckle effectively while
preserving edge structures. Due to application of directionlet
transform, multiscale products, and a more complicated
method for threshold estimation, the proposed despeckling

algorithm requires a relatively high computational demand,
but it is not a key issue in application for now. For future work,
we plan to focus on how to determine a more appropriate
threshold, which is important for a despeckling algorithm.
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