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In the present thick plate vibration theory, governing equations of force-displacement relations and equilibrium of forces are
reduced to the system of three partial differential equations of motion with total deflection, which consists of bending and shear
contribution, and angles of rotation as the basic unknown functions.The system is starting one for the application of any analytical
or numerical method. Most of the analytical methods deal with those three equations, some of them with two (total and bending
deflection), and recently a solution based on one equation related to total deflection has been proposed. In this paper, a system of
three equations is reduced to one equation with bending deflection acting as a potential function. Method of separation of variables
is applied and analytical solution of differential equation is obtained in closed form. Any combination of boundary conditions can
be considered. However, the exact solution of boundary value problem is achieved for a plate with two opposite simply supported
edges, while for mixed boundary conditions, an approximate solution is derived. Numerical results of illustrative examples are
compared with those known in the literature, and very good agreement is achieved.

1. Introduction

Rectangular plate is an important structural element in many
modern engineering structures. Spectrum of plate natural
frequencies as a continuum is very dense, and its response
to an excitation can easily fall in resonance. Therefore,
knowledge about plate dynamic behaviour is very important
to structural designers.

Theory of thin plate vibrations is very well developed, and
the achievements are collected in the fundamental Szilard
book [1]. Dynamics of thick plate is a more complex problem,
due to the effect of shear stiffness and rotary inertia, and is
still a subject of investigation. The first works on this subject
are those of Reissner [2] and Mindlin [3]. They assumed
that plate cross-section remains in a straight line but not
normal to the plate middle surface due to shear release.
Accordingly, constant shear stress distribution through the
plate thickness is considered, and concept of shear correction
factor is introduced in order to achieve an effective value of
shear stiffness. As a result of the introduced assumptions,

application of the Reissner-Mindlin theory is limited to the
thick plate of moderate thickness and is known as the first-
order shear deformation theory.

Natural vibrations of thick plate have been a challenging
problem tomany researchers during the past decades. A large
number of articles have been published in the meantime
and a comprehensive survey of the literature up to 1994 can
be found in [4]. Generally speaking, there are two main
approaches for the solution of thick plate natural vibra-
tions, that is, analytical methods for solution of differential
equations of motion and numerical procedures based on
the Rayleigh-Ritz energy method and FEM. In the former
approach system of the governing equations of internal
forces, inertia forces, displacements, and deformations is
reduced to three equilibrium equations expressed with plate
deflection and angles of rotations. Application of analytical
methods is limited to simply supported plate at two opposite
edges. Actually, total plate deflection consists of bending
deflection and shear relaxation, and angles of rotation are
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dependent only on the bending. Analytical methods are dif-
ferent depending onwhich functions are kept as fundamental
ones in further reduction of differential equations of motion.
Hence, it is possible to operate with three, two, or even one
function, that is, total deflection and two angles of rotation,
total deflection and bending deflection, and only with total
deflection, respectively.

Among a large number of articles, it is worthy to
mention the Wang paper [5] in which an explicit formula
for natural frequencies of simply supported thick plate in
the form of that for thin plate is derived. Brunelle offers
a procedure for determination of natural frequencies for a
simply supported plate on two opposite edges [6]. In the
Xiang papers, the well-known Levy approach in thin plate
theory for a simply supported plate on two opposite edges
is employed to the thick plate vibration analysis [7, 8]. The
semianalytical solution for natural vibration is proposed by
Malekzadeh et al. [9]. The same problem is considered in the
Endo and Kimura article with total deflection and bending
deflection as two fundamental functions [10]. A refined plate
theory with two functions, that is, bending deflection and
shear deflection, is proposed by Shimpi and Patel, and it
is applied only for simply supported plate at all edges [11].
The rigorous analytical solution for case of simply supported
edges on two opposite edges is given in the paper of Hashemi
and Arsanjani [12]. An interesting analytical solution for
any combination of simply supported and clamped edges
is presented by Xing and Liu [13]. It is developed under
assumption that angles of rotation in vertical longitudinal
plane vary in transverse direction proportionally to the total
deflection, instead of actual bending deflection, and vice
versa. In spite of that approximation, very good results are
achieved. Xing and Liu proposed also a new variant of their
plate theory in which three classical differential equations are
reformulated to arrive at two equations with total deflection
and generalized curvature as the basic functions [14].

Since application of the analyticalmethods can be applied
only to some combinations of boundary conditions, numeri-
cal methods are used for more complex problems of mixed
boundary conditions, as well as for elastically supported
edges. Mostly, the Rayleigh-Ritz method is applied, and
accuracy of results depends on the chosen set of orthogonal
functions for assumed natural modes. In the paper of Liew
et al., two-dimensional polynomials are used for natural
modes [15]. The static Timoshenko beam functions are very
often applied for plate longitudinal and transverse directions,
for instance, Dawe and Roufaeil [16] and Cheung and Zhou
[17]. Recently, vibration problems of elastically restrained
edges are in the focus [18–20]. As it is well known, the finite
elementmethod is a very powerful tool for structural analysis,
and several finite elements for the Mindlin plate have been
developed and incorporated in commercial FEM software. A
recent formulation of a new finite element for a thick plate is
proposed by Falsone and Settineri [21].

In order to extend applicability of analytical methods for
the solution of natural vibrations of a thick plate for any
combination of boundary conditions, in the present paper,
an advanced moderately thick plate theory is presented. The
single differential equation ofmotion is derived with bending
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Figure 1: Displacements of rectangular plate.

deflection as the basic function. The method of separation
of variables is used, and a rigorous solution is obtained.
Application of themethod is illustrated in the case of different
boundary conditions, and results are compared with those
known in the relevant literature.

2. Basic Equations

A thick rectangular plate is considered in the Cartesian
coordinate system with corresponding displacements, that
is, deflection 𝑤 and angles of rotation in longitudinal and
transverse vertical plane, like in the Timoshenko beam theory
[22], Figure 1. Deflection of thick plate can be decomposed
into bending deflection and shear deflection, according to the
beam theory [23] and plate theory [24]

𝑤 (𝑥, 𝑦, 𝑡) = 𝑤𝑏 (𝑥, 𝑦, 𝑡) + 𝑤𝑠 (𝑥, 𝑦, 𝑡) . (1)

Angles of rotation of plate cross-sections in the lower
frequency domain are predominantly caused by bending
deflection:

𝜓𝑥 = −

𝜕𝑤𝑏

𝜕𝑥

, 𝜓𝑦 = −

𝜕𝑤𝑏

𝜕𝑦

, (2)

while shear deflection makes contribution only to rotation
of plate generatrix. Hence, bending moments and twist
moments are functions of plate bending curvature:

𝑀𝑥 = −𝐷(

𝜕
2
𝑤𝑏

𝜕𝑥
2

+ ]
𝜕
2
𝑤𝑏

𝜕𝑦
2
) , (3a)

𝑀𝑦 = −𝐷(

𝜕
2
𝑤𝑏

𝜕𝑦
2

+ ]
𝜕
2
𝑤𝑏

𝜕𝑥
2
) , (3b)

𝑀𝑥𝑦 = 𝑀𝑦𝑥 = − (1 − ])𝐷
𝜕
2
𝑤𝑏

𝜕𝑥𝜕𝑦

, (3c)

where

𝐷 =

𝐸ℎ
3

12 (1 − ]2)
(4)
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is plate flexural rigidity, and ℎ, 𝐸, and ] are plate thickness,
Young’smodulus of elasticity, and Poisson’s ratio, respectively.
The shear forces are results of shear deformations:

𝑄𝑥 = 𝑆

𝜕𝑤𝑠

𝜕𝑥

, 𝑄𝑦 = 𝑆

𝜕𝑤𝑠

𝜕𝑦

, (5)

where 𝑆 = 𝑘𝐺ℎ is shear rigidity and 𝑘 is shear coefficient.
The vibrating plate is loaded with normal inertia load and

distributed bending moments:

𝑞 = 𝑚

𝜕
2
𝑤

𝜕𝑡
2
, 𝑚𝑥 = −𝐽

𝜕
3
𝑤𝑏

𝜕𝑥𝜕𝑡
2
, 𝑚𝑦 = −𝐽

𝜕
3
𝑤𝑏

𝜕𝑦𝜕𝑡
2
,

(6)

where 𝑚 = 𝜌ℎ is the plate mass per unit area and 𝐽 = 𝜌𝐼 =

𝜌(ℎ
3
/12) is the mass moment of inertia of cross-section per

unit breadth.

3. Differential Equations of Motion

In order to derive the differential equation of motion, let us
consider the equilibrium of moments and forces:

𝜕𝑀𝑥

𝜕𝑥

+

𝜕𝑀𝑥𝑦

𝜕𝑦

= 𝑄𝑥 + 𝑚𝑥,

𝜕𝑀𝑦

𝜕𝑦

+

𝜕𝑀𝑦𝑥

𝜕𝑦

= 𝑄𝑦 + 𝑚𝑦,

𝜕𝑄𝑥

𝜕𝑥

+

𝜕𝑄𝑦

𝜕𝑦

= −𝑞.

(7)

Substituting expressions for forces and loads, (3a), (3b), (3c),
(5), and (6), respectively, into (7) and taking (1) into account,
after some rearrangement, yield

𝜕𝑤𝑠

𝜕𝑥

= −

𝐷

𝑆

(

𝜕
3
𝑤𝑏

𝜕𝑥
3

+

𝜕
3
𝑤𝑏

𝜕𝑥𝜕𝑦
2
) +

𝐽

𝑆

𝜕
3
𝑤𝑏

𝜕𝑥𝜕𝑡
2
, (8)

𝜕𝑤𝑠

𝜕𝑦

= −

𝐷

𝑆

(

𝜕
3
𝑤𝑏

𝜕𝑦
3

+

𝜕
3
𝑤𝑏

𝜕𝑥
2
𝜕𝑦

) +

𝐽

𝑆

𝜕
3
𝑤𝑏

𝜕𝑦𝜕𝑡
2
, (9)

𝜕
2
𝑤𝑠

𝜕𝑥
2

+

𝜕
2
𝑤𝑠

𝜕𝑦
2

−

𝑚

𝑆

𝜕
2
𝑤𝑏

𝜕𝑡
2

−

𝑚

𝑆

𝜕
2
𝑤𝑠

𝜕𝑡
2

= 0. (10)

Equations (8), (9), and (10) represent the system of three
partial differential equations with two unknowns, that is, 𝑤𝑏
and 𝑤𝑠. However, (8) and (9) can be reduced to one equation
by integrating the former per 𝑥 and the latter per 𝑦:

𝑤𝑠 = −

𝐷

𝑆

(

𝜕
2
𝑤𝑏

𝜕𝑥
2

+

𝜕
2
𝑤𝑏

𝜕𝑦
2
) +

𝐽

𝑆

𝜕
2
𝑤𝑏

𝜕𝑡
2

+ 𝑓𝑦 (𝑦, 𝑡) ,
(11)

𝑤𝑠 = −

𝐷

𝑆

(

𝜕
2
𝑤𝑏

𝜕𝑦
2

+

𝜕
2
𝑤𝑏

𝜕𝑥
2
) +

𝐽

𝑆

𝜕
2
𝑤𝑏

𝜕𝑡
2

+ 𝑓𝑥 (𝑥, 𝑡) .
(12)

It is obvious that the undetermined integration functions
have to be the same, that is, 𝑓𝑦(𝑦, 𝑡) = 𝑓𝑥(𝑥, 𝑡) = 𝑓(𝑡),

where𝑓(𝑡) represents rigid body translation. Furthermore, by
substituting (8), (9), and (11) or (12) with 𝑓(𝑡) into (10), one
differential equation ofmotion is obtained with the unknown
bending deflection:

𝐷ΔΔ𝑤𝑏 − 𝐽(1 +

𝑚𝐷

𝐽𝑆

)

𝜕
2

𝜕𝑡
2
Δ𝑤𝑏 + 𝑚

𝜕
2

𝜕𝑡
2
(𝑤𝑏 +

𝐽

𝑆

𝜕
2
𝑤𝑏

𝜕𝑡
2
)

= −𝑚

𝑑
2
𝑓 (𝑡)

𝑑𝑡
2

,

(13)

where Δ(⋅) = 𝜕
2
(⋅)/𝜕𝑥

2
+ 𝜕
2
(⋅)/𝜕𝑦

2 is the Laplace differential
operator. Once 𝑤𝑏 is determined, the total deflection accord-
ing to (1) and (11) yields

𝑤 = 𝑤𝑏 +

𝐽

𝑆

𝜕
2
𝑤𝑏

𝜕𝑡
2

−

𝐷

𝑆

(

𝜕
2
𝑤𝑏

𝜕𝑥
2

+

𝜕
2
𝑤𝑏

𝜕𝑦
2
) + 𝑓 (𝑡) . (14)

Referring to (13), bending deflection consists of the homoge-
nous solution and a particular integral due to the disturbing
function 𝑓(𝑡). Putting 𝑤𝑝 = 𝑤𝑏(𝑡) one finds from (13),

𝑤𝑏 (𝑡) +

𝐽

𝑆

𝑑
2
𝑤𝑏 (𝑡)

𝑑𝑡
2

= −𝑓 (𝑡) . (15)

Furthermore, by substituting (15) into (14), the disturbing
function 𝑓(𝑡) is cancelled.

Since it does not appear in the expression for the total
deflection (14) and derivatives of the bending deflection, by
which angles of rotation and sectional forces are determined,
one can get 𝑓(𝑡) = 0. Hence, differential equation (13)
becomes that homogenous one.

4. Boundary Conditions

The following boundary conditions are considered at the
transverse edge at 𝑥 = 𝑎.

Simply supported edge:

(𝑤)𝑥=𝑎 = 0, (𝑀𝑥)𝑥=𝑎
= −𝐷(

𝜕
2
𝑤𝑏

𝜕𝑥
2

+ ]
𝜕
2
𝑤𝑏

𝜕𝑦
2
)

𝑥=𝑎

= 0.

(16)

Fixed edge:

(𝑤)𝑥=𝑎 = 0, (𝜓𝑥)𝑥=𝑎
= −(

𝜕𝑤𝑏

𝜕𝑥

)

𝑥=𝑎

= 0. (17)

Free edge:

(𝑀𝑥)𝑥=𝑎
= −𝐷(

𝜕
2
𝑤𝑏

𝜕𝑥
2

+ ]
𝜕
2
𝑤𝑏

𝜕𝑦
2
)

𝑥=𝑎

= 0,

(𝑄𝑥)𝑥=𝑎
= (𝑄𝑥 +

𝜕𝑀𝑥𝑦

𝜕𝑦

)

𝑥=𝑎

= 0,

(18)
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where 𝑄𝑥 is the shearing force comprising ordinary trans-
verse shear force and the effect of torsional moment as in
the thin plate theory [1]. According to (3c), (5), and (8), the
shearing force expressed with bending deflection reads

𝑄𝑥 = −𝐷[

𝜕
3
𝑤𝑏

𝜕𝑥
3

+ (2 − ])
𝜕
3
𝑤𝑏

𝜕𝑥𝜕𝑦
2
] + 𝐽

𝜕
3
𝑤𝑏

𝜕𝑥𝜕𝑡
2
. (19)

Boundary conditions for longitudinal edge at 𝑦 = 𝑏 can be
specified in an analogous way.

5. Differential Equation of Natural Vibrations

Natural vibrations are assumed to be harmonic, and there-
fore,

𝑤𝑏 (𝑥, 𝑦, 𝑡) = 𝑊𝑏 (𝑥, 𝑦) sin𝜔𝑡, (20)

where 𝜔 is the natural frequency and 𝑊𝑏 is the mode
amplitude. In this case, differential equation of motion (13)
is reduced to the frequency domain. At the same time, the
second term in (13) can be expressed in a more appropriate
way:

1 +

𝑚𝐷

𝐽𝑆

= 1 +

2

(1 − ]) 𝑘
, (21)

so that the final form of (13) reads

𝐷ΔΔ𝑊𝑏 + 𝜔
2
𝐽 (1 +

2

(1 − ]) 𝑘
)Δ𝑊𝑏

+ 𝜔
2
𝑚(

𝜔
2
𝐽

𝑆

− 1)𝑊𝑏 = 0.

(22)

Amplitude of the total deflection, according to (14), yields

𝑊 = (1 −

𝜔
2
𝐽

𝑆

)𝑊𝑏 −

𝐷

𝑆

(

𝜕
2
𝑊𝑏

𝜕𝑥
2

+

𝜕
2
𝑊𝑏

𝜕𝑦
2
) (23)

and amplitude of rotation angles according to (2)

Ψ𝑥 = −

𝜕𝑊𝑏

𝜕𝑥

, Ψ𝑦 = −

𝜕𝑊𝑏

𝜕𝑦

. (24)

Equation (22) can be reduced to the modified Timoshenko
beam equation expressed with bending deflection [23].

6. Analytical Solution of Natural Vibrations

Differential equation of natural vibrations (22) can be solved
by themethod of separation of variables [25]. In that case, the
bending deflection is presented as a product of two functions,

𝑊𝑏 (𝑥, 𝑦) = 𝑋 (𝑥) 𝑌 (𝑦) , (25)

each depending only on one variable. By substituting (25) into
(22), one obtains

𝑋


𝑌 + 2𝑋

𝑌

+ 𝑋𝑌


+ 𝑎 (𝑋

𝑌 + 𝑋𝑌


) +

̃
𝑏𝑋𝑌 = 0,

(26)

where

𝑎 =

𝜔
2
𝐽

𝐷

[1 +

2

(1 − ]) 𝑘
] ,

̃
𝑏 =

𝜔
2
𝑚

𝐷

(

𝜔
2
𝐽

𝑆

− 1) . (27)

Furthermore, according to the procedure presented in [13],
each of the single variable functions can be assumed in
exponential form

𝑋 = 𝑒
𝜇𝑥
, 𝑌 = 𝑒

𝜆𝑥
. (28)

By inserting (28) into (26), a characteristic equation is
obtained

(𝜇
2
+ 𝜆
2
)

2

+ 𝑎 (𝜇
2
+ 𝜆
2
) +

̃
𝑏 = 0. (29)

It can be reduced to one unknown by substitution of 𝜇2+𝜆
2
=

𝑟
2. Hence, characteristic equation (29) takes the following
forms

𝑟
4
+ 𝑎𝑟
2
+
̃
𝑏 = 0. (30)

Two roots of (30) read

𝑟
2

1
= 𝑅
2

1
, 𝑟

2

2
= −𝑅
2

2
, (31)

where

𝑅
2

1
= √(

𝑎

2

)

2

−
̃
𝑏 −

𝑎

2

, 𝑅
2

2
= √(

𝑎

2

)

2

−
̃
𝑏 +

𝑎

2

. (32)

Hence, there are two solutions for 𝜇2 + 𝜆
2, that is,

𝜇
2
+ 𝜆
2
= 𝑅
2

1
, (33a)

𝜇
2
+ 𝜆
2
= −𝑅
2

2
, (33b)

and each of the unknown parameters 𝜇 and 𝜆 has four
solutions, two real and two imaginary:

𝜇1,2 = ±𝛼, (34a)

𝜇3,4 = ±𝑖𝛽, (34b)

𝜆1,2 = ±𝜂, (35a)

𝜆3,4 = ±𝑖𝜗. (35b)

Parameters𝛼,𝛽, 𝜂, and𝜗 are real andpositive quantities.Their
mutual dependence is obtained by inserting 𝜇𝑖 and 𝜆𝑖 in (33a)
and (33b) in all combinations as follows.

𝜇1,2 and 𝜆1,2 in (33a), 𝜇3,4 and 𝜆3,4 in (33b),

𝛼
2
+ 𝜂
2
= 𝑅
2

1
, (36a)

𝛽
2
+ 𝜗
2
= 𝑅
2

2
, (36b)
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𝜇1,2 and 𝜆3,4 in (33b), 𝜇3,4 and 𝜆1,2 in (33a),

𝜂
2
− 𝛽
2
= 𝑅
2

1
, (37a)

𝜗
2
− 𝛼
2
= 𝑅
2

2
, (37b)

𝜇1,2 and 𝜆3,4 in (33a), 𝜇3,4 and 𝜆1,2 in (33b),

𝛼
2
− 𝜗
2
= 𝑅
2

1
, (38a)

𝛽
2
− 𝜂
2
= 𝑅
2

2
. (38b)

Substitution of 𝜇1,2 and 𝜆1,2 into (33b) and 𝜇3,4 and 𝜆3,4

into (33a) does not give real results, and therefore, that
combination is not acceptable.

By the determined parameters 𝛼, 𝛽, 𝜂, and 𝜗, the single
variable functions (25) can be presented in the following
form:

𝑋 = 𝐴1 sinh𝛼𝑥 + 𝐴2 cosh𝛼𝑥 + 𝐴3 sin𝛽𝑥 + 𝐴4 cos𝛽𝑥,
(39)

𝑌 = 𝐵1 sinh 𝜂𝑦 + 𝐵2 cosh 𝜂𝑦 + 𝐵3 sin 𝜗𝑦 + 𝐵4 cos 𝜗𝑦. (40)

7. Boundary Conditions in terms of
Separated Variables

Based on known functions𝑋(𝑥) and𝑌(𝑦), the total deflection
(23) takes the following form;

𝑊 = (1 −

𝜔
2
𝐽

𝑆

)𝑋𝑌 −

𝐷

𝑆

(𝑋

𝑌 + 𝑋𝑌


) . (41)

For specification of boundary conditions at the transverse and
longitudinal edges, where 𝑥 = 𝑎 and 𝑦 = 𝑏, respectively, the
total deflection can be presented in the following ways:

𝑊(𝑎, 𝑦) = [(1 −

𝜔
2
𝐽

𝑆

−

𝐷

𝑆

𝑌


𝑌

)𝑋 (𝑎) −

𝐷

𝑆

𝑋

(𝑎)]𝑌,

𝑊 (𝑥, 𝑏) = [(1 −

𝜔
2
𝐽

𝑆

−

𝐷

𝑆

𝑋


𝑋

)𝑌 (𝑏) −

𝐷

𝑆

𝑌

(𝑏)]𝑋.

(42)

Angles of rotation, (2), have simple expressions:

Ψ𝑥 (𝑎, 𝑦) = −𝑋

(𝑎) 𝑌, (43a)

Ψ𝑦 (𝑦, 𝑏) = −𝑌

(𝑏)𝑋. (43b)

In a similar way, the bending moments, (3a), (3b), and
(3c), take the following form:

𝑀𝑥 (𝑎, 𝑦) = −𝐷[𝑋

(𝑎) + ]𝑋(𝑎)

𝑌


𝑌

]𝑌,

𝑀𝑦 (𝑥, 𝑏) = −𝐷[𝑌

(𝑏) + ]𝑌 (𝑏)

𝑋


𝑋

]𝑋.

(44)

The shearing forces, according to (19), yield

𝑄𝑥 (𝑎, 𝑦)

= −𝐷[𝑋


(𝑎) +

𝜔
2
𝐽

𝐷

𝑋

(𝑎) + (2 − ])𝑋 (𝑎)

𝑌


𝑌

]𝑌,

𝑄𝑦 (𝑥, 𝑏)

= −𝐷[𝑌


(𝑏) +

𝜔
2
𝐽

𝐷

𝑌

(𝑏) + (2 − ]) 𝑌 (𝑏)

𝑋


𝑋

]𝑋.

(45)

In the previous formulae for the 𝑥 and 𝑦 directions,
ratios 𝑌/𝑌 and 𝑋


/𝑋 are functions which make specifying

boundary conditions as algebraic equations impossible.Their
scalar values are obtained only in the special case of simply
supported edges [26]. Since

𝑋 = sin 𝑚𝜋𝑥

𝑎

, 𝑌 = sin
𝑛𝜋𝑦

𝑏

, (46)

one obtains

𝑋


𝑋

= −(

𝑚𝜋

𝑎

)

2

,

𝑌


𝑌

= −(

𝑛𝜋

𝑏

)

2

, (47)

where 𝑚 and 𝑛 are the total number of mode half waves in 𝑥

and 𝑦 direction, respectively. Equation (47) can be used for
arbitrary boundary conditions as the first rough approxima-
tion. Furthermore, according to (39) and (40), functions 𝑋
and 𝑌 consist of the hyperbolic and trigonometric part, that
is,

𝑋 = 𝑋
ℎ
+ 𝑋
𝑡
, 𝑋


= 𝛼
2
𝑋
ℎ
− 𝛽
2
𝑋
𝑡
,

𝑌 = 𝑌
ℎ
+ 𝑌
𝑡
, 𝑌


= 𝜂
2
𝑌
ℎ
− 𝜗
2
𝑌
𝑡
.

(48)

By taking into account (47) and (48), the expressions for the
geometric boundary conditions read as follows.

Deflection:

𝑊(𝑎, 𝑦) = [𝑝1𝑋
ℎ
(𝑎) + 𝑝2𝑋

𝑡
(𝑎)] 𝑌, (49)

𝑊(𝑥, 𝑏) = [𝑞1𝑌
ℎ
(𝑏) + 𝑞2𝑌

𝑡
(𝑏)]𝑋, (50)

where

𝑝1 = 1 −

𝜔
2
𝐽

𝑆

+

𝐷

𝑆

[(

𝑛𝜋

𝑏

)

2

− 𝛼
2
] ,

𝑝2 = 1 −

𝜔
2
𝐽

𝑆

+

𝐷

𝑆

[(

𝑛𝜋

𝑏

)

2

+ 𝛽
2
] ,

𝑞1 = 1 −

𝜔
2
𝐽

𝑆

+

𝐷

𝑆

[(

𝑚𝜋

𝑎

)

2

− 𝜂
2
] ,

𝑞2 = 1 −

𝜔
2
𝐽

𝑆

+

𝐷

𝑆

[(

𝑚𝜋

𝑎

)

2

+ 𝜗
2
] .

(51)
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Angles of rotation:

Ψ𝑥 (𝑎, 𝑦) = −𝑋

(𝑎) 𝑌, Ψ𝑦 (𝑥, 𝑏) = −𝑋𝑌


(𝑏) . (52)

In a similarway, the bendingmoments (44) can bewritten
in the following form:

𝑀𝑥 (𝑎, 𝑦) = −𝐷 [𝑟1𝑋
ℎ
(𝑎) − 𝑟2𝑋

𝑡
(𝑎)] 𝑌, (53)

𝑀𝑦 (𝑥, 𝑏) = −𝐷 [𝑠1𝑌
ℎ
(𝑏) − 𝑠2𝑌

𝑡
(𝑏)]𝑋, (54)

where

𝑟1 = 𝛼
2
− ](

𝑛𝜋

𝑏

)

2

, 𝑟2 = 𝛽
2
+ ](

𝑛𝜋

𝑏

)

2

,

𝑠1 = 𝜂
2
− ](

𝑚𝜋

𝑎

)

2

, 𝑠2 = 𝜗
2
+ ](

𝑚𝜋

𝑎

)

2

.

(55)

Finally, for the shearing forces (45), one can write

𝑄𝑥 (𝑎, 𝑦) = −𝐷[𝑢1

𝑑𝑋
ℎ

𝑑𝑥









𝑥=𝑎

− 𝑢2

𝑑𝑋
𝑡

𝑑𝑥









𝑥=𝑎

]𝑌,

𝑄𝑦 (𝑥, 𝑏) = −𝐷[V1
𝑑𝑌
ℎ

𝑑𝑦









𝑦=𝑏

− V2
𝑑𝑌
𝑡

𝑑𝑦









𝑦=𝑏

]𝑋,

(56)

where

𝑢1 = 𝛼
2
+

𝜔
2
𝐽

𝐷

− (2 − ]) (
𝑛𝜋

𝑏

)

2

,

𝑢2 = 𝛽
2
−

𝜔
2
𝐽

𝐷

+ (2 − ]) (
𝑛𝜋

𝑏

)

2

,

V1 = 𝜂
2
+

𝜔
2
𝐽

𝐷

− (2 − ]) (
𝑚𝜋

𝑎

)

2

,

V2 = 𝜗
2
−

𝜔
2
𝐽

𝐷

+ (2 − ]) (
𝑚𝜋

𝑎

)

2

.

(57)

8. Natural Vibrations of Clamped Plate, CCCC

Each of the four rectangular plate edges can be simply
supported, clamped, or free. That results in a quite large
number of possible combinations of boundary conditions.
However, in order to illustrate applicability of the developed
theory, it is sufficient to analyse a few typical boundary value
problems.

Hence, let us first consider vibrations of a clamped plate.
Boundary conditions at transverse edges read

𝑊(𝑎, 𝑦) = 0, Ψ𝑥 (𝑎, 𝑦) = 0,

𝑊 (0, 𝑦) = 0, Ψ𝑥 (0, 𝑦) = 0.

(58)

According to (39), (49), and (52), (58) lead to the following
expressions:

𝑝1 (𝐴1 sinh𝛼𝑎 + 𝐴2 cosh𝛼𝑎)

+ 𝑝2 (𝐴3 sin𝛽𝑎 + 𝐴4 cos𝛽𝑎) = 0,

𝐴1𝛼 cosh𝛼𝑎 + 𝐴2𝛼 sinh𝛼𝑎 + 𝐴3𝛽 cos𝛽𝑎 − 𝐴4𝛽 sin𝛽𝑎 = 0,

(59)

𝑝1𝐴2 + 𝑝2𝐴4 = 0, 𝛼𝐴1 + 𝛽𝐴3 = 0. (60)

From (60) it yields that

𝐴4 = −

𝑝1

𝑝2

𝐴2, 𝐴3 = −

𝛼

𝛽

𝐴1. (61)

Substitution of (61) into (59) gives a system of two algebraic
equations which can be written in the following matrix form

[

𝑝1𝛽 sinh𝛼𝑎 − 𝑝2𝛼 sin𝛽𝑎 𝑝1𝛽 (cosh𝛼𝑎 − cos𝛽𝑎)
𝑝2𝛼 (cosh𝛼𝑎 − cos𝛽𝑎) 𝑝2𝛼 sinh𝛼𝑎 + 𝑝1𝛽 sin𝛽𝑎

]

× {

𝐴1

𝐴2

} = {

0

0
} .

(62)

The nontrivial solution is obtained if determinant of (62) is
zero, after some manipulations, which leads to the following
frequency equation:

2𝑝1𝑝2𝛼𝛽 (1 − cosh𝛼𝑎 cos𝛽𝑎)

+ [(𝑝2𝛼)
2
− (𝑝1𝛽)

2
] sinh𝛼𝑎 sin𝛽𝑎 = 0.

(63)

In the homogenous system of algebraic equations (62), one
of the integration constants 𝐴1 and 𝐴2 is arbitrary, while the
other is determined by the first or the second equation. From
the first equation one can write

𝐴1 = 𝑝1𝛽 (cosh𝛼𝑎 − cos𝛽𝑎) ,

𝐴2 = −𝑝1𝛽 sinh𝛼𝑎 + 𝑝2𝛼 sin𝛽𝑎.

(64)

Constants 𝐴3 and 𝐴4 are obtained by employing (61). In
that, way function 𝑋, (39), for mode shapes in longitudinal
direction is defined.

Boundary conditions for the clamped longitudinal edges
read

𝑊(𝑥, 𝑏) = 0, Ψ𝑦 (𝑥, 𝑏) = 0,

𝑊 (𝑥, 0) = 0, Ψ𝑦 (𝑥, 0) = 0.

(65)

Following the previous procedure, the final frequency equa-
tion can be written in an analogous way:

2𝑞1𝑞2𝜂𝜗 (1 − cosh 𝜂𝑏 cos 𝜗𝑏)

+ [(𝑞2𝜂)
2
− (𝑞1𝜗)

2
] sinh 𝜂𝑏 sin 𝜗𝑏 = 0.

(66)
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For integration constants, one can write

𝐵1 = 𝑞1𝜗 (cosh 𝜂𝑏 − cos 𝜗𝑏) ,

𝐵1 = −𝑞1𝜗 sin 𝜂𝑏 + 𝑞2𝜂 sin 𝜗𝑏,

𝐵3 = −

𝜂

𝜗

𝐵1, 𝐵4 = −

𝑞1

𝑞2

𝐵2.

(67)

In that way, function 𝑌, (40), is defined. Now, the bending
deflection mode can be determined 𝑊𝑏 = 𝑋𝑌 and then the
complete deflection mode by employing (41).

In frequency equations (63) and (66), five quantities are
unknown, that is, 𝜔, 𝛼, 𝛽, 𝜂, and 𝜗, and therefore, it is
necessary to specify three additional conditions. For that
purpose, six relations are on disposal, that is, (36a), (36b),
(37a), (37b), (38a), and (38b). Frequency 𝜔 is the basic
variable, and it is convenient to choose parameter 𝛽 of the
trigonometric functions of the longitudinal plate generatrix
as the second basic variable, since it remains in the case of
simply supported edges.The other parameters 𝛼, 𝜂, and 𝜗 can
be expressed with 𝛽. Summing up (36a) and (38b) or (36b)
and (38a) yields

𝛼
2
+ 𝛽
2
= 𝑅
2

1
+ 𝑅
2

2
= 𝑅
2
. (68)

Furthermore, one finds from (37a) and (36b) that

𝜂 = √𝑅
2

1
+ 𝛽
2
, (69a)

𝜗 = √𝑅
2

2
− 𝛽
2
. (69b)

It is interesting, that summation of square of (69a) and (69b)
gives an expression similar to (68), that is,

𝜂
2
+ 𝜗
2
= 𝑅
2

1
+ 𝑅
2

2
= 𝑅
2
. (70)

The previous relations of vibration parameters are geometri-
cally dependent based on Pythagoras’ theorem and therefore
can be constructed as shown in Figure 2. Assuming the value
of 𝜔, 𝑅1 and 𝑅2 are determined and presented as catheti of
the right triangle ABCwith hypotenuse𝑅.The circumscribed
circle of rectangle ABCD is drawn. Furthermore, value of
parameter 𝛽 is assumed, and 𝛼 is defined as cathetus of
triangle AEC, according to (68). Value of 𝛽 = CE is rotated
so that 𝜂 is obtained as the hypotenuse of triangle CDG
according to (69a). Parameter 𝜗 is determined as the cathetus
of triangle BCF, according to (69b). Finally, 𝜂 = DG and
𝜗 = BF are rotated and their intersection, point𝐻, lies at the
circle according to (70). In that way, the plan of the vibration
parameters is closed. It changes depending on boundary
conditions and vibration mode.

Now, 𝛼, 𝜂, and 𝜗 from (68) and (69a) and (69b) can be
substituted into frequency equations (63) and (66). In the
previous way, system of five nonlinear algebraic equations is
reduced to two equations with unknown parameters𝜔 and 𝛽.
It can be solved by a Newton-Raphson iteration procedure.
For that purpose, it is necessary to specify the numbers of
mode half waves 𝑚 and 𝑛 in 𝑥 and 𝑦 directions, respectively.

𝜂

𝜂

A B

G

D

H

C

F

E

R1

R1

R2 R2

R R

𝛼
𝜗

𝜗

𝛽

𝛽

𝛽

Figure 2: Plan of vibration parameters.

Hence, 𝑚, 𝑛 is actually mode identification number. In case
of clamped plate,𝑚 and 𝑛 take values 2, 3, 4,. . .. Furthermore,
an expected value of𝜔 has to be prescribed as the initial value
in the iteration procedure. Also, a realistic value for 𝛽 has to
be assumed. A set of few mathematical solutions for 𝜔 and
𝛽 is usually obtained, but only that solution which manifests
the same numbers of the mode half waves 𝑚 and 𝑛 as the
prescribed ones is physically correct.

Accuracy of the natural frequencies can be increased if
calculation is repeated with ratios (47) of the condensed
functions. For that purpose, the average values based on the
1-norm can be applied:

𝑋


𝑋

→ −

∫

𝑎

0






𝑋




𝑑𝑥

∫

𝑎

0
|𝑋| 𝑑𝑥

= −(

�̃�𝜋

𝑎

)

2

,

𝑌


𝑌

→ −

∫

𝑏

0






𝑌




𝑑𝑦

∫

𝑏

0
|𝑌| 𝑑𝑦

= −(

𝑛𝜋

𝑏

)

2

,

(71)

where �̃� and 𝑛 are numbers analogous to 𝑚 and 𝑛. The
previous integrals can be solved numerically.

Calculation of natural frequencies is performed for rect-
angular plate of aspect ratio 𝑎/𝑏 = 0.4, thickness ratio ℎ/𝑏 =

0.001 and 0.1, and shear coefficient 𝑘 = 5/6. The obtained
values of frequency parameterΛ = (𝜔𝑏

2
/𝜋
2
)√𝜌ℎ/𝐷 are listed

in Tables 1 and 2 for thin and thick plates, respectively. PS0
is the present solution obtained with given 𝑚 and 𝑛, while
PS1 and PS2 are the first and the second iterative solution
determined with average values of the functions of separated
variables, (71), respectively. In that procedure,𝑚 and 𝑛 change
values to floating point values �̃� and 𝑛.

Results for the thin plate, Table 1, are obtained directly
without iteration.They are comparedwithXing’s solution [13]
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Table 1: Frequency parameter Λ for case CCCC, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.001.

Mode:𝑚, 𝑛 2, 2 2, 3 2, 4 2, 5 2, 6 3, 2 3, 3 3, 4

PS0 14.910 17.445 22.228 29.374 38.795 39.923 42.601 47.225
Xing and Liu [13] 14.910 17.445 22.228 29.374 38.795 39.927 42.601 47.225
Liew et al. [15] 14.972 17.608 22.427 29.553 38.951 39.943 42.671 47.349

Table 2: Frequency parameter Λ for case CCCC, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1.

Mode:𝑚, 𝑛 2, 2 2, 3 2, 4 2, 5 3, 2 2, 6 3, 3 3, 4

PS0 10.696 12.025 14.929 19.199 23.353 24.037 24.171 25.830

�̃�1, 𝑛1 1.1154, 1.3764 1.0898, 2.3560 1.0548, 3.3528 1.0153, 4.3556 1.7244, 1.3198 1.6138, 4.8451 1.7051, 2.2904 1.6745, 3.2868
PS1 10.578 11.949 14.714 18.658 22.602 23.376 23.720 25.682

�̃�2, 𝑛2 1.1000, 1.3381 1.1033, 2.2034 1.1097, 3.0362 1.1208, 3.8440 1.6454, 1.3064 1.1103, 4.6693 1.6674, 2.1632 1.6978, 2.9921
PS2 10.572 11.918 14.652 18.585 22.597 23.317 23.658 25.520

Xing and Liu [13] 10.544 11.921 14.702 18.657 22.530 23.393 23.646 25.643

Liew et al. [15] 10.702 12.352 15.257 19.195 22.627 23.861 23.972 26.198

Wb(x, b/2)

Ws (x, b/2)

W(x, b/2)

0 0.1 0.2 0.3 0.4

Figure 3: Deflection of plate longitudinal generatrix, case CCCC,
the 1st mode, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1.

and Liew’s solution [15]. The former is determined analyt-
ically in closed form, and for the latter the Rayleigh-Ritz
method is employed. PS0 and Xing’s values are the same,
while Liew’s values are somewhat higher.

For thick plate, Table 2, stable values of vibration param-
eter Λ are obtained in two iteration steps. They are very close
to the Xing’s values, while Liew’s values are somewhat higher.
Values of 𝑚 and 𝑛 are moderately reduced in the first step
of iteration and very little in the second one. Even the first
approximate values of natural frequencies, PS0, are very close
to the Liew values. Generally speaking, if natural frequency
does not converge to the expected value, it is necessary to
adjust values of𝑚 and 𝑛.

For illustration, the first natural mode of the thick
plate is presented by deflection of longitudinal generatrix in
the middle of the plate, Figure 3. Similar diagrams can be
drawn for transverse generatrix. Total deflection 𝑊(𝑥, 𝑏/2)

consists of bending deflection𝑊𝑏(𝑥, 𝑏/2) and shear deflection
𝑊𝑠(𝑥, 𝑏/2).Their boundary values exist as a result of ignoring
integration function 𝑓(𝑡), Section 3. However, the boundary
values are of the close magnitudes but opposite signs, and

Figure 4: The first natural mode, case CCCC, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1;
𝑚, 𝑛 = 2, 2.

therefore, they are almost cancelled. As a result, the boundary
conditions are approximately satisfied, that is, 𝑊(0, 𝑦) =

𝑊(𝑎, 𝑦) = 𝜀(𝑦), where the shape of discrepancy function
𝜀(𝑦) is similar to that of shear deflection𝑊𝑠(𝑥𝑖, 𝑦). The same
consideration is valid for the longitudinal edges. Actually, the
boundary conditions for deflection are satisfied in the mean
according to the introduced 1-norms (71). Furthermore, it is
obvious from the boundary slope of the bending deflection
that the angles of rotation are zero as specified by the
boundary conditions. The shape of the shear deflection is
similar to the bending moment of clamped beam, since it
depends on curvatures. Indeed, the main shear part in the
formula for total deflection, (23), can be expressed with the
bending moments, (3a), (3b), and (3c):

𝑊 = (1 −

𝜔
2
𝐽

𝑆

)𝑊𝑏 +

1

(1 + ]) 𝑆
(𝑀1 + 𝑀2) . (72)

Shear contribution to total deflection is increased for higher
modes due to shortening of wave length.

The shape of the first natural mode is shown in Figure 4,
where negligible small hold-down of the plate corners can be
noticed due to the previous explained reasons.
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Table 3: Frequency parameter Λ for case CCSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.001.

Mode:𝑚, 𝑛 1.5, 1.5 1.5, 2.5 1.5, 3.5 1.5, 4.5 2.5, 1.5 2.5, 2.5 1.5, 5.5 2.5, 3.5

PS0 10.651 13.484 18.462 25.603 32.573 34.858 35.416 40.247
Xing and Liu [13] 10.651 13.484 18.462 25.603 32.573 34.858 35.416 40.247
Liew et al. [15] 10.669 13.524 18.507 25.641 32.579 34.888 35.436 40.279

Table 4: Frequency parameter Λ for case CCSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1.

Mode:𝑚, 𝑛 1.5, 1.5 1.5, 2.5 1.5, 3.5 1.5, 4.5 2.5, 1.5 2.5, 2.5 1.5, 5.5 2.5, 3.5

PS0 8.4956 10.382 13.643 17.997 21.176 22.393 23.096 24.542

�̃�1, 𝑛1 1.0802, 1.1907 1.0601, 2.1725 1.0346, 3.1684 1.0071, 4.1691 1.814, 1.1603 1.8312, 2.1326 0.9780, 5.1712 1.8136, 3.1290
PS1 8.4735 10.363 13.559 17.776 20.920 22.275 22.687 24.562

�̃�2, 𝑛2 1.0769, 1.1828 1.0708, 2.1158 1.0670, 3.0304 1.0679, 3.9286 1.8063, 1.1603 1.8199, 2.0978 1.0724, 4.8150 1.8373, 3.0150
PS2 8.4730 10.359 13.549 17.762 20.921 22.266 22.676 24.533

Xing and Liu [13] 8.4681 10.359 13.559 17.778 20.905 22.265 22.694 24.566

Liew et al. [15] 8.5213 10.504 13.752 17.978 20.950 22.412 22.883 24.818

9. Natural Vibrations of Plate with Two
Simply Supported and Two Clamped
Edges, CCSS

Boundary conditions at the transverse edges read

𝑊(𝑎, 𝑦) = 0, 𝑀𝑥 (𝑎, 𝑦) = 0,

𝑊 (0, 𝑦) = 0, Ψ𝑥 (0, 𝑦) = 0.

(73)

According to (49), (53), and (52), one can write

𝑝1 (𝐴1 sinh𝛼𝑎 + 𝐴2 cosh𝛼𝑎)

+ 𝑝2 (𝐴3 sin𝛽𝑎 + 𝐴4 cos𝛽𝑎) = 0,

𝑟1 (𝐴1 sinh𝛼𝑎 + 𝐴2 cosh𝛼𝑎)

− 𝑟2 (𝐴3 sin𝛽𝑎 + 𝐴4 cos𝛽𝑎) = 0,

𝑝1𝐴2 + 𝑝2𝐴4 = 0, 𝛼𝐴1 + 𝛽𝐴3 = 0.

(74)

The previous system of algebraic equations leads to the
following frequency equation:

(1 +

𝑝1

𝑝2

𝑟2

𝑟1

) tanh𝛼𝑎 −

𝛼

𝛽

(

𝑝2

𝑝1

+

𝑟2

𝑟1

) tan𝛽𝑎 = 0. (75)

The frequency equation for transverse direction can be
written in the analogous way since the boundary conditions
are the same in both cases:

(1 +

𝑞1

𝑞2

𝑠2

𝑠1

) tanh 𝜂𝑏 −

𝜂

𝜗

(

𝑞2

𝑞1

+

𝑠2

𝑠1

) tan 𝜗𝑏 = 0. (76)

The integration constants 𝐴 𝑖 and 𝐵𝑖, 𝑖 = 1, 2, 3, 4, are
expressed by the same formulas as in the previous cases, (61),
(64), and (67).

Since one of two opposite edges is simply supported and
another is clamped, numbers of mode half waves take values
𝑚 = 1.5, 2.5, . . . and 𝑛 = 1.5, 2.5, . . ..Thenumerical procedure

Figure 5:The secondnaturalmode, caseCCSS, 𝑎/𝑏 = 0.4,ℎ/𝑏 = 0.1;
𝑚, 𝑛 = 1.5, 2.5.

for determining natural frequencies is the same as in the case
of clamped plate.

Values of vibration parameter Λ for thin and thick plates
are presented in Tables 3 and 4, respectively. In the former
cases results obtained by all three methods are the same.
For thick plates the initial values of Λ are very close to
the final values. Also, PS2 values are very close to Xing’s
values. However, Liew’s values are somewhat higher as in
the previous example. The second natural mode is shown in
Figure 5, where only slight release of the corner of clamped
two adjacent edges is registered.

10. Natural Vibrations of Plate with Mixed
Boundary Conditions, CFSS

Boundary conditions at transverse edges are the same as in
the previous case. Therefore, frequency equation (75), with
corresponding integration constants, (61), (64), is valid also
in the present case.

Boundary conditions at longitudinal edges read

𝑊(𝑥, 𝑏) = 0, 𝑀𝑦 (𝑥, 𝑏) = 0,

𝑀𝑦 (𝑥, 0) = 0, 𝑄𝑦 (𝑥, 0) = 0.

(77)
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Table 5: Frequency parameter Λ for case CFSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.001.

Mode:𝑚, 𝑛 1.5, 0.5 1.5, 1.5 1.5, 2.5 1.5, 3.5 1.5, 4.5 2.5, 0.5 2.5, 1.5 2.5, 2.5

PS2 9.8873 11.3994 14.6341 19.7738 26.9092 31.7086 33.4171 36.0825
Liew et al. [15] 9.8742 11.3458 14.4898 19.5392 26.6235 31.6979 33.3971 35.7883
FEM 9.8589 11.2012 14.0840 18.7437 25.3267 31.6571 33.0734 33.9035

The expanding form of (77) is the following:

𝑞1 (𝐵1 sinh 𝜂𝑏 + 𝐵2 cosh 𝜂𝑏)

+ 𝑞2 (𝐵3 sin 𝜗𝑏 + 𝐵4 cos 𝜗𝑏) = 0,

𝑠1 (𝐵1 sinh 𝜂𝑏 + 𝐵2 cosh 𝜂𝑏)

− 𝑠2 (𝐵3 sin 𝜗𝑏 + 𝐵4 cos 𝜗𝑏) = 0,

𝑠1𝐵2 − 𝑠2𝐵4 = 0, 𝜂V1𝐵1 − 𝜗V2𝐵3 = 0.

(78)

The previous system of algebraic equations leads to the
following frequency equation:

(1 +

𝑞2

𝑞1

𝑠1

𝑠2

) tanh 𝜂𝑏 −

𝜂V1
𝜗V2

(

𝑞2

𝑞1

+

𝑠2

𝑠1

) tan 𝜗𝑏 = 0. (79)

The integration constants are the following:

𝐵1 = cosh 𝜂𝑏 +

𝑞2𝑠1

𝑞1𝑠2

cos 𝜗𝑏,

𝐵2 = − sinh 𝜂𝑏 −

𝜂𝑞2V1
𝜗𝑞1V2

sin 𝜗𝑏,

𝐵3 =

𝜂V1
𝜗V2

𝐵1, 𝐵4 =

𝑠1

𝑠2

𝐵2.

(80)

Based on the expected mode shape, the following values of
modal parameters are taken into account: 𝑚 = 1.5, 2.5, . . .

and 𝑛 = 0.5, 1.5, . . ..
The obtained results for thin and thick plates are listed

in Tables 5 and 6, respectively. Values of the frequency
parameter Λ for thin plate are determined by iteration since
in this case free edge convergence is not as fast as for the
other boundary conditions. Very good agreement with Liew’s
values can be noticed. Calculation of natural vibration is also
performed by NASTRAN [27] with mesh density of the finite
elementmodel 8×16.That is sufficient to determine the first 8
natural frequencies accurately. The obtained results are quite
close to those of PS2 and Liew’s values.

The fifth and sixth natural modes determined by the
present theory are shown in Figures 6 and 7, where the
mode identification number is 𝑚, 𝑛 = 1.5, 4.5 and 2.5, 0.5,
respectively. Intention is to point out the transition of natural
vibrations from a dominantly large number of mode half
waves in transverse direction to longitudinal direction. A
slight release of the corner of clamped and free edge can be
noticed. The same natural modes obtained by FEM analysis
are presented in Figures 8 and 9 [27]. There is no other visual
difference between the mode shapes determined in these two
ways. They can be distinguished mainly by the smooth and
straight lines of the deformed mesh.

Figure 6: The fifth natural mode, case CFSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1;
𝑚, 𝑛 = 1.5, 4.5, PS

2
.

Figure 7: The sixth natural mode, case CFSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1;
𝑚, 𝑛 = 2.5, 0.5, PS2.

Figure 8: The fifth natural mode, case CFSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1;
𝑚, 𝑛 = 1.5, 4.5, FEM.

11. Conclusion

An advanced vibration theory of moderately thick plate
vibrations is presented. The three traditional partial differen-
tial equations of motion with total deflection and angles of
rotation are reduced to one equation with bending deflection
as the basic unknown acting as a potential function. Its
general solution is determined exactly by the method of
separation of variables. The frequency equations are exact in
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Table 6: Frequency parameter Λ for case CFSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1.

Mode:𝑚, 𝑛 1.5, 0.5 1.5, 1.5 1.5, 2.5 1.5, 3.5 1.5, 4.5 2.5, 0.5 2.5, 1.5 2.5, 2.5

PS0 7.8297 8.1701 9.3195 12.722 17.589 20.561 21.422 22.422

�̃�1, 𝑛1 1.0895, 0.4950 1.0845, 0.8354 1.0706, 1.4737 1.0411, 2.6646 1.0095, 3.9345 1.8465, 0.7878 1.8393, 1.2686 1.8309, 2.0644
PS1 7.9335 8.9499 11.148 14.537 18.882 20.497 21.299 22.970

�̃�2, 𝑛2 1.0791, 0.6096 1.0678, 1.2959 1.0531, 2.2285 1.0499, 3.2175 1.0566, 4.2231 1.8037, 0.8579 1.8054, 1.3982 1.8120, 2.2943
PS2 7.9310 8.9585 11.183 14.602 18.976 20.484 21.305 23.010

Liew et al. [15] 7.9407 8.9700 11.135 14.462 18.761 20.459 21.357 23.112

FEM 8.0190 8.8660 10.834 14.056 18.278 20.771 21.397 22.662

Figure 9: The sixth natural mode, case CFSS, 𝑎/𝑏 = 0.4, ℎ/𝑏 = 0.1;
𝑚, 𝑛 = 2.5, 0.5, FEM.

the case of simply supported plate and simply supported two
opposite edges. These two special problems are elaborated
in detail in [26]. An approximate but very reliable solution
is obtained for arbitrary boundary conditions which are
satisfied in the mean, except angles of rotations that are
satisfied exactly in any case. For the first time, an analytical
solution is obtained for the case of a free edge where Levy’s
approach is not applicable.

As pointed out, the new theory can be used for vibration
analysis of moderately thick plate. Very thick plates, where
coupling of bending shear and in-plane shear modes appears
at higher natural frequencies, can be analysed by the method
described in [28]. Actually, very thick plates are elastic bodies,
and 3D analysis is more effective. By the proposed method,
results obtained by numerical methods, as the Rayleigh-Ritz
method, can be verified. Also, finite elements for thick plate
can be tested. The differential equation of motion is derived
in the time domain and can be applied for determining both
harmonic and transient force responses.

Difference between the proposed moderately thick plate
theory and the known theories is obvious as can be seen from
the outline of the latter presented in the Appendix.

Appendix

An Outline of Some Known Thick
Plate Theories

The Mindlin thick plate theory is deduced directly from
the three-dimensional equations of elasticity and is therefore
general. The governing strain-displacement relations, stress-
strain relations, and equilibrium equations are reduced to

three compatibility equations with a deflection function and
two angles of rotation as the basic variables:

𝐹1 (𝑤, 𝜓𝑥, 𝜓𝑦) = 0, 𝐹2 (𝑤, 𝜓𝑥, 𝜓𝑦) = 0,

𝐹3 (𝑤, 𝜓𝑥, 𝜓𝑦) = 0.

(A.1)

Equations (A.1) are consistent partial differential equations of
motion and are used as the starting point in all other theories.

In the Mindlin theory, (A.1) are further uncoupled by
expressing the plate displacements in terms of three poten-
tials 𝑤1, 𝑤2, and𝐻 as follows [3, 29]:

𝑤 = 𝑤1 + 𝑤2,

𝜓𝑥 = (𝜎1 − 1)

𝜕𝑤1

𝜕𝑥

+ (𝜎2 − 1)

𝜕𝑤2

𝜕𝑥

+

𝜕𝐻

𝜕𝑦

,

𝜓𝑦 = (𝜎1 − 1)

𝜕𝑤1

𝜕𝑦

+ (𝜎2 − 1)

𝜕𝑤2

𝜕𝑦

−

𝜕𝐻

𝜕𝑥

.

(A.2)

The potentials are determined from differential equations of
the same type:

(Δ + 𝛿
2

1
)𝑤1 = 0, (Δ + 𝛿

2

2
)𝑤2 = 0,

(Δ + 𝜔
2
)𝐻 = 0,

(A.3)

where Δ is a Laplace differential operator and 𝜎1, 𝜎2, 𝛿1, 𝛿2,
and 𝜔 are vibration parameters which depend on the plate
physical and geometrical properties [29].

In order to assure a unique solution of (A.3), onemember
of each of the following three products has to be specified at
the plate boundary:

𝑀V

𝜕𝜓V

𝜕𝑡

, 𝑀V𝑠

𝜕𝜓𝑠

𝜕𝑡

, 𝑄V
𝜕𝑤

𝜕𝑡

, (A.4)

where V and 𝑠 are normal and tangential coordinates, respec-
tively. A closed form solution of (A.3) can be determined for
simply supported plates and plates with two opposite edges
simply supported [29].

In order to simplify the procedure for solving differential
equations ofmotion,Mindlin reduced the system (A.1) to one
differential equation by eliminating variables 𝜓𝑥 and 𝜓𝑦, that
is:

𝐹4 (𝑤) = 0. (A.5)
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However, that is not so useful since another equation is
obtained in the following form:

𝐹5 (𝑤, 𝜙) = 0, (A.6)

where

𝜙 =

𝜕𝜓𝑥

𝜕𝑥

+

𝜕𝜓𝑦

𝜕𝑦

, (A.7)

which does not make the separation of angles of rotation
possible.

This problem is overcome in [24], where two new first-
order shear deformation theories, both with two variables,
are proposed. One of them operates with bending and shear
deflection, 𝑤𝑏 and 𝑤𝑠, respectively, and the other with total
deflection 𝑤 and potential function 𝜃 for determining the
angles of rotation:

𝜓𝑥 = −

𝜕𝜃

𝜕𝑥

, 𝜓𝑦 = −

𝜕𝜃

𝜕𝑦

. (A.8)

The application of the new theories for plate vibration is
demonstrated in the case of simply supported edges.

A refined theory with only one variable, that is, total
deflection, is presented in [13], where (A.5) is solved by the
method of separation of variables. Displacement amplitude
is written as a product of two single variable functions:

𝑊(𝑥, 𝑦) = 𝑋 (𝑥) 𝑌 (𝑦) , (A.9)

where each of them consists of trigonometric and hyperbolic
terms:

𝑋 = 𝑋𝑡 + 𝑋ℎ, 𝑌 = 𝑌𝑡 + 𝑌ℎ. (A.10)

The amplitude of the angles of rotation is assumed in the
following form:

𝜓𝑥 (𝑥, 𝑦) = (𝑔1

𝜕𝑋𝑡 (𝑥)

𝜕𝑥

+ 𝑔2

𝜕𝑋ℎ (𝑥)

𝜕𝑥

)𝑌 (𝑦) ,

𝜓𝑦 (𝑥, 𝑦) = (ℎ1

𝜕𝑌𝑡 (𝑦)

𝜕𝑦

+ ℎ2

𝜕𝑌ℎ (𝑦)

𝜕𝑦

)𝑋 (𝑥) .

(A.11)

The coefficients 𝑔𝑖 and ℎ𝑖, 𝑖 = 1, 2, are determined by
satisfying the second and third equations of system (A.1) for
displacement amplitudes. Two boundary conditions have to
be specified on each plate edge. This procedure is applicable
for solving plate vibrations for any combination of simply
supported and clamped edges, as well as for any boundary
conditions if two opposite edges are simply supported.

In the Mindlin plate theory, shear deformations are
defined as the sum of the plate cross-section rotation angle
and the slope of the plate generatrix:

𝛾𝑥 = 𝜓𝑥 +

𝜕𝑤

𝜕𝑥

, 𝛾𝑦 = 𝜓𝑦 +

𝜕𝑤

𝜕𝑦

. (A.12)

Since the displacements are due to the bending and shear
contribution, one can write

𝛾𝑥 = 𝛾𝑥𝑏 + 𝛾𝑥𝑠 = (𝜓𝑥𝑏 +

𝜕𝑤𝑏

𝜕𝑥

) + (𝜓𝑥𝑠 +

𝜕𝑤𝑠

𝜕𝑥

) . (A.13)

For bending, 𝛾𝑥𝑏 = 0 because 𝜓𝑥𝑏 = −𝜕𝑤𝑏/𝜕𝑥, and the shear
problem can be split into two elementary cases:

(1) transverse shear:

𝜓𝑥𝑠 = 0, 𝛾𝑥𝑠 =

𝜕𝑤𝑠

𝜕𝑥

̸= 0, (A.14)

(2) in-plane shear:

𝑤𝑠 = 0, 𝜓𝑥𝑠 ̸= 0. (A.15)

Case 1, as a result of flexural vibrations, is realized in the lower
frequency domain. Case 2 appears at higher frequencies, and
its in-planemodes are slightly coupled with the lower flexural
modes.

Most of the literature deals with the ordinary bending
shear problem since it is more interesting for practical needs.
Coupled bending shear and in-plane shear vibrations are
investigated in a set of papers, and one of the recent solutions
is presented in [28]. Exact in-plane shear frequency values
are obtained for a plate with two parallel edges simply
supported. A complete frequency spectrum for coupled
flexural and in-plane modes is determined by the discrete
convolution method (DSC). By increasing plate thickness,
coupling between in-plane shear and bending enters into the
lower order of mode ranges.
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