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This paper investigates the synchronization phenomenon of an intermittently coupled dynamical network in which the coupling
among nodes can occur only at discrete instants and the coupling configuration of the network is time varying. A model of
intermittently coupled dynamical network consisting of identical nodes is introduced. Based on the stability theory for impulsive
differential equations, some synchronization criteria for intermittently coupled dynamical networks are derived. The network
synchronizability is shown to be related to the second largest and the smallest eigenvalues of the coupling matrix, the coupling
strength, and the impulsive intervals. Using the chaotic Chua system and Lorenz system as nodes of a dynamical network for
simulation, respectively, the theoretical results are verified and illustrated.

1. Introduction

A complex dynamical network is a large set of interconnected
nodes, in which each node is typically a nonlinear dynamical
system.Many real systems in nature and engineering, such as
physical, biological, technological, and social systems, can be
described by variousmodels of complex dynamical networks.
Complex dynamical networks, therefore, have become a
significant research topic for studying nonlinear dynamics in
various fields of sciences and humanities today [1–7].

One of the most remarkable phenomena in complex
dynamical networks is the synchronization of dynamical
nodes, which has been extensively investigated in recent years
[8–32]. Wang and Chen [8, 9] presented a unified dynamical
networkmodel and investigated its synchronization in small-
world and scale-free networks. Belykh et al. [11, 12] proposed
an effective method for determining the global stability
of synchronization in dynamical networks with different
topologies, which combines the Lyapunov function approach
with graph-theoretic reasoning. Restrepo et al. [19] studied
the emergence of coherence in large-scale complex networks
of interacting heterogeneous dynamical systems and showed
that the largest eigenvalue of the network adjacency matrix
plays a key role in determining the transition to coherence.

Zhou et al. [20–22] derived some synchronization criteria
for general complex delayed dynamical networks. Recently,
synchronization of complex dynamical networks with impul-
sive control has been extensively studied [23–32]. For exam-
ple, Guan et al. [23, 24] proposed a hybrid impulsive and
switching control strategy and investigated the stabilization
of complex networks. Liu et al. [25] proposed an impulsive
synchronization scheme for an uncertain dynamical network.
Zhang et al. [26] designed an effective impulsive controller to
achieve impulsive synchronization for a complex dynamical
network with unknown coupling. Lu et al. [27] investi-
gated the problem of globally exponential synchronization
of impulsive dynamical network, with a unified impulsive
synchronization criterion derived by proposing a concept
of average impulsive interval. Tang et al. [29] investigated
the pinning synchronization problem of stochastic impulsive
networks. Zhou et al. [30] proposed an impulsive control
approach for analyzing pinning stability in a complex delayed
dynamical network comprised of linearly coupled dynamical
systems with coupling delays. Han et al. [31] and Sun et al.
[32] derived some distributed impulsive control schemes for
various impulsively coupled complex dynamical systemswith
or without delays.
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However, the aforementioned work and most other
existing research focus on the networks whose couplings
are invariable or continuously varying in time. In the real
world, there aremany networks in which the coupling among
nodes is intermittent. For example, in neural networks,
the connections among neurons are usually cut-off type or
extremely faint. There are prominent impulsive interactions
among neurons when they are stimulated by certain signals,
and the interactions are not identical due to the differences
of stimulating signals. This type of networks is referred to
as intermittently coupled dynamical networks. Note that the
structure of such networks is time varying, and the interac-
tions among nodes can only take place when some conditions
are satisfiedwhich are usually described by a group of discrete
time sequences. To the best of our knowledge, there are few
theoretical results about intermittently coupled dynamical
networks in the current literature.

In this paper, an intermittently coupled dynamical net-
work consisting of identical nodes is investigated. In the
network, the coupling amongnodes can only occur at discrete
instants, and the coupling configuration of the network is
varying at different instants. Based on the stability theory
for impulsive differential equations, some synchronization
criteria are obtained, showing that the synchronizability
of the intermittently coupled dynamical network is related
to the second largest and the smallest eigenvalues of the
coupling matrix, the coupling strength, and the impulsive
intervals. It turns out that the analytical results about the
second largest and the smallest eigenvalues of the coupling
matrix are consistentwith other known results about complex
dynamical networks [8, 9, 19].

The rest of the paper is organized as follows. In Section 2,
an intermittently coupled dynamical network model is intro-
duced, and some necessary definitions and preliminary lem-
mas are presented. The main results of the paper are given
in Section 3, where some synchronization criteria for the
network model are derived. In Section 4, using the chaotic
Chua system and Lorenz system as nodes of a dynamical
network, respectively, numerical simulations are performed
to illustrate and verify the theoretical results. Finally, conclu-
sions are drawn in Section 5.

2. Model Description and Preliminaries

Consider an intermittently coupled dynamical network con-
sisting of 𝑁 identical nodes, with each node being an n-
dimension dynamical system, described by
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the function 𝑓 satisfies the following condition.
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In this paper, we consider the dynamical network with time-
varying diffusive coupling at discrete instants. Let
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where constant 𝑐 > 0 is the coupling strength, 𝐴(𝑡
𝑘
) =

(𝑎
𝑖𝑗
(𝑡
𝑘
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𝑡
𝑘
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and Γ = diag{𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
} ∈ 𝑅

𝑛×𝑛 is the inner-linking
matrix. Let Γ = diag{1, 1, . . . , 1}. Thus, (4) becomes

𝑈
𝑖
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𝑎
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(𝑡
𝑘
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𝑗
(𝑡
𝑘
) . (6)

Assume that network (1) is connected at instants 𝑡
1
, 𝑡
2
, . . ., in

the sense that there is no isolated cluster; that is, 𝐴(𝑡
𝑘
) is an

irreducible matrix.

Lemma 1 (see [14]). Suppose that the outer-coupling matrix
𝐴 = (𝑎

𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 satisfies the above-mentioned conditions.
Then,

(i) 0 is an eigenvalue of matrix 𝐴 of multiplicity 1, associ-
ated with eigenvector (1/√𝑁, 1/√𝑁, . . . , 1/√𝑁)𝑇;

(ii) all the other eigenvalues of 𝐴 are real-valued and are
strictly negative.

Lemma 1 implies that the outer-coupling matrix 𝐴(𝑡
𝑘
) of

network (1) at instant 𝑡
𝑘
has a 0 eigenvalue of multiplicity 1,

with 𝜆
𝑁
(𝑡
𝑘
) ≤ ⋅ ⋅ ⋅ ≤ 𝜆

2
(𝑡
𝑘
) < 𝜆
1
(𝑡
𝑘
) = 0.
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Remark 2. According to matrix theory, there exists an
orthogonal matrix 𝐵(𝑡

𝑘
) such that 𝐴(𝑡

𝑘
) = 𝐵
𝑇
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), . . . , 𝜆

𝑁
(𝑡
𝑘
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𝑘
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(1/√𝑁, 1/√𝑁, . . . , 1/√𝑁)
𝑇 corresponding to the zero eigen-

value of 𝐴(𝑡
𝑘
).

Next, network (1) is rewritten as the following impulsive
differential equations:
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Definition 3. The synchronization manifold is presented as
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2
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𝑛
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Definition 4. The coupled system (6) is said to achieve
synchronization if, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑁, lim

𝑡→∞
||𝑥
𝑖
(𝑡) −

𝑥
𝑗
(𝑡)|| = 0.
From Definitions 3 and 4, it can be easily seen that the

intermittently coupled system (7) achieves synchronization if
and only if the synchronization manifold S for the coupled
system (7) is globally asymptotically stable.

3. Synchronization of the Intermittently
Coupled Network

Let 𝑥(𝑡) = (1/𝑁)∑𝑁
𝑗=1
𝑥
𝑗
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On the other hand,

𝑥 (𝑡
+

𝑘
) =

1

𝑁

𝑁

∑

𝑖=1

𝑥
𝑖
(𝑡
+

𝑘
)

=
1

𝑁

𝑁

∑

𝑖=1

[

[

𝑥
𝑖
(𝑡
𝑘
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡
𝑘
) 𝑥
𝑗
(𝑡
𝑘
)]

]

=
1

𝑁

𝑁

∑

𝑖=1

𝑥
𝑖
(𝑡
𝑘
) +

𝑐

𝑁

𝑁

∑

𝑗=1

[

𝑁

∑

𝑖=1

𝑎
𝑖𝑗
(𝑡
𝑘
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𝑗
(𝑡
𝑘
)
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𝑘
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(9)

Define the synchronization error of node 𝑖 as 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) −

𝑥(𝑡), 𝑖 = 1, 2, . . . , 𝑁. Obviously, ∑𝑁
𝑖=1
𝑒
𝑖
(𝑡) = 0.

For 𝑡 ̸= 𝑡
𝑘
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where 𝑓(𝑒
𝑖
(𝑡)) = 𝑓(𝑥(𝑡) + 𝑒

𝑖
(𝑡)) − 𝑓(𝑥(𝑡)).

According to assumption (A1), it can be easily shown that

𝑓 (𝑒
𝑖 (𝑡))


≤ 𝐿

𝑒𝑖 (𝑡)
 , 𝑖 = 1, 2, . . . , 𝑁. (11)

For 𝑡 = 𝑡
𝑘
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𝑖
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𝑘
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𝑘
)
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𝑖
(𝑡
𝑘
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𝑁
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𝑎
𝑖𝑗
(𝑡
𝑘
) 𝑥
𝑗
(𝑡
𝑘
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𝑘
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= 𝑒
𝑖
(𝑡
𝑘
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𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡
𝑘
) 𝑒
𝑗
(𝑡
𝑘
) .

(12)

Therefore, the error dynamical system can be described as

̇𝑒
𝑖 (𝑡) = 𝑓 (𝑒𝑖 (𝑡)) −

1

𝑁

𝑁

∑

𝑗=1

𝑓 (𝑒
𝑗 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
,

𝑒
𝑖
(𝑡
+

𝑘
) = 𝑒
𝑖
(𝑡
𝑘
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡
𝑘
) 𝑒
𝑗
(𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

(13)

where 𝑖 = 1, 2, . . . , 𝑁.
Let 𝑒(𝑡) = [𝑒𝑇

1
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡)]
𝑇
∈ 𝑅
𝑛𝑁. It is easily seen that

the stability of the synchronization manifold is equivalent to
𝑒(𝑡) → 0 as 𝑡 → ∞. In the following, we directly investigate
the dynamical behaviors of the error dynamical system (13).

Theorem 5. Let 𝑃 ∈ 𝑅𝑛×𝑛 be a symmetric and positive definite
matrix, with 𝜆max(𝑃) and 𝜆min(𝑃) being the largest and the
smallest eigenvalues, respectively. Suppose that there exists a
constant 𝜉 > 1 and, for all 𝑘 = 1, 2, . . .,

𝜆min (𝑃) exp
−2𝐿√(𝜆max(𝑃)/𝜆min(𝑃))(𝑡𝑘+1−𝑡𝑘)

𝜆max (𝑃) 𝜆 (𝑡𝑘)
≥ 𝜉 > 1, (14)

where 𝜆(𝑡
𝑘
) = max{(1 + 𝑐𝜆

𝑖
(𝑡
𝑘
))
2
| 𝑖 = 2,𝑁}, 𝜆

2
(𝑡
𝑘
) and

𝜆
𝑁
(𝑡
𝑘
) are the second largest and the smallest eigenvalues of

matrix𝐴(𝑡
𝑘
), respectively, and the constant 𝑐 > 0 is the coupling

strength. Then, the trivial solution of the error dynamical
system (21) is asymptotically stable, implying that network (1)
achieves synchronization.
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Proof. Construct a Lyapunov function as

𝑉 (𝑡, 𝑒) = 𝑒
𝑇
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=
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𝑖
(𝑡) 𝑃𝑒𝑖 (𝑡)

𝜆min (𝑃)

+ 𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
𝑒
𝑇

𝑖
(𝑡) 𝑃𝑒𝑖 (𝑡)

= 2𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
𝑉 (𝑡, 𝑒) .

(16)

For 𝑡 = 𝑡
𝑘
, one has

𝑒 (𝑡
+

𝑘
) = (𝑒

𝑇

1
(𝑡
+

𝑘
) , 𝑒
𝑇

2
(𝑡
+

𝑘
) , . . . , 𝑒

𝑇

𝑁
(𝑡
+

𝑘
))
𝑇

= 𝑒 (𝑡
𝑘
) + 𝑐𝐴

𝑇
(𝑡
𝑘
) ⊗ 𝐼
𝑛
𝑒 (𝑡
𝑘
)

= [𝐼
𝑁
⊗ 𝐼
𝑛
+ 𝑐𝐴
𝑇
(𝑡
𝑘
) ⊗ 𝐼
𝑛
] 𝑒 (𝑡
𝑘
) .

(17)

Therefore,

𝑉 (𝑡
+

𝑘
, 𝑒) = 𝑒

𝑇
(𝑡
+

𝑘
) (𝐼
𝑁
⊗ 𝑃) 𝑒 (𝑡

+

𝑘
)

= 𝑒
𝑇
(𝑡
𝑘
) [(𝐼
𝑁
+ 𝑐𝐴 (𝑡

𝑘
)) ⊗ 𝐼
𝑛
]
𝑇
(𝐼
𝑁
⊗ 𝑃)

× [(𝐼
𝑁
+ 𝑐𝐴 (𝑡

𝑘
)) ⊗ 𝐼
𝑛
] 𝑒 (𝑡
𝑘
)

≤ 𝜆max (𝑃) 𝑒
𝑇
(𝑡
𝑘
) [(𝐼
𝑁
+ 𝑐𝐴 (𝑡

𝑘
)) ⊗ 𝐼
𝑛
]
𝑇

× [(𝐼
𝑁
+ 𝑐𝐴 (𝑡

𝑘
)) ⊗ 𝐼
𝑛
] 𝑒 (𝑡
𝑘
)

= 𝜆max (𝑃) 𝑒
𝑇
(𝑡
𝑘
) [(𝐼
𝑁
+ 𝑐𝐴 (𝑡

𝑘
))
2
⊗ 𝐼
𝑛
] 𝑒 (𝑡
𝑘
) .

(18)

Based on the property of the matrix 𝐴(𝑡
𝑘
) mentioned in

Remark 2, there exits an orthogonal matrix 𝐵(𝑡
𝑘
) such that

𝐴(𝑡
𝑘
) = 𝐵
𝑇
(𝑡
𝑘
)Λ(𝑡
𝑘
)𝐵(𝑡
𝑘
), where

Λ (𝑡
𝑘
) = diag {𝜆

1
(𝑡
𝑘
) , . . . , 𝜆

𝑁
(𝑡
𝑘
)} (19)

and the first column of 𝐵𝑇(𝑡
𝑘
) is the eigenvector (1/√𝑁,

. . . , 1/√𝑁)
𝑇 corresponding to the zero eigenvalue of 𝐴(𝑡

𝑘
).

Let 𝜂(𝑡
𝑘
) = (𝜂

𝑇

1
(𝑡
𝑘
), . . . , 𝜂

𝑇

𝑁
(𝑡
𝑘
))
𝑇
= (𝐵(𝑡

𝑘
) ⊗ 𝐼
𝑛
)𝑒(𝑡
𝑘
). Then,

𝜂
1
(𝑡
𝑘
) =

1

√𝑁

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡
𝑘
) = 0. (20)

Therefore,

𝜂 (𝑡
𝑘
) = (0, 𝜂𝑇

2
(𝑡
𝑘
) , . . . , 𝜂

𝑇

𝑁
(𝑡
𝑘
))
𝑇

. (21)

Let 𝜆(𝑡
𝑘
) = max{(1 + 𝑐𝜆

𝑖
(𝑡
𝑘
))
2
| 𝑖 = 2,𝑁}, where 𝜆

2
(𝑡
𝑘
) and

𝜆
𝑁
(𝑡
𝑘
) are the second largest and the smallest eigenvalues of

matrix 𝐴(𝑡
𝑘
), respectively. It follows from (18) and (21) that

𝑉 (𝑡
+

𝑘
, 𝑒) ≤ 𝜆max (𝑃) 𝑒

𝑇
(𝑡
𝑘
)

× [(𝐵
𝑇
(𝑡
𝑘
) (𝐼
𝑁
+ 𝑐Λ (𝑡

𝑘
))
2
𝐵 (𝑡
𝑘
)) ⊗ 𝐼
𝑛
] 𝑒 (𝑡
𝑘
)

= 𝜆max (𝑃) 𝜂
𝑇
(𝑡
𝑘
) ((𝐼
𝑁
+ 𝑐Λ (𝑡

𝑘
))
2
⊗ 𝐼
𝑛
) 𝜂 (𝑡
𝑘
)

= 𝜆max (𝑃)
𝑁

∑

𝑖=1

𝜂
𝑇

𝑖
(𝑡
𝑘
) (1 + 𝑐𝜆

𝑖
(𝑡
𝑘
))
2
𝜂
𝑖
(𝑡
𝑘
)

≤ 𝜆max (𝑃) 𝜆 (𝑡𝑘)
𝑁

∑

𝑖=1

𝜂
𝑇

𝑖
(𝑡
𝑘
) 𝜂
𝑖
(𝑡
𝑘
)

= 𝜆max (𝑃) 𝜆 (𝑡𝑘) 𝑒
𝑇
(𝑡
𝑘
) (𝐵
𝑇
(𝑡
𝑘
) ⊗ 𝐼
𝑛
)

× (𝐵 (𝑡
𝑘
) ⊗ 𝐼
𝑛
) 𝑒 (𝑡
𝑘
)

≤
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘
) 𝑒
𝑇
(𝑡
𝑘
) (𝐼
𝑁
⊗ 𝑃) 𝑒 (𝑡

𝑘
)

=
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘
) 𝑉 (𝑡
𝑘
, 𝑒) .

(22)

Let 𝑆
𝜌
= {𝑥 ∈ 𝑅

𝑛
: ||𝑥|| < 𝜌}. Since ||𝑒(𝑡+

𝑘
)|| = ||[(𝐼

𝑁
+𝑐𝐴(𝑡

𝑘
))⊗

𝐼
𝑛
]𝑒(𝑡
𝑘
)|| ≤ ||(𝐼

𝑁
+ 𝑐𝐴(𝑡

𝑘
)) ⊗ 𝐼
𝑛
||||𝑒(𝑡
𝑘
)|| and ||(𝐼

𝑁
+ 𝑐𝐴(𝑡

𝑘
)) ⊗

𝐼
𝑛
|| < ∞, there exists a 𝜌

0
> 0 such that 𝑒(𝑡

𝑘
) ∈ 𝑆
𝜌
0

implies
𝑒(𝑡
+

𝑘
) ∈ 𝑆
𝜌
for all 𝑘.

Since 𝑃 is a symmetric and positive definite matrix, one
has

𝜆min (𝑃)
𝑛

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) ≤ 𝑉 (𝑡, 𝑒) ≤ 𝜆max (𝑃)

𝑛

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) .

(23)

Thus, by the well-known comparison Theorem [33], the
asymptotic stability of the trivial solution of the impulsive
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dynamical system (13) follows from the comparison system
below:

�̇� (𝑡) = 2𝐿√
𝜆max (𝑃)

𝜆min (𝑃)
𝜔 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝜔 (𝑡
+

𝑘
) =

𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘
) 𝜔 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

𝜔 (𝑡
+

0
) = 𝜔
0
.

(24)

Therefore, by the stability criterion for impulsive differential
equations [34], there exists a constant 𝜉 > 1 such that

ln
𝜆max (𝑃)

𝜆min (𝑃)
𝜆 (𝑡
𝑘
) 𝜉 + 2𝐿√

𝜆max (𝑃)

𝜆min (𝑃)
(𝑡
𝑘+1
− 𝑡
𝑘
) ≤ 0, (25)

namely,

𝜆min (𝑃) exp
−2𝐿√(𝜆max(𝑃)/𝜆min(𝑃))(𝑡𝑘+1−𝑡𝑘)

𝜆max (𝑃) 𝜆 (𝑡𝑘)
≥ 𝜉 > 1. (26)

Hence, the trivial solution of error dynamical system (13)
is asymptotically stable, implying that network (1) achieves
synchronization.

Remark 6. For a dynamical network consisting of 𝑁 nodes,
the number of possible couplingmatrices which represent the
coupling configurations of the network is finite. Therefore,
one may define

𝜆
max

= max
𝑘=1,2,...

𝜆
2
(𝑡
𝑘
) , 𝜆

min
= min
𝑘=1,2,...

𝜆
𝑁
(𝑡
𝑘
) , (27)

and 𝜆 = max{(1 + 𝑐𝜆max
)
2
, (1 + 𝑐𝜆

min
)
2
}. It is obvious that

𝜆(𝑡
𝑘
) ≤ 𝜆 for all 𝑘 = 1, 2, . . ..

Remark 7. The synchronizability of network (1) is determined
by the second largest eigenvalue𝜆

2
(𝑡
𝑘
) and the smallest eigen-

value 𝜆
𝑁
(𝑡
𝑘
) of the coupling matrix, the coupling strength 𝑐,

and impulsive intervals 𝜎
𝑘
= 𝑡
𝑘+1
− 𝑡
𝑘
, 𝑘 = 1, 2, . . ..

4. Numerical Simulations

In this section, two illustrative examples about the chaotic
Chua system and Lorenz system, respectively, are given to
demonstrate the theoretical results obtained above. Without
loss of generality, let the impulses be equidistant and sepa-
rated by a constant interval 𝜎 > 0.

Example 1. The chaotic Chua system is used as nodes of a
dynamical network, which is described by

(

�̇�

̇𝑦

�̇�

) = (

𝛼 [𝑦 − 𝑥 − 𝜑 (𝑥)]

𝑥 − 𝑦 + 𝑧

−𝛽𝑦

) , (28)

where 𝛼, 𝛽 are two parameters and 𝜑(𝑥) = 𝑏𝑥 + 0.5(𝑎 −

𝑏)(|𝑥+1|− |𝑥−1|) represents a piecewise-linear diode, where
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Figure 1:𝑁 = 100, 𝜎 = 0.01, and 𝑐 = 0.01.

𝑎 < 𝑏 < 0 are two constants. It is well known that Chua
system is chaotic when 𝛼 = 9.22, 𝛽 = 15.99, 𝑎 = −1.25, and
𝑏 = −0.76.

The intermittently coupled dynamical network is
described by

�̇�
𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡
𝑘
) 𝑥
𝑗
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(29)

where

𝑓 (𝑥
𝑖 (𝑡)) = (

𝛼 [𝑥
𝑖2
− 𝑥
𝑖1
− 𝜑 (𝑥

𝑖1
)]

𝑥
𝑖1
− 𝑥
𝑖2
+ 𝑥
𝑖3

−𝛽𝑥
𝑖2

) . (30)

The outer-coupling matrix 𝐴(𝑡
𝑘
) = (𝑎

𝑖𝑗
(𝑡
𝑘
)) ∈ 𝑅

𝑁×𝑁 repre-
sents the coupling configuration of the dynamical network at
instant 𝑡

𝑘
and is defined as follows.

When 𝑘 is odd, the dynamical network has nearest-
neighbor coupling, so

𝐴 (𝑡
𝑘
) = 𝐴

1
= (

−2 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 1 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 1 −2

) . (31)

When 𝑘 is even, the dynamical network has star coupling,
so

𝐴 (𝑡
𝑘
) = 𝐴

2
= (

−𝑁 + 1 1 1 ⋅ ⋅ ⋅ 1 1

1 −1 0 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0 −1

) . (32)
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Figure 2:𝑁 = 100, 𝜎 = 0.05, and 𝑐 = 0.01.
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Figure 3:𝑁 = 100, 𝜎 = 0.05, and 𝑐 = 0.05.

In the simulation, we choose 𝑁 = 100. The initial values of
these systems are chosen randomly from interval [−20, 20].
For a small impulsive interval 𝜎 > 0, the synchronization
of network (29) can be achieved by choosing an appropriate
coupling strength 𝑐. The numerical simulation results are
shown in Figures 1–5, where 𝑒

𝑖𝑗
= ∑
𝑁

𝑖=2
|𝑥
𝑖𝑗
−𝑥
1𝑗
|/(𝑁−1), 𝑗 =

1, 2, 3.
In Figure 1, 𝜎 = 0.01 and 𝑐 = 0.01. One can see that

the state errors between node 1 and node 𝑖, 𝑖 = 2, 3, . . . , 100,
tend to zero asymptotically as time evolves, implying that
network (29) achieves synchronization. When 𝜎 = 0.05 and
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Figure 4:𝑁 = 100, 𝜎 = 0.05, and 𝑐 = 0.06.
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Figure 5:𝑁 = 100, 𝜎 = 0.01, and 𝑐 = 0.06.

𝑐 = 0.01, network (29) cannot achieve synchronization, as
shown in Figure 2. Figure 3 shows that network (29) achieves
synchronization with 𝜎 = 0.05 and 𝑐 = 0.05. Figure 4 shows
that network (29) cannot achieve synchronization where 𝜎 =
0.05 and 𝑐 = 0.06. Figure 5 shows that network (29) achieves
synchronization with 𝜎 = 0.01 and 𝑐 = 0.06.
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Figure 6:𝑁 = 200, 𝜎 = 0.1, and 𝑐 = 0.01.
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Figure 7:𝑁 = 200, 𝜎 = 0.1, and 𝑐 = 0.015.

Example 2. The chaotic Lorenz system is used as nodes of a
dynamical network, which is described by

(

�̇�

̇𝑦

�̇�

) = (

𝑎 (𝑦 − 𝑥)

𝑐𝑥 − 𝑥𝑧 − 𝑦

𝑥𝑦 − 𝑏𝑧

) , (33)

with a chaotic attractor when 𝑎 = 10, 𝑏 = 8/3, and 𝑐 = 28.
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Figure 8:𝑁 = 50, 𝜎 = 0.1, and 𝑐 = 0.015.
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Figure 9:𝑁 = 50, 𝜎 = 0.1, and 𝑐 = 0.055.

The intermittently coupled dynamical network is de-
scribed by

�̇�
𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡
𝑘
) 𝑥
𝑗
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
,

(34)
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Figure 10:𝑁 = 50, 𝜎 = 0.1, and 𝑐 = 0.048.

where

𝑓 (𝑥
𝑖 (𝑡)) = (

𝑎 (𝑥
𝑖2
− 𝑥
𝑖1
)

𝑐𝑥
𝑖1
− 𝑥
𝑖1
𝑥
𝑖3
− 𝑥
𝑖2

𝑥
𝑖1
𝑥
𝑖2
− 𝑏𝑥
𝑖3

) . (35)

Let 𝑙 ≡ 𝑘 mod 3. The outer-coupling matrix 𝐴(𝑡
𝑘
) =

(𝑎
𝑖𝑗
(𝑡
𝑘
)) ∈ 𝑅

𝑁×𝑁 is defined as follows.
When 𝑙 = 1, the dynamical network has global coupling,

and its outer-coupling matrix is

𝐴 (𝑡
𝑘
) = 𝐴

𝑔𝑐
= (

−𝑁 + 1 1 1 ⋅ ⋅ ⋅ 1

1 −𝑁 + 1 1 ⋅ ⋅ ⋅ 1...
...

...
...

...
1 1 1 ⋅ ⋅ ⋅ −𝑁 + 1

) .

(36)

When 𝑙 = 2, the dynamical network has nearest-neighbor
coupling, with

𝐴 (𝑡
𝑘
) = 𝐴

1
= (

−2 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 1 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 1 −2

) . (37)

When 𝑙 = 0, the dynamical network has star coupling,
with

𝐴 (𝑡
𝑘
) = 𝐴

2
= (

−𝑁 + 1 1 1 ⋅ ⋅ ⋅ 1 1

1 −1 0 ⋅ ⋅ ⋅ 0 0...
...

...
...

...
...

1 0 0 ⋅ ⋅ ⋅ 0 −1

) . (38)

In the simulation, we choose 𝜎 = 0.1. The initial
values of these systems are chosen randomly from interval
[−20, 20]. The numerical simulation results indicate that the

synchronizability of network (34) is related to the coupling
strength 𝑐 and the number of nodes 𝑁, as shown in Figures
6–10, where 𝑒

𝑖𝑗
= ∑
𝑁

𝑖=2
|𝑥
𝑖𝑗
− 𝑥
1𝑗
|/(𝑁 − 1), 𝑗 = 1, 2, 3. For the

coupling matrices of this network (34), the spectral width of
eigenvalues will be broadened with increasing 𝑁. Therefore,
the synchronizability of the network will be weakened if the
node number increases sharply.

In Figure 6, 𝑁 = 200 and 𝑐 = 0.01. One can see that
the state errors tend to zero asymptotically as time evolves,
implying that network (34) achieves synchronization. When
𝑁 = 200 and 𝑐 = 0.015, network (34) cannot achieve
synchronization, as illustrated in Figure 7. When 𝑁 = 50

and 𝑐 = 0.015, network (34) achieves synchronization,
as shown in Figure 8. When 𝑁 = 50 and 𝑐 = 0.055,
network (34) cannot achieve synchronization, as shown in
Figure 9. Figure 10 demonstrates that network (34) achieves
synchronization when𝑁 = 50 and 𝑐 = 0.048.

5. Conclusions

This paper investigates the synchronization phenomenon of
an intermittently coupled dynamical network, in which the
coupling among nodes can occur only at discrete instants
and the coupling configuration of the network is varying
at different instants. For such an intermittently coupled
dynamical network consisting of identical nodes, based on
the stability theory for impulsive differential equations, some
synchronization conditions are derived. It is shown that the
synchronizability of the network is related to the second
largest eigenvalue and the smallest eigenvalue of the coupling
matrix, the coupling strength, and the impulsive intervals. It
is worth noting that the analytical results about the second
largest and the smallest eigenvalues of the couplingmatrix are
consistent with most existing criteria for complex dynamical
networks. Finally, by employing the chaotic Chua system and
Lorenz system as nodes of a dynamical network, respectively,
numerical simulations are carried out to illustrate and verify
the theoretical results.
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