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This paper presents a study about the application of a Kalman filter to estimate the position and velocity of a spacecraft in an
aerobraking maneuver around the Earth. The cis-lunar aerobraking of the Hiten spacecraft as well as an aerobraking in a LEO
orbit are simulated in this paper. The simulator developed considers a reference trajectory and a trajectory perturbed by external
disturbances combined with nonidealities of sensors and actuators. It is able to operate in closed loop controlling the trajectory at
each instant of time using a PID controller and propulsive jets. A Kalman filter utilizes the sensor data to estimate the state of the
spacecraft. The estimation algorithms and propagation equations used in this process are presented. The U.S. Standard Atmosphere
is adopted as the atmospheric model. The main results are compared with the case where the Kalman filter is not used. Therefore,

it was possible to perform an analysis of the Kalman filter importance applied to an aerobraking maneuver.

1. Introduction

An orbital maneuver is described by the transferring of a
satellite, from one orbit to another, through a changing in
the velocity. To execute the maneuver, the spacecraft has
to engage the thrusters or use the natural forces of the
environment. The Hohmann transfer [1] and the Bielliptical
transfer [2] are some alternatives to accomplish an orbital
maneuver by propulsive means. If a velocity increment is
added to the satellite velocity instantaneously, the maneuver
is called impulsive maneuver [3-6]. The continuous thrust
assumes that a finite thrust is applied by a time different
from zero. The transfer orbit is a slow spiral outward under
continuous thrust when the thrust is small compared to
the gravitational force [7]. The theory of optimal low thrust
orbital transfer has received a great deal of attention over
the past years. There are many studies in the literature
that consider a low thrust propulsion system [8-14] or an
impulsive propulsion system [15-23]. Another kind of orbital
transfer is the gravity-assisted maneuver (or swing-by) that
consists in the use of the gravity of a planet or other celestial

body to alter the path and speed of a spacecraft, typically in
order to save propellant, time, and expense [24-33].

In 1961, Howard London presented the approach of using
aerodynamic forces in order to change the trajectory of a
spacecraft. This new technique became known as aeroas-
sisted maneuvers [34]. This type of orbital transfer can be
accomplished in several layers of the atmosphere. The altitude
reached by the vehicle within the atmosphere is related
to the mission purpose and the maximum thermal load
supported by the vehicle structure. The main advantage of
this type of maneuver is the fuel economy. As discussed
by Walberg [34], many papers about aeroassisted orbital
transfer have been made in recent decades and have shown
that a significant reduction in fuel can be achieved using
aeroassisted maneuvers instead of propulsive transfer [35-
38].

The transfer between two circular and coplanar orbits
is widely used. The technique of using atmospheric drag
to reduce the semimajor axis got known as aerobraking
maneuver and was first used in 1991 by the spacecraft MUSES-
A (Space Engineering Spacecraft launched by MU rocket),
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FIGURE I: Basic diagram of the aeroassisted maneuver simulator.

which after its launch was renamed to Hiten. The launch was
conducted by the Institute of Space and Astronautical Science
of Japan (ISAS). The Hiten spacecraft passed through the
Earth’s atmosphere at an altitude of 125 km over the Pacific
Ocean at a speed of 11 km/s. The experience leads to a decrease
in the apogee altitude of about 8665km [39]. In May 1993,
an aerobraking maneuver was performed by the Magellan
spacecraft in order to circularize its orbit around Venus. In
1997, the probe U.S. Mars Global Surveyor (MGS) has used
its solar panels as “wings” to control its passage through the
tenuous upper atmosphere of Mars to lower its apoapsis [40].
The future ESA Martian exploration program (ExoMars),
with two missions to be launched in 2016 and in 2018, plans
to use the aerobraking technique to circularize the initial high
elliptical orbit, obtained after the Mars insertion [41].

In this paper, the Aeroassisted Spacecraft Maneuver
Simulator (SAMS) was used with the implementation of the
Kalman filter. The SAMS was based on an orbital maneuver
simulator developed by Rocco [42] and used by Oliveira et al.
[43]. Usually, it is used an open loop control operated from
the ground for correction maneuvers and orbital transfers.
However, in some missions, like drag-free (Gravity Probe B
and Hipparcos), the feedback control is required. The SAMS
considers a reference trajectory and a trajectory perturbed
by external disturbances, including the aerodynamic effects,
combined with nonidealities of sensors and actuators. It is
able to operate in closed loop controlling the trajectory at
each instant of time by a PID controller and propulsive jets.
A study of how the orbital elements can be changed by
an aeroassisted maneuver and how much fuel is saved is
presented by Santos [44].

The Kalman filter is a tool that can estimate the variables
of a wide range of processes and, from all the possible filters,
it is the one that minimizes the variance of the estimation
error. It is an estimator with real-time characteristics; that is,
it provides estimates for the instant that the measurement is
obtained [45]. The extended Kalman filter version [46] was
used in this paper. In aerobraking maneuvers, the spacecraft
operates close to the tolerable limits of the thermal loads [41]
and a position error can cause the mission loss. Figure 1shows
a basic diagram about the running logic of the aeroassisted
maneuver simulator.

In this paper, a spacecraft is assumed with a cubic body
composed of two rectangular plates, called aerodynamic
plates, placed in opposite sides of the vehicle body. The
inclination angle of the plates with respect to the molecular
flow is called of attack angle, whose value has been placed
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at 90 degrees to maximize the projected area and the drag
force. In the second section, the mathematical modeling will
be presented. The results and discussion are shown in the
third section, while the conclusions are described in section
four.

2. Mathematical Modeling

In an aerobraking maneuver, the spacecraft uses the drag of
the upper layer of the atmosphere in order to decrease the
spacecraft velocity to reach a target orbit. The aerobraking
duration can take several months and it is characterized
by a great number of passages by the atmosphere. After
each passage by the atmospheric region, the reducing of the
subsequent apogee occurs. When the spacecraft reaches the
final apogee altitude, a new impulse is applied to the vehicle to
remove it from the transfer orbit and to insert it into the target
orbit. In order to control the thermal loads, propulsive jets are
applied at the apogee to correct the decay of the perigee. This
strategy is discussed in Walberg [34].

The spacecraft state is described by the coordinates
X = [X Y Z XY Z ] measured in an inertial frame
centered on the Earth. The Kepler equation provides the
spacecraft trajectory. The sensor was modeled such that their
measurements show a random error with zero mean and
a nonzero variance. The dynamics model is composed by
the gravitational acceleration and the acceleration of the
atmospheric drag, as described by the following equation:

1 S
= —%r - SCopy ViVt W, )

where p is the gravitational parameter; Cp is the drag
coeflicient; p is the Earth’s atmospheric density; S is the
projected area; M is the spacecraft mass; V, is the velocity
of the spacecraft relative to the atmosphere; w is the process
noise (also known as dynamic noise). It was assumed that the
normal of the surface area (projected area) is kept aligned
with the spacecraft velocity relative to the atmosphere. The
w parameter is modeled by a white process whose statistics is
given by w = N(0, Q), that is, zero mean and a covariance Q.
This noise is applied to the inertial position of the spacecraft.

The atmospheric model U.S. Standard Atmosphere [47]
provides the value of the atmospheric density according to
the altitude of the spacecraft, ranging from 0 to 2,000 km.
The velocity of the spacecraft relative to the atmosphere in
the inertial system is calculated assuming that the atmosphere
has the same rotation velocity of the Earth, as shown by the
following equation:

X+ wy
y—wx |, (2)
z

V.,=1ixr=

where 1 is the velocity vector relative to the inertial system
and w is the angular velocity of the Earth’s rotation.

The Newtonian impact theory [48, 49] was used to
compute the drag coeflicient of the spacecraft, as described
by the following equation:

Cp =C,sin (a) = 2sin’ (@), (3)
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where C, is the pressure coeflicient, and « is the angle

between the surface and the incident flow (¢ = 90° in the
study cases).

The deviation in the spacecraft trajectory was corrected
by a PID controller. Most of the industrial controllers are
Proportional-Integral-Derivative (PID) due to its low cost,
robustness, and flexibility. The following equation shows the
PID control law equation:

c(t):KP~e(t)+KI-Je(t)dt+KD-?, (4)
where Kp, K;, and K, are the proportional gain, integral
gain, and derivative gain, respectively, and e(t) is the position
error in the trajectory. The observation model is given by the
following equation:

y=h(x)+v, )

where y is the measurement vector, h(x) is a nonlinear
function of the state vector, and v is a vector of discrete white
noise whose statistics is given by v = N(0,R), that is, zero
mean and a covariance R. The measurement noise is due to
the sensor reading of the spacecraft inertial position.

The extended Kalman filter generates some reference
trajectories that are updated at each measurement processing.
The filtering process consists of two stages: time-update
and measurement-update. The following equation shows the
time-update process:

x=f®,
. (6)
P = FP + PF! + GQG',

where F is the Jacobian matrix of f with respect to x, P is
the covariance matrix, and X is the propagated state vector.
The following equation describes the measurement-update
process:

K = PHT(HPH” +R)
P=(I-KH)P, (7)
x=x+K[y-h®],

where K is the Kalman gain, H is the Jacobian matrix of h(x)
with respect to x and it models how the observations are
connected with the state, and X is the estimated state vector
[45]. The estimated state is used by the PID controller to
correct the trajectory error.

3. Results and Discussion

The results of an aerobraking maneuver simulation around
the Earth using a Kalman filter to estimate the position
and velocity of the spacecraft, at each instant of time, are
presented in this section. Two cases are explored: the first
shows an aerobraking performed in a LEO orbit, and the
second study case presents the aerobraking simulation with
the orbital elements of the Hiten spacecraft. At each step, the
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TABLE 1: Initial conditions of the LEO orbit.

Description Value
Apogee altitude (km) 1000
Perigee altitude (km) 120
Eccentricity 0.0634
Inclination (degrees) 1
RAAN! (degrees) 200
Perigee argument (degrees) 10
Mean anomaly (degrees) 180

'Right ascension of the ascending node.

x10°

Axis Y (m)

6
Axis X (m) x10

FIGURE 2: Spacecraft orbit in the XY plane.

PID controller sends a control signal to the propulsion system
in order to correct the disturbed trajectory. The thrusters can
apply a thrust of up to 20 N per second.

3.1. Aerobraking Maneuver in a LEO Orbit. In this first case,
a spacecraft was assumed of 500 kg of mass, a cubic body of
1 m in each side and two aerodynamic plates of 2 m in length
and 1m in width. The step used in the simulation (sampling
time) was of 1 second and it was accomplished up to eight
hours of maneuvering. The propellant used was the liquid
oxygen/liquid hydrogen, whose specific impulse is 460 s. The
main results are presented throughout this section. Table 1
shows the initial conditions of the orbit.

The spacecraft position is measured with an error of 0.5
meters (one standard deviation) and the dynamic noise has a
standard deviation of 0.01 meters. The decrease of the apogee
takes place in each aerobraking passage. Figure 2 shows the
spacecraft orbit in the XY plane. In this graph, it is shown
the perigee altitude inside the Earth’s atmosphere and the
decrease of the apogee altitude. The spacecraft altitude as
function of time can be seen in Figure 3.
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FIGURE 3: Spacecraft altitude as a function of time.

In both figures, it is possible to see the decrease of
the apogee altitude whose final value is 869.30 km, that
is, a reduction of 130.70 km. The perigee altitude remains
around 120 km. There was no change in the orbital inclination
because the lift forces were not applied to the spacecraft. The
estimated state is composed by the position and velocity of the
spacecraft. Figure 4 shows the estimated position of the X, Y,
and Z coordinates while the estimated velocity is presented
in Figure 5.

Figure 6 demonstrates the deviation of the spacecraft
position, as a function of time, without the application of the
Kalman filter, and in Figure 7 the same result can be seen
but with the application of the Kalman filter. This divergence
happens due to the measurement errors, causing a deviation
between the reference trajectory and the disturbed trajectory.
Throughout the maneuver, the trajectory control system acts
to reduce this deviation. The deviation in the first case has
reached values of approximately 2m, while, in the second
case, the deviation was about 0.15m.

The deviation of the semimajor axis as a function of time
presented can also be evaluated in Figure 8. The deviation in
the first case (without the Kalman filter) has reached values
of approximately 300 m while in the second case (with the
Kalman filter) the deviation was about 35 m.

The residue in the X component of the position vector
is presented in Figure 9. The other components (Y and Z) of
the position vector are similar and therefore were omitted.
In the first graph, the results are presented for the complete
maneuver (the time is shown in hours) while in the second
graph, the residue are showed up to 3 minutes of maneuver in
order to improve the visualization of the transient state (the
time is shown in minutes). The blue line represents the error
between the propagated position and the measured position;
the green line represents the error between the propagated
position and the Kalman filter’s estimated position and the
red line is 2 standard deviations. The estimated position error
lies within about 0.5 meters while the measurement error
occasionally presents spikes of up to 2 meters.

The final analysis of this study mentions the propellant
consumption of the maneuvers without and with the Kalman
filter. The results can be seen in Table 2.
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FIGURE 4: Estimated spacecraft position as a function of time.
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FIGURE 5: Estimated spacecraft velocity as a function of time.

As can be seen, the Kalman filter provided fuel savings
of about 57 kg that represent almost 80% of reduction. The
propellant was used to correct the trajectory between the
reference state and the disturbed state. If the measurements
accuracy was improved, then we have lower fuel consump-
tion, as presented in Oliveira et al. [50].

3.2. Aerobraking Maneuver Using the Hiten Orbital Elements.
The Hiten spacecraft successfully carried out its mission
which included 10 lunar swingbys, insertion of a subsatellite
into an orbit around the moon, 2 cis-lunar aerobraking
experiments, excursion to the Lagrangian points (L4 and
L5) of the Earth-Moon system, orbiting the Hiten spacecraft
itself around the moon, and landing on the surface of the
moon [39]. The spacecraft had a mass of 197 kg (at launch)
including 42 kg of hydrazine fuel —adopted as the propellant
for this simulation—and 12 kg for the lunar probe. The lunar
probe was separated from the Hiten before the aerobraking
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FIGURE 6: Deviation in the spacecraft position, without the Kalman
filter, as a function of time.
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FIGURE 7: Deviation in the spacecraft position, with the Kalman
filter, as a function of time.

phase, so it was considered a spacecraft mass of 185kg. The
vehicle was assumed to be a cubic body of 1m in each side
and two aerodynamic plates of 0.8 m in length and 0.4 m in
width in order to approach the projected area of the Hiten
spacecraft. The sampling time used in this simulation was 60
seconds. The spacecraft position is measured with an error of
0.1 meters (one standard deviation) and a dynamic noise was
used with a standard deviation of 0.001 meters. Table 3 shows
the initial conditions of the orbit.

The orbit in the XY plane is shown in Figure 10. As can
be seen, the highly elliptical orbit has the apogee beyond
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FIGURE 8: Deviation in the semimajor axis (without and with the
Kalman filter) as a function of time.
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FIGURE 9: Residue in the X component of the position vector.

TABLE 2: Propellant consumption analysis of the first case.

Maneuver Propellant consumption (kg)
Without the Kalman filter 71.54
With the Kalman filter 14.61

the orbit of the moon, while the perigee is inside the Earth’s
atmosphere. The atmospheric drag decreased the subsequent
apogee altitude to 416,439 km, that is, a reduction of 8,561 km
while the real mission had an apogee reduction of 8,665 km.



Axis Y (m)

Axis X (m) x10

FIGURE 10: Hiten orbit in the XY plane.
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FIGURE 11: Spacecraft altitude as a function of time in days.

TABLE 3: Initial conditions of the Hiten orbit.

Description Value
Apogee altitude (km) 425,000
Perigee altitude (km) 125
Mean anomaly (degrees) 180

Figure 11 presents the spacecraft altitude as a function of time
in units of days. The aerobraking passage happened near the
sixth day and the orbital period is almost of 12 days.

The instant of the apogee reduction can be better visual-
ized in Figure 12, which also shows the total drag suffered by
the spacecraft as a function of time. It is possible to see that
the higher drag force was almost 3.5 N, whose value is related
to the lowest altitude in the Earth’s atmosphere.

Figure 13 shows the deviation of the semimajor axis as a
function of time. The magnitude of the deviation increases
when the spacecraft is suffering from the atmospheric drag
effects. When the maneuver was performed without the
Kalman filter, the divergence reached values of approximately
70,000 km, while in the case where the Kalman filter was used
the highest deviation was about 10,000 km.

As discussed in the first study case, the Kalman filter
can have its efficiency evaluated by the residue behavior,
as presented in Figure14. The other components of the
position vector are similar and therefore were omitted. As
defined before, the blue line represents the error between the
propagated position and the measured position; the green
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FIGURE 12: Apogee altitude and drag force as a function of time in
days.
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FIGURE 13: Semimajor axis deviation (without and with the Kalman
filter) as a function of time in days.

line represents the error between the propagated position and
the Kalman filter’s estimated position and the red line is 2
standard deviations. In this case, the estimated position error
lies within about 0.08 meters while the measurement error
occasionally presents spikes of up to 0.4 meters.

The propellant consumption analysis, of the two types of
maneuvers considered, is presented in Table 4. The Kalman
filter provided a fuel saving of about 32kg. It is noteworthy
that the Hiten spacecraft had 42 kg of fuel to realize all the
objectives.

4. Conclusions

This paper presented a study of an aerobraking maneuver,
around the Earth, using the Kalman filter to estimate the
position and velocity of the spacecraft. A PID controller and
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TABLE 4: Propellant consumption analysis of the second case.

Maneuver Propellant consumption (kg)
Without the Kalman filter 40.63
With the Kalman filter 8.96

propulsive jets were used to correct the deviation between
the reference trajectory and the disturbed trajectory. Two
study cases were developed: an aerobraking in a LEO orbit
was realized in the first case; the second case presented
an aerobraking maneuver with the orbital elements similar
to the Hiten spacecraft. The results with the application
of the Kalman filter were compared to the case where
the Kalman filter is not used. The results indicated that
the Kalman filter decreased the position error and, also,
provided a significant economy of fuel in both situations.
Large errors in the spacecraft position can affect the control
system performance. However, high-precision sensors have a
high cost. Therefore, the mission design should consider the
cost and benefit of each component taking into account the
mission requirements.
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