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We construct conservation laws for a generalized coupledKdV system,which is a third-order systemof nonlinear partial differential
equations. We employ Noether’s approach to derive the conservation laws. Since the system does not have a Lagrangian, we make
use of the transformation 𝑢 = 𝑈

𝑥
, V = 𝑉

𝑥
and convert the system to a fourth-order system in𝑈,𝑉.This new systemhas a Lagrangian,

and so the Noether approach can now be used to obtain conservation laws. Finally, the conservation laws are expressed in the 𝑢, V
variables, and they constitute the conservation laws for the third-order generalized coupled KdV system. Some local and infinitely
many nonlocal conserved quantities are found.

1. Introduction

The generalized coupled KdV system given by [1]

𝑢
𝑡
+ 𝑎𝑢
𝑥𝑥𝑥

− 𝑏𝑢𝑢
𝑥
+ 𝑐VV
𝑥
= 0,

V
𝑡
+ 𝑑V
𝑥𝑥𝑥

− 𝑒𝑢V
𝑥
+ 𝑓𝑢
𝑥
V = 0,

(1)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are real constants, describes the
interaction of two long waves, whose dispersion relations are
different. For the casewhen𝑓 = 0, soliton solutions have been
obtained in [2, 3]. Many other special cases of (1) have been
considered in the literature, and various methods have been
used to find its exact solutions. See, for example, [4–11].

In this study, we consider a special case of the generalized
coupled KdV system given by

𝑢
𝑡
+ 𝑎𝑢
𝑥𝑥𝑥

+ 𝑏𝑢𝑢
𝑥
+ 𝑐VV
𝑥
= 0,

V
𝑡
+ 𝑑V
𝑥𝑥𝑥

+ 𝑐𝑢V
𝑥
+ 𝑐𝑢
𝑥
V = 0

(2)

and construct conservation laws for (2). Recently, the conser-
vation laws of system (2) for special values of the constants
𝑎 = 𝑑 = −1 and 𝑏 = 𝑐 = −6 were derived in [12] using the
multiplier approach.

Many nonlinear partial differential equations (PDEs)
of mathematical physics and engineering are continuity

equations, which express conservation of mass, momentum,
energy, or electric charge. It is well known that conservation
laws play a crucial role in the solution and reduction of
PDEs. For variational problems the conservation laws can
be constructed by means of the Noether theorem [13].
The application of the Noether theorem depends upon the
existence of a Lagrangian. However, there are nonlinear
differential equations that do not have a Lagrangian. In
such instances, researchers have developed several methods
to derive conserved quantities for such equations. See, for
example, [14–20].

The organization of this paper is as follows. In Section 2
we briefly recall some notations and fundamental relations
concerning the Noether symmetries approach, which we
utilize in the same section to obtain the Noether symmetries
and the corresponding conserved vectors. The concluding
remarks are summarized in Section 3.

2. Conservation Laws of
Coupled KdV Equations

In this section we derive the conservation laws for the
generalized coupled KdV system (2). This system does not
have a Lagrangian. In order to apply the Noether theorem we
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transform our system (2) to a fourth-order system, using the
transformations 𝑢 = 𝑈

𝑥
and V = 𝑉

𝑥
.Then system (2) becomes

𝑈
𝑡𝑥
+ 𝑎𝑈
𝑥𝑥𝑥𝑥

+ 𝑏𝑈
𝑥
𝑈
𝑥𝑥
+ 𝑐𝑉
𝑥
𝑉
𝑥𝑥
= 0,

𝑉
𝑡𝑥
+ 𝑑𝑉
𝑥𝑥𝑥𝑥

+ 𝑐𝑈
𝑥
𝑉
𝑥𝑥
+ 𝑐𝑉
𝑥
𝑈
𝑥𝑥
= 0.

(3)

It can readily be verified that the second-order Lagrangian for
system (3) is given by

𝐿 =

1

2

(𝑎𝑈
2

𝑥𝑥
+ 𝑑𝑉
2

𝑥𝑥
−

1

3

𝑏𝑈
3

𝑥
− 𝑐𝑈
𝑥
𝑉
2

𝑥
− 𝑈
𝑥
𝑈
𝑡
− 𝑉
𝑡
𝑉
𝑥
)

(4)

because

𝛿𝐿

𝛿𝑈

= 0,

𝛿𝐿

𝛿𝑉

= 0, (5)

where 𝛿/𝛿𝑈 and 𝛿/𝛿𝑉 are the standard Euler operators
defined by

𝛿

𝛿𝑈

=

𝜕

𝜕𝑈

− 𝐷
𝑡

𝜕

𝜕𝑈
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑈
𝑥

+ 𝐷
2

𝑡

𝜕

𝜕𝑈
𝑡𝑡

+ 𝐷
2

𝑥

𝜕

𝜕𝑈
𝑥𝑥

+ 𝐷
𝑥
𝐷
𝑡

𝜕

𝜕𝑈
𝑡𝑥

− ⋅ ⋅ ⋅ ,

𝛿

𝛿𝑉

=

𝜕

𝜕𝑉

− 𝐷
𝑡

𝜕

𝜕𝑉
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑉
𝑥

+ 𝐷
2

𝑡

𝜕

𝜕𝑉
𝑡𝑡

+ 𝐷
2

𝑥

𝜕

𝜕𝑉
𝑥𝑥

+ 𝐷
𝑥
𝐷
𝑡

𝜕

𝜕𝑉
𝑡𝑥

− ⋅ ⋅ ⋅ .

(6)

Consider the vector field

𝑋 = 𝜉
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑡

+ 𝜉
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑥

+ 𝜂
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑈

+ 𝜂
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑉

,

(7)

which has the second-order prolongation defined by

𝑋
[2]

= 𝜉
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑡

+ 𝜉
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑥

+ 𝜂
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑈

+ 𝜂
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑉

+ 𝜁
1

𝑡

𝜕

𝜕𝑈
𝑡

+ 𝜁
2

𝑡

𝜕

𝜕𝑉
𝑡

+ 𝜁
1

𝑥

𝜕

𝜕𝑈
𝑥

+ 𝜁
2

𝑥

𝜕

𝜕𝑉
𝑥

+ ⋅ ⋅ ⋅ .

(8)

Here

𝜁
1

𝑡
= 𝐷
𝑡
(𝜂
1

) − 𝑈
𝑡
𝐷
𝑡
(𝜉
1

) − 𝑈
𝑥
𝐷
𝑡
(𝜉
2

) ,

𝜁
1

𝑥
= 𝐷
𝑥
(𝜂
1

) − 𝑈
𝑡
𝐷
𝑥
(𝜉
1

) − 𝑈
𝑥
𝐷
𝑥
(𝜉
2

) ,

𝜁
2

𝑡
= 𝐷
𝑡
(𝜂
2

) − 𝑉
𝑡
𝐷
𝑡
(𝜉
1

) − 𝑉
𝑥
𝐷
𝑡
(𝜉
2

) ,

𝜁
2

𝑥
= 𝐷
𝑥
(𝜂
2

) − 𝑉
𝑡
𝐷
𝑥
(𝜉
1

) − 𝑉
𝑥
𝐷
𝑥
(𝜉
2

) ,

𝐷
𝑡
=

𝜕

𝜕𝑡

+ 𝑈
𝑡

𝜕

𝜕𝑈

+ 𝑉
𝑡

𝜕

𝜕𝑉

+ 𝑈
𝑡𝑡

𝜕

𝜕𝑈
𝑡

+ 𝑉
𝑡𝑡

𝜕

𝜕𝑉
𝑡

+ 𝑈
𝑡𝑥

𝜕

𝜕𝑈
𝑥

+ 𝑉
𝑡𝑥

𝜕

𝜕𝑉
𝑥

+ ⋅ ⋅ ⋅ ,

𝐷
𝑥
=

𝜕

𝜕𝑥

+ 𝑈
𝑥

𝜕

𝜕𝑈

+ 𝑉
𝑥

𝜕

𝜕𝑉

+ 𝑈
𝑥𝑥

𝜕

𝜕𝑈
𝑥

+ 𝑉
𝑥𝑥

𝜕

𝜕𝑉
𝑥

+ 𝑈
𝑡𝑥

𝜕

𝜕𝑈
𝑡

+ 𝑉
𝑡𝑥

𝜕

𝜕𝑉
𝑡

+ ⋅ ⋅ ⋅ .

(9)

The Lie-Bäcklund operator 𝑋 defined in (7) is a Noether
operator corresponding to the Lagrangian (4) if it satisfies

𝑋
[2]

(𝐿) + 𝐿 [𝐷
𝑡
(𝜉
1

) + 𝐷
𝑥
(𝜉
2

)] = 𝐷
𝑡
(𝐵
1

) + 𝐷
𝑥
(𝐵
2

) ,

(10)

where 𝐵
1

(𝑡, 𝑥, 𝑈, 𝑉), 𝐵2(𝑡, 𝑥, 𝑈, 𝑉) are the gauge terms.
Expansion of (10) yields

−

1

2

𝑈
𝑥
[𝜂
1

𝑡
+ 𝑈
𝑡
𝜂
1

𝑈
+ 𝑉
𝑡
𝜂
1

𝑉
− 𝑈
𝑡
𝜉
1

𝑡
− 𝑈
2

𝑡
𝜉
1

𝑈

− 𝑈
𝑡
𝑉
𝑡
𝜉
1

𝑉
− 𝑈
𝑥
𝜉
2

𝑡
− 𝑈
𝑡
𝑈
𝑡
𝜉
2

𝑈
− 𝑈
𝑥
𝑉
𝑡
𝜉
2

𝑉
]

−

1

2

𝑉
𝑥
[𝜂
2

𝑡
+ 𝑈
𝑡
𝜂
2

𝑈
+ 𝑉
𝑡
𝜂
2

𝑉
− 𝑉
𝑡
𝜉
1

𝑡
− 𝑈
𝑡
𝑉
𝑡
𝜉
1

𝑈

−𝑉
2

𝑡
𝜉
1

𝑉
− 𝑉
𝑥
𝜉
2

𝑡
− 𝑈
𝑡
𝑉
𝑥
𝜉
2

𝑈
− 𝑉
𝑡
𝑉
𝑥
𝜉
2

𝑉
]

−

1

2

(𝑏𝑈
2

𝑥
+ 𝑐𝑉
2

𝑥
+ 𝑈
𝑡
)

× [𝜂
1

𝑥
+ 𝑈
𝑥
𝜂
1

𝑈
+ 𝑉
𝑥
𝜂
1

𝑉
− 𝑈
𝑡
𝜉
1

𝑥
− 𝑈
𝑡
𝑈
𝑥
𝜉
1

𝑈

−𝑈
𝑡
𝑉
𝑥
𝜉
1

𝑉
− 𝑈
𝑥
𝜉
2

𝑥
− 𝑈
2

𝑥
𝜉
2

𝑈
− 𝑈
𝑥
𝑉
𝑥
𝜉
2

𝑉
]

−

1

2

(𝑐𝑈
𝑥
𝑉
𝑥
+ 𝑉
𝑡
)

× [𝜂
2

𝑥
+ 𝑈
𝑥
𝜂
2

𝑈
+ 𝑉
𝑥
𝜂
2

𝑉
− 𝑉
𝑡
𝜉
1

𝑥
− 𝑈
𝑥
𝑉
𝑡
𝜉
1

𝑈

−𝑉
𝑡
𝑉
𝑥
𝜉
1

𝑉
− 𝑉
𝑥
𝜉
2

𝑥
− 𝑈
𝑥
𝑉
𝑥
𝜉
2

𝑈
− 𝑉
2

𝑥
𝜉
2

𝑉
]

+ 𝑑𝑉
𝑥𝑥
[𝐷
2

𝑥
(𝜂
1

) − 𝑈
𝑡
𝐷
2

𝑥
(𝜉
1

) − 𝑈
𝑥
𝐷
2

𝑥
(𝜉
2

)

− 2𝑈
𝑡𝑥
(𝜉
1

𝑥
+ 𝑈
𝑥
𝜉
1

𝑈
+ 𝑉
𝑥
𝜉
1

𝑉
)

− 2𝑈
𝑥𝑥
(𝜉
2

𝑥
+ 𝑈
𝑥
𝜉
2

𝑈
+ 𝑉
𝑥
𝜉
2

𝑉
)]

+ 𝑎𝑈
𝑥𝑥
[𝐷
2

𝑥
(𝜂
2

) − 𝑉
𝑡
𝐷
2

𝑥
(𝜉
1

) − 𝑉
𝑥
𝐷
2

𝑥
(𝜉
2

)

− 2𝑉
𝑡𝑥
(𝜉
1

𝑥
+ 𝑈
𝑥
𝜉
1

𝑈
+ 𝑉
𝑥
𝜉
1

𝑉
)

− 2𝑉
𝑥𝑥
(𝜉
2

𝑥
+ 𝑈
𝑥
𝜉
2

𝑈
+ 𝑉
𝑥
𝜉
2

𝑉
)]
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+

1

2

(𝑎𝑈
2

𝑥𝑥
+ 𝑑𝑉
2

𝑥𝑥
−

1

3

𝑏𝑈
3

𝑥
− 𝑐𝑈
𝑥
𝑉
2

𝑥
− 𝑈
𝑥
𝑈
𝑡
− 𝑉
𝑡
𝑉
𝑥
)

× [𝜉
1

𝑡
+ 𝑈
𝑡
𝜉
1

𝑈
+ 𝑉
𝑡
𝜉
1

𝑉
+ 𝜉
2

𝑥
+ 𝑈
𝑥
𝜉
2

𝑈
+ 𝑉
𝑥
𝜉
2

𝑉
]

= 𝐵
1

𝑡
+ 𝑈
𝑡
𝐵
1

𝑈
+ 𝑉
𝑡
𝐵
1

𝑉
+ 𝐵
2

𝑥
+ 𝑈
𝑥
𝐵
2

𝑈
+ 𝑉
𝑥
𝐵
2

𝑉
.

(11)

The splitting of (11) with respect to different combinations of
derivatives of 𝑈 and 𝑉 results in an overdetermined system
of PDEs for 𝜉1, 𝜉2, 𝜂1, 𝜂2, 𝐵1, and 𝐵2. Solving this system of
PDEs we arrive at the following two cases for which Noether
symmetries exist.

Case 1. 𝑏 ̸= 𝑐.
In this case we obtain the following Noether symmetries

and gauge terms:

𝜉
1

= 𝐴
1
,

𝜉
2

= 𝐴
2
,

𝜂
1

= 𝐸 (𝑡) ,

𝜂
2

= 𝐹 (𝑡) ,

𝐵
1

= 𝑃 (𝑡, 𝑥) ,

𝐵
2

= −

1

2

𝑈𝐸


(𝑡) −

1

2

𝑉𝐹


(𝑡) + 𝑆 (𝑡, 𝑥) ,

𝑃
𝑡
+ 𝑆
𝑥
= 0.

(12)

The above results will now be used to find the components of
the conserved vectors for the second-order Lagrangian. Here
we can choose 𝑃 = 0, 𝑆 = 0 as they contribute to the trivial
part of the conserved vector. We recall that the conserved
vectors for the second-order Lagrangian are given by [13, 21]

𝑇
1

= − 𝐵
1

+ 𝜉
1

𝐿 +𝑊
1

[

𝜕𝐿

𝜕𝑈
𝑡

− 𝐷
𝑡

𝜕𝐿

𝜕𝑈
𝑡𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑈
𝑡𝑥

⋅ ⋅ ⋅ ]

+ 𝑊
2

[

𝜕𝐿

𝜕𝑉
𝑡

− 𝐷
𝑡

𝜕𝐿

𝜕𝑉
𝑥𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑉
𝑡𝑡

⋅ ⋅ ⋅ ]

+ 𝐷
𝑡
(𝑊
1

)

𝜕𝐿

𝜕𝑈
𝑡𝑡

+ 𝐷
𝑡
(𝑊
2

)

𝜕𝐿

𝜕𝑉
𝑡𝑡

,

𝑇
2

= − 𝐵
2

+ 𝜉
2

𝐿 +𝑊
1

[

𝜕𝐿

𝜕𝑈
𝑥

− 𝐷
𝑡

𝜕𝐿

𝜕𝑈
𝑥𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑈
𝑥𝑥

⋅ ⋅ ⋅ ]

+ 𝑊
2

[

𝜕𝐿

𝜕𝑉
𝑥

− 𝐷
𝑡

𝜕𝐿

𝜕𝑉
𝑥𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑉
𝑥𝑥

⋅ ⋅ ⋅ ]

+ 𝐷
𝑥
(𝑊
1

)

𝜕𝐿

𝜕𝑈
𝑥𝑥

+ 𝐷
𝑥
(𝑊
2

)

𝜕𝐿

𝜕𝑉
𝑥𝑥

.

(13)

Here𝑊1 and𝑊2 are the Lie characteristic functions, given by
𝑊
1

= 𝜂
1

−𝑈
𝑡
𝜉
1

−𝑈
𝑥
𝜉
2 and𝑊2 = 𝜂2 −𝑉

𝑡
𝜉
1

−𝑉
𝑥
𝜉
2. Using (13)

together with (12) and 𝑢 = 𝑈
𝑥
, V = 𝑉

𝑥
we obtain the following

independent conserved vectors for system (2):

𝑇
1

1
=

1

2

(𝑎𝑢
2

𝑥
+ 𝑑V2
𝑥
−

1

3

𝑏𝑢
3

− 𝑐𝑢V2) ,

𝑇
2

1
=

1

2

∫𝑢
𝑡
𝑑𝑥∫𝑢

𝑡
𝑑𝑥 +

1

2

(𝑏𝑢
2

+ 𝑐V2)

× ∫𝑢
𝑡
𝑑𝑥 + 𝑎𝑢

𝑥𝑥
∫𝑢
𝑡
𝑑𝑥

+

1

2

∫ V
𝑡
𝑑𝑥∫ V

𝑡
𝑑𝑥 + 𝑑V

𝑥𝑥
∫ V
𝑡
𝑑𝑥

+ 𝑐𝑢V∫ V
𝑡
𝑑𝑥 − 𝑎𝑢

𝑡
𝑢
𝑥
− 𝑑V
𝑡
𝑢
𝑥
,

(14)

𝑇
1

2
=

1

2

(𝑢
2

+ V2) ,

𝑇
2

2
= 𝑎𝑢𝑢

𝑥𝑥
+ 𝑑VV

𝑥𝑥
−

1

2

𝑎𝑢
2

𝑥
−

1

2

𝑑V2
𝑥
+

1

3

𝑏𝑢
3

+ 𝑐𝑢V2,

(15)

and for the arbitrary functions 𝐸(𝑡) and 𝐹(𝑡),

𝑇
1

(𝐸,𝐹)
= −

1

2

𝑢𝐸 (𝑡) −

1

2

V𝐹 (𝑡) ,

𝑇
2

(𝐸,𝐹)
=

1

2

𝐸


(𝑡) ∫ 𝑢𝑑𝑥 +

1

2

𝐹


(𝑡) ∫ V𝑑𝑥

−

1

2

𝐸 (𝑡) ∫ 𝑢
𝑡
𝑑𝑥 −

1

2

𝐹 (𝑡) ∫ V
𝑡
𝑑𝑥

−

1

2

(𝑏𝑢
2

+ 𝑐V2) 𝐸 (𝑡) − 𝑎𝑢
𝑥𝑥
𝐸 (𝑡)

− 𝑑V
𝑥𝑥
𝐹 (𝑡) − 𝑐𝑢V𝐹 (𝑡) .

(16)

Conserved vector (14) is a nonlocal conserved vector, and (15)
is a local conserved vector for system (2). We now derive two
particular cases from conserved vector (16) by letting𝐸(𝑡) = 1
and 𝐹(𝑡) = 0, which gives a nonlocal conserved vector

𝑇
1

3
= −

1

2

𝑢,

𝑇
2

(3)
= −

1

2

(𝑏𝑢
2

+ 𝑐V2) − 𝑎𝑢
𝑥𝑥
−

1

2

∫𝑢
𝑡
𝑑𝑥,

(17)

and by choosing 𝐸(𝑡) = 0 and 𝐹(𝑡) = 1, we get the nonlocal
conserved vector

𝑇
1

4
= −

1

2

V,

𝑇
2

4
= −𝑐𝑢V − 𝑑V

𝑥𝑥
−

1

2

∫ V
𝑡
𝑑𝑥.

(18)
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Case 2. 𝑏 = 𝑐.
The second case gives the following Noether symmetries

and gauge terms:

𝜉
1

= 𝐴
1
,

𝜉
2

= 𝑐𝐴
2
𝑡 + 𝐴
3
,

𝜂
1

= 𝐴
2
𝑥 + 𝐹 (𝑡) ,

𝜂
2

= 𝐺 (𝑡) ,

𝐵
1

= −

1

2

𝐴
2
𝑈 + 𝑃 (𝑡, 𝑥) ,

𝐵
2

= −

1

2

𝑈𝐹


(𝑡) −

1

2

𝑉𝐺


(𝑡) + 𝑅 (𝑡, 𝑥) ,

𝑃
𝑡
+ 𝑅
𝑥
= 0.

(19)

Again we can set 𝑃 = 0 and 𝑅 = 0 as they contribute
to the trivial part of the conserved vector. The independent
conserved vectors for system (2), in this case, are

𝑇
1

1
=

1

2

(𝑎𝑢
2

𝑥
+ 𝑑V2
𝑥
−

1

3

𝑏𝑢
3

− 𝑐𝑢V2) ,

𝑇
2

1
=

1

2

∫𝑢
𝑡
𝑑𝑥∫𝑢

𝑡
𝑑𝑥 +

1

2

(𝑏𝑢
2

+ 𝑐V2)∫ 𝑢
𝑡
𝑑𝑥

+ 𝑎𝑢
𝑥𝑥
∫𝑢
𝑡
𝑑𝑥 +

1

2

∫ V
𝑡
𝑑𝑥∫ V

𝑡
𝑑𝑥

+ 𝑑V
𝑥𝑥
∫ V
𝑡
𝑑𝑥 + 𝑐𝑢V∫ V

𝑡
𝑑𝑥 − 𝑎𝑢

𝑡
𝑢
𝑥
− 𝑑V
𝑡
𝑢
𝑥
,

𝑇
1

2
=

1

2

(−𝑥𝑢 + 𝑐𝑡𝑢
2

+ 𝑐𝑡V2 + ∫𝑢𝑑𝑥) ,

𝑇
2

2
= 𝑎𝑢
𝑥
+ 𝑎𝑐𝑡𝑢𝑢

𝑥𝑥
+ 𝑐𝑑𝑡VV

𝑥𝑥
+ 𝑐
2

𝑡𝑢V2 − 𝑎𝑥𝑢
𝑥𝑥
+

1

3

𝑐𝑏𝑡𝑢
3

−

1

2

(𝑎𝑐𝑡𝑢
2

𝑥
+ 𝑐𝑑𝑡V2

𝑥
+ 𝑏𝑥𝑢

2

+ 𝑐𝑥V2 + 𝑥∫𝑢
𝑡
𝑑𝑥) ,

(20)

𝑇
1

3
=

1

2

(𝑢
2

+ V2) ,

𝑇
2

3
= 𝑎𝑢𝑢

𝑥𝑥
+ 𝑑VV

𝑥𝑥
−

1

2

𝑎𝑢
2

𝑥
−

1

2

𝑑V2
𝑥
+

1

3

𝑏𝑢
3

+ 𝑐𝑢V2,

(21)

and for the arbitrary functions 𝐸(𝑡) and 𝐹(𝑡), we obtain

𝑇
1

(𝐸,𝐹)
= −

1

2

𝑢𝐸 (𝑡) −

1

2

V𝐹 (𝑡) ,

𝑇
2

(𝐸,𝐹)
=

1

2

𝐸


(𝑡) ∫ 𝑢𝑑𝑥 +

1

2

𝐹


(𝑡) ∫ V𝑑𝑥

−

1

2

𝐸 (𝑡) ∫ 𝑢
𝑡
𝑑𝑥 −

1

2

𝐹 (𝑡) ∫ V
𝑡
𝑑𝑥

−

1

2

(𝑏𝑢
2

+ 𝑐V2) 𝐸 (𝑡) − 𝑎𝑢
𝑥𝑥
𝐸 (𝑡)

− 𝑑V
𝑥𝑥
𝐹 (𝑡) − 𝑐𝑢V𝐹 (𝑡) .

(22)

Conserved vectors (20) are nonlocal, whereas (21) is a local
conserved vector for system (2). Conserved vector (22) for
𝐸(𝑡) = 1 and 𝐹(𝑡) = 0 gives a nonlocal conserved vector

𝑇
1

3
= −

1

2

𝑢,

𝑇
2

3
= −

1

2

(𝑏𝑢
2

+ 𝑐V2) − 𝑎𝑢
𝑥𝑥
−

1

2

∫𝑢
𝑡
𝑑𝑥,

(23)

and for 𝐸(𝑡) = 0 and 𝐹(𝑡) = 1 it gives a nonlocal conserved
vector

𝑇
1

4
= −

1

2

V,

𝑇
2

4
= −𝑐𝑢V − 𝑑V

𝑥𝑥
−

1

2

∫ V
𝑡
𝑑𝑥.

(24)

We note that for arbitrary values of 𝐸(𝑡) and 𝐹(𝑡) infinitely
many nonlocal conservation laws exist for system (2).

3. Conclusion

In this paper we studied the third-order generalized coupled
Korteweg-de Vries system (2). This system did not have a
Lagrangian. In order to apply Noether theorem the transfor-
mations 𝑢 = 𝑈

𝑥
and V = 𝑉

𝑥
were utilized, and the system was

transformed to fourth-order system (3) in𝑈 and𝑉 variables.
This system admitted the Lagrangian (4). Noether theorem
was then used to derive the conservation laws in 𝑈 and 𝑉
variables. Finally, by reverting back to our original variables
𝑢 and V we obtained the conservation laws for the third-
order generalized coupled KdV system (2). The conservation
laws obtained consisted of some local and infinite number of
nonlocal conserved vectors.
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