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The effect of non-homogenity and rotation on the free vibrations for elastodynamic problem of orthotropic hollow sphere is
discussed.The free vibrations are studied on the basis of the linear elasticity.The determination is concerned with the eigenvalues of
the natural frequency formixed boundary conditions.Thenumerical results of the frequency equations are discussed in the presence
and absence of non-homogenity and rotation. The computer simulated results indicate that the influence of non-homogenity and
rotation in orthotropic material is pronounced.

1. Introduction

Hollow spheres are frequently encountered in engineer-
ing industries and the corresponding free vibration prob-
lem has become one of the basic problems in elastody-
namics. The analyses for transient problems of spherical
structures are important and interesting research fields
for engineers and scientists. The applications for non-
homogeneous orthotropic hollow sphere have continuously
increased in some engineering areas, including aerospace,
offshore, infrared detectors, frequency control filters, chem-
ical vessels, information storage devices, and signal pro-
cessing devices. Accidental failures of rotating sphere due
to flexural vibrations have frequently occurred in rotody-
namic machinery such as steam turbines and gas turbines.
Free vibrations of elastodynamic have many applications
in a micropolar porous cubic crystal, poroelastic material
[1–3]. Many applications dealing with the elastic bodies
and materials, we can only mention a few recent inter-
esting investigations [4–8], the analysis of the dynamic
problems of elastic bodies is an important and interest-
ing research field for engineers and scientists. The hollow
spheres are frequently used as structural components and

their vibration characteristics are obviously important for
practical design. Mahmoud et al. [1, 2] discussed the effect
of the rotation on plane vibrations in a transversely
isotropic infinite hollow cylinder and the effect of the
rotation on wave motion through cylindrical bore in a
micropolar porous cubic crystal. Mahmoud [3] studied
wave propagation in cylindrical poroelastic dry bones.
Abd-Alla and Mahmoud [8, 9] solved magnetothermoe-
lastic problem in rotating non-homogeneous orthotropic
hollow cylindrical under the hyperbolic heat conduc-
tion model and investigated problem of radial vibra-
tions in non-homogeneity isotropic cylinder under influ-
ence of initial stress and magnetic field. Influences of
rotation, magnetic field, and gravity on Rayleigh waves in a
homogeneous orthotropic elastic half space and the solution
of electromechanical wave propagation are investigated by
Abd-Alla et al. [10–13]. Marin et al. [14, 15] studied porous
materials and nonsimple material problems addressed by
the Lagrange’s identity. Wang [16] studied the elastodynamic
solution for an anisotropic hollow sphere. Ding et al. [17, 18]
discussed elastodynamic solution of a non-homogeneous
orthotropic hollow cylinder, a solution of a non-homogene-
ous orthotropic cylindrical shell for axisymmetric plane
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strain dynamic thermo elastic problems. Inclusion of arbi-
trary shape in magnetoelectro-elastic composite materials
has been investigated by Wang and Shen [19]. Ding et al.
[20] obtained the analytical solution for the axisymmetric
plane strain electroelastic dynamics of a non-homogeneous
piezoelectric hollow cylinder. Hou and Leung [21] further
study the corresponding problem of magnetoelectroelas-
tic hollow cylinders. Buchanan and Liu [22] discussed
an analysis of the free vibration of thick-walled isotropic
toroidal shells. Yu et al. [23] investigated wave propagation in
non-homogeneous magnetoelectroelastic hollow cylinders.
Recently, Abd-Alla and Mahmoud [24] discussed analyt-
ical solution of wave propagation in non-homogeneous
orthotropic rotating elasticmedia. Abd-Alla et al. [25] studied
the effect of the rotation, magnetic field, and initial stress on
peristaltic motion of micropolar fluid. Mahmoud [26] inves-
tigatedwave propagation in piezoelectric hollow cylinder and
influence of rotation and generalized magnetothermoelastic
on Rayleigh waves in a granular medium under effect of
initial stress and gravity field. Sharma et al. [27] studied
free vibration analysis of a viscothermoelastic solid sphere.
Abd-Alla et al. [28–33] investigated problem of radial and
free vibrations in non-homogeneity cylinder under influence
of initial stress rotation and magnetic field. Ozsahin and
Taskner [34] investigated contact problem for an elastic
layer on an elastic half plane. Daouadji et al. [35] studied
the Free transverse vibration of the fluid-conveying single-
walled carbon nanotube using nonlocal elastic theory. The
present paper deals with the problem of free vibrationsof
elastodynamic equations of rotating non-homogeneous and
orthotropic hollow sphere. The effect of non-homogeneous
and rotation in the equations of motion has been taken into
account and the numerical results of the fundamental fre-
quency equations are discussed. Comparisons are made with
the result in the present and absence of non-homogeneous
and rotation in cases of orthotropic hollow sphere.

2. Formulation of the Problem

Take the spherical coordinates (𝑟, 𝜃, 𝜑) and consider elastody-
namic problem of non-homogeneous rotating hollow sphere
of inner radius 𝑎 and outer radius 𝑏, as Figure 1. The stresses-
strain relations for non-homogeneous spherically orthotropic
material in two dimensions are in the form

𝜎
𝑟𝑟
= 𝑟
2𝑚

(𝛼
11
𝑒
𝑟𝑟
+ 𝛼
12
𝑒
𝜃𝜃
+ 𝛼
13
𝑒
𝜑𝜑
) ,

𝜎
𝜃𝜃
= 𝑟
2𝑚

(𝛼
12
𝑒
𝑟𝑟
+ 𝛼
22
𝑒
𝜃𝜃
+ 𝛼
23
𝑒
𝜑𝜑
) ,

𝜎
𝜑𝜑
= 𝑟
2𝑚

(𝛼
13
𝑒
𝑟𝑟
+ 𝛼
23
𝑒
𝜃𝜃
+ 𝛼
33
𝑒
𝜑𝜑
) ,

𝜏
𝑟𝜃
= 𝑟
2𝑚

𝛼
44
𝑒
𝑟𝜃
, 𝜏

𝑟𝜃
= 0, 𝜏

𝜃𝜑
= 0.

(1a)

The strain-displacements relations in two dimensions are
in the form

𝑒
𝑟𝑟
=
𝜕𝑢
𝑟

𝜕𝑟
, 𝑒

𝜃𝜃
=
1

𝑟
(
𝜕𝑢
𝜃

𝜕𝜃
+ 𝑢
𝑟
) ,

𝑒
𝜑𝜑
=

1

𝑟 sin 𝜃
(𝑢
𝑟
sin 𝜃 + 𝑢

𝜃
cos 𝜃) ,
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Figure 1: Problem geometry of non-homogeneous orthotropic
material.

𝑒
𝑟𝜃
=
1

2
(
1

𝑟

𝜕𝑢
𝑟

𝜕𝜃
+
𝜕𝑢
𝜃

𝜕𝑟
−
𝑢
𝜃

𝑟
) , 𝑒

𝑟𝜑
= 0, 𝑒

𝜃𝜑
= 0.

(1b)

Substituting from (1b) into (1a) we obtain the stresses-
displacements relations in two dimensions in the form

𝜎
𝑟𝑟
= 𝑟
1+2𝑚

( (𝛼
11
+ 𝛼
13
) 𝑢
𝑟
+ 𝛼
13
𝑢
𝜃
cot𝜃

+ 𝛼
12

𝜕𝑢
𝜃

𝜕𝜃
+ 𝑟𝛼
11

𝜕𝑢
𝑟

𝜕𝑟
) ,

𝜎
𝜃𝜃
= 𝑟
1+2𝑚

( (𝛼
22
+ 𝛼
22
) 𝑢
𝑟
+ 𝛼
23
𝑢
𝜃
cot𝜃

+ 𝛼
22

𝜕𝑢
𝜃

𝜕𝜃
+ 𝑟𝛼
12

𝜕𝑢
𝑟

𝜕𝑟
) ,

𝜎
𝜑𝜑
= 𝑟
1+2𝑚

( (𝛼
23
+ 𝛼
33
) 𝑢
𝑟
+ 𝛼
33
𝑢
𝜃
cot𝜃

+ 𝛼
23

𝜕𝑢
𝜃

𝜕𝜃
+ 𝑟𝛼
13

𝜕𝑢
𝑟

𝜕𝜃
) ,

𝜏
𝑟𝜃
=
1

2
𝑟
1+2𝑚

𝛼
44
(−𝑢
𝜃
+
𝜕𝑢
𝑟

𝜕𝜃
+ 𝑟
𝜕𝑢
𝜃

𝜕𝑟
) ,

𝜏
𝑟𝜃
= 0, 𝜏

𝜃𝜑
= 0,

(2)

where 𝑢
𝑟
and 𝑢
𝜃
are, respectively, the components of displace-

ment in the radial and tangential directions, 𝑒
𝑖𝑗
are the strain

components, and 𝜎
𝑖𝑗
are the stress components. Where we

have characterized the elastic constants 𝑐
𝑖𝑗
and the density

𝜌 of non-homogeneous material in the form

𝑐
𝑖𝑗
= 𝛼
𝑖𝑗
𝑟
2𝑚

, 𝜌 = 𝜌
0
𝑟
2𝑚

, 𝑖, 𝑗 = 1, 2, 3, (3)
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where𝛼
𝑖𝑗
and𝜌
0
are the values of 𝑐

𝑖𝑗
and𝜌 in the homogeneous

case, respectively, and𝑚 is the non-homogeneous parameter.
The displacement equations of motion in the rotating frame
have two additional terms centripetal acceleration ⇀Ω × (⇀Ω ×
⇀
𝑢) = (−Ω

2𝑢
𝑟
, −Ω2𝑢

𝜃
, 0), due to time varying motion only,

where ⇀Ω = (0, 0, Ω), and ⇀𝑢 = (𝑢
𝑟
, 𝑢
𝜃
, 0).

The elastodynamic equations of rotating non-homoge-
neous medium in two dimensions in the direction 𝑟, 𝜃 are
given by:

𝜕𝜎
𝑟𝑟

𝜕𝑟
+
1

𝑟

𝜕𝜏
𝑟𝜃

𝜕𝜃
+
1

𝑟
(2𝜎
𝑟𝑟
− 𝜎
𝜃𝜃
− 𝜎
𝜑𝜑
+ 𝜏
𝑟𝜃
cot𝜃)

+ 𝜌
0
𝑟
2𝑚

Ω
2

𝑢
𝑟
= 𝜌
0
𝑟
2𝑚
𝜕2𝑢
𝑟

𝜕𝑡2
,

(4)

𝜕𝜏
𝑟𝜃

𝜕𝜃
+
1

𝑟

𝜕𝜎
𝜃𝜃

𝜕𝜃
+
1

𝑟
((𝜎
𝜃𝜃
− 𝜎
𝜑𝜑
) cot𝜃 + 3𝜏

𝑟𝜃
)

+ 𝜌
0
𝑟
2𝑚

Ω
2

𝑢
𝜃
= 𝜌
0
𝑟
2𝑚
𝜕2𝑢
𝜃

𝜕𝑡2
.

(5)

Substituting from (1a), (1b), and (2) into (4) and (5), we
obtain:

𝑟
−1+𝑚

[2 (𝑎
0
+ 𝑟
2

𝜌
0
Ω
2

) 𝑢
𝑟
+ 𝑎
1
𝑢
𝜃
cot𝜃 + 𝑎

2

𝜕𝑢
𝜃

𝜕𝜃

+ 𝛼
44
cot𝜃
𝜕𝑢
𝑟

𝜕𝜃
−
𝜕𝑢
𝜃

𝜕𝜃
+
𝜕
2𝑢
𝑟

𝜕𝜃2
+ 𝑟 − 2𝑟𝜌

0

𝜕2𝑢
𝜃

𝜕𝑡2

+ 4 (1 + 𝑚) 𝛼
11

𝜕𝑢
𝑟

𝜕𝑟
+ (2𝛼
13
+ 𝛼
44
) cot𝜃

𝜕𝑢
𝜃

𝜕𝑟

+ (2𝛼
12
+ 𝛼
44
)
𝜕2𝑢
𝜃

𝜕𝑟𝜕𝜃
+ 2𝛼
11
𝑟
𝜕2𝑢
𝑟

𝜕𝑟2
] = 0,

(6)

where 𝑎
0
= 𝛼
12
+ 2𝑚𝛼

12
+ 𝛼
13
+ 2𝑚𝛼

13
− 𝛼
22
− 2𝛼
23
− 𝛼
33
,

𝑎
1
= ((2 + 4𝑚)𝛼

13
− 2(𝛼

23
+ 𝛼
33
) − 𝛼
44
), and 𝑎

2
= 2(𝛼

12
+

2𝑚𝛼
12
− 𝛼
22
− 𝛼
23
).

One has

𝑟
−1+𝑚

[2 (𝛼
22
− 𝛼
33
) 𝑢
𝑟
cot𝜃

− 2 (𝑎
3
− 𝑟
2

𝜌
0
Ω
2

+ 𝛼
33
csc2𝜃) 𝑢

𝜃

+ 𝑎
4

𝜕𝑢
𝑟

𝜕𝜃
+ 2𝛼
22
cot𝜃
𝜕𝑢
𝜃

𝜕𝜃
+
𝜕
2𝑢
𝜃

𝜕𝜃2

+ 𝑟(−2𝑟𝜌
0

𝜕2𝑢
𝜃

𝜕𝑡2
+ 2 (𝛼

12
− 𝛼
13
) cot𝜃

𝜕𝑢
𝑟

𝜕𝑟

+ 2 (1 + 𝑚) 𝛼
44

𝜕𝑢
𝜃

𝜕𝑟
)

+ 𝑟(𝑎
5

𝜕2𝑢
𝑟

𝜕𝑟𝜕𝜃
+ 𝑟𝛼
44

𝜕2𝑢
𝜃

𝜕𝜃2
)] = 0,

(7)

where 𝑎
3
= 𝛼
23
−𝛼
33
+𝛼
44
+𝑚𝛼
44
, 𝑎
4
= 2(𝛼
22
+𝛼
23
+𝛼
44
+𝑚𝛼
44
),

and 𝑎
5
= 2𝛼
12
+ 𝛼
44
.

3. Solution of the Problem

By Helmohltz’s theorem, the displacement vector ←𝑢 can be
written as

←
𝑢 = ∇Φ

1
+ ∇ ∧

←
Ψ, (8)

where the two functions Φ
1
and ←

Ψ are known in the
theory of elasticity, by Lame’ potentials irrotational and
rotatoinal parts of the displacement vector ←𝑢 , respectively.
The displacement potentials are introduced for facilitating
the solution of the field equations (5) and (6). It is possible
to take only one components of the vector←Ψ to be nonzero
←
Ψ = (0, 0, 𝜓

1
). From (8), we obtain

𝑢
𝑟
=
cot𝜃 Ψ

1
+ (𝜕/𝜕𝜃)Ψ

1

𝑟
+
𝜕Φ
1

𝜕𝑟
,

𝑢
𝜃
= −
Ψ
1
− 𝜕Φ
1
/𝜕𝜃 + 𝑟 (𝜕/𝜕𝑟)Ψ

1

𝑟
.

(9)

Substituting from (9) into (6) and (7) and regrouping them
lead to the following equations forΦ

1
and Ψ

1
:

𝑟
−2+𝑚

[2 (𝑎
1
+ 𝑟
2

𝜌
0
Ω
2

) ℎ
1
− 𝑎
2
cot𝜃(𝜓

1
−
𝜕𝜙
1

𝜕𝜃
+ 𝑟
𝜕𝜓
1

𝜕𝑟
)

− 𝑎
3
(
𝜕𝜓
1

𝜕𝜃
−
𝜕2𝜙
1

𝜕𝜃
2
+ 𝑟
𝜕2𝜓
1

𝜕𝑟 𝜕𝜃
)

+ 𝛼
44
(cot𝜃csc2𝜃𝜓

1
− csc2𝜃

𝜕𝜓
1

𝜕𝜃
−
𝜕
2

𝜙
1

𝜕𝜃
2

+ 2cot𝜃
𝜕2𝜓
1

𝜕𝜃
2
+
𝜕3𝜓
1

𝜕𝜃
3
+ 𝑟ℎ
2
)

−2𝜌
0
𝑟
2

(cot𝜃
𝜕
2

𝜓
1

𝜕𝑡
2
+
𝜕
3

𝜓
1

𝜕𝜃𝜕𝑡
2
+ 𝑟
𝜕
3

𝜙
1

𝜕𝑟𝜕𝑡
2
)

+ 4 (1 + 𝑚) 𝛼
11
𝑟
2

ℎ
3
+ (2𝛼
13
+ 𝛼
44
)

× cot𝜃ℎ
3
+ (2𝛼
12
+ 𝛼
44
) ℎ
4

+ 2𝛼
11
(2cot𝜃𝜓

1
+ 2
𝜕𝜓
1

𝜕𝜃
+ 𝑟ℎ
5
)] = 0,

(10)

where

ℎ
1
= (cot𝜃𝜓

1
+
𝜕𝜓
1

𝜕𝜃
+ 𝑟
𝜕𝜙
1

𝜕𝑟
) ,

ℎ
2
= (cot𝜃

𝜕2𝜙
1

𝜕𝑟𝜕𝜃
+
𝜕2𝜓
1

𝜕𝑟𝜕𝜃
+
𝜕3𝜙
1

𝜕𝑟𝜕𝜃
2
) ,
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ℎ
3
= ( − (cot𝜃𝜓

1
+ (
𝜕𝜓
1

𝜕𝜃
)

−𝑟(cot𝜃 (
𝜕𝜓
1

𝜕𝑟
) +
𝜕2𝜓
1

𝜕𝑟𝜕𝜃
))

× 𝑟
−2

+
𝜕2𝜙
1

𝜕𝑟2
) ,

ℎ
3
= (𝜓

1
−
𝜕𝜙
1

𝜕𝜃
− 𝑟(

𝜕𝜓
1

𝜕𝑟
−
𝜕2𝜙
1

𝜕𝑟𝜕𝜃
+ 𝑟
𝜕2𝜓
1

𝜕𝑟2
)) ,

ℎ
4
= (
𝜕𝜓
1

𝜕𝜃
−
𝜕2𝜙
1

𝜕𝜃
2
− 𝑟(

𝜕2𝜓
1

𝜕𝑟𝜕𝜃
−
𝜕3𝜙
1

𝜕𝑟𝜕𝜃
2
+ 𝑟
𝜕3𝜓
1

𝜕𝑟2𝜕𝜃
)) ,

ℎ
5
= (−2cot𝜃

𝜕𝜓
1

𝜕𝑟
− 2
𝜕2𝜓
1

𝜕𝑟𝜕𝜃

+ 𝑟(cot𝜃
𝜕2𝜓
1

𝜕𝑟2
+
𝜕3𝜓
1

𝜕𝑟2𝜕𝜃
+ 𝑟
𝜕3𝜙
1

𝜕𝑟3
)) .

(11)

One has

𝑟
−2+𝑚

(2 (𝛼
22
− 𝛼
33
) cot𝜃(cot𝜃𝜓

1
+
𝜕𝜓
1

𝜕𝜃
+ 𝑟
𝜕𝜙
1

𝜕𝑟
)

+ 2 (𝑎
3
− 𝑟
2

𝜌
0
Ω
2

+ 𝛼
33
csc2𝜃) (𝜓

1
−
𝜕𝜙
1

𝜕𝜃
+ 𝑟
𝜕𝜓
1

𝜕𝑟
)

+ 2(𝑎
6
(−csc2𝜃𝜓

1
+ cot𝜃

𝜕𝜓
1

𝜕𝜃
+
𝜕
2

𝜓
1

𝜕𝜃2
+ 𝑟
𝜕
2

𝜙
1

𝜕𝑟𝜕𝜃
)

− 𝛼
22
(
𝜕2𝜓
1

𝜕𝜃2
−
𝜕3𝜙
1

𝜕𝜃
3

+ cot𝜃(
𝜕𝜓
1

𝜕𝜃
−
𝜕2𝜙
1

𝜕𝜃2
+ 𝑟
𝜕2𝜓
1

𝜕𝑟𝜕𝜃
)

+ 𝑟
𝜕3𝜓
1

𝜕𝑟𝜕𝜃2
))

+ 𝑟
2

(2𝜌
0
(
𝜕2𝜓
1

𝜕𝑡
2
−
𝜕3𝜙
1

𝜕𝜃𝜕𝑡
2
+ 𝑟
𝜕3𝜓
1

𝜕𝑟𝜕𝑡
2
)

− 𝛼
44
(
𝜕2𝜓
1

𝜕𝜃2
−
𝜕3𝜙
1

𝜕𝜃3
+ 𝑟
𝜕3𝜓
1

𝜕𝑟𝜕𝜃2
)

+ 2 (𝛼
12
− 𝛼
13
)

× cot𝜃(−
ℎ
8

𝑟2
+
𝜕2𝜙
1

𝜕𝑟2
) −
2 (1 + 𝑚) 𝛼

44
ℎ
7

𝑟2

+
(2𝛼
12
+ 𝛼
44
) ℎ
6

𝑟2
)) = 0,

(12)

where

𝑎
6
= (𝛼
22
+ 𝛼
23
+ 𝛼
44
+ 𝑚𝛼
44
) ,

ℎ
6
= (−cot𝜃

𝜕𝜓
1

𝜕𝜃
−
𝜕2𝜓
1

𝜕𝜃2
+ csc2𝜃(𝜓

1
− 𝑟
𝜕𝜓
1

𝜕𝑟
)

+ 𝑟cot𝜃
𝜕2𝜓
1

𝜕𝑟𝜕𝜃
+ 𝑟
𝜕3𝜓
1

𝜕𝑟𝜕𝜃2
(𝑟
𝜕3𝜙
1

𝜕𝑟2𝜕𝜃
)) ,

ℎ
7
= (−𝜓

1
+
𝜕𝜙
1

𝜕𝜃
+ 𝑟(

𝜕𝜓
1

𝜕𝑟
−
𝜕
2

𝜙
1

𝜕𝑟𝜕𝜃
+ 𝑟
𝜕
2

𝜓
1

𝜕𝑟2
)) ,

ℎ
8
= cot𝜃𝜓

1
+
𝜕𝜓
1

𝜕𝜃
− 𝑟(cot𝜃

𝜕𝜓
1

𝜕𝑟
+
𝜕2𝜓
1

𝜕𝑟𝜕𝜃
) .

(13)

To study the propagation of harmonic waves, we assume a
solution in the form

Φ
1
(𝑟, 𝜃, 𝑡) = Φ

2
(𝑟) 𝑒
𝑖 (𝛾𝜃−𝜔𝑡)

,

Ψ
1
(𝑟, 𝜃, 𝑡) = Ψ

2
(𝑟) 𝑒
𝑖 (𝛾𝜃−𝜔𝑡)

.

(14)

Substituting from (14) into (10) and (12) and regrouping them
lead to the following equations forΦ

2
and Ψ

2
:

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

𝑟
−1+𝑚

[2𝛾 (𝑎
7
− 𝑎
8
cot𝜃) 𝜙

2

+ ( − 𝑖𝛾 (𝑎
9
− 2𝑟
2

𝜌
0
(𝜔
2

+ Ω
2

)

+ 𝛼
44
csc2𝜃)

+ cot𝜃 (2 (𝑎
10
+ 𝑟
2

𝜌
0
(𝜔
2

+ Ω
2

))

+ 𝛼
44
csc2𝜃))Ψ

2

+ 𝑟(2 (𝑎
11
+ 𝑟
2

𝜌
0
(𝜔
2

+ Ω
2

)

+ 𝑖 (𝑎
13
+ 𝛼
44
) 𝛾cot𝜃) 𝑑Φ2

𝑑𝑟

+ 2 (𝑎
12
+ 𝑎
13
cot𝜃) 𝑑Ψ2

𝑑𝑟

+ 𝑟(4 (1 + 𝑚) 𝑎
11

𝑑
2

Φ
2

𝑑𝑟2

+ (𝑎
14
+ 𝑎
15
cot𝜃) 𝑑

2Ψ
2

𝑑𝑟2

+ 2𝑟𝛼
11

𝑑3Φ
2

𝑑𝑟3
))] = 0,

(15)
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where

𝑎
7
= (−2𝑚𝛼

12
+ 𝛼
22
+ 𝛼
23
+ 𝛼
44
) 𝛾,

𝑎
8
= 𝑖 (−2𝑚𝛼

13
+ 𝛼
23
+ 𝛼
33
+ 𝛼
44
) ,

𝑎
9
= − 2𝛼

12
+ 4𝑚 (𝛼

11
− 𝛼
13
) − 2𝛼

13
+ 2𝛼
23

+ 2𝛼
33
+ 𝛼
44
(−1 + 𝛾

2

) ,

𝑎
10
= 𝛼
12
+ 2𝑚 (−𝛼

11
+ 𝛼
12
) + 𝛼
13
− 𝛼
22

− 𝛼
23
+ 𝛼
44
− 𝛼
44
𝛾
2

,

𝑎
11
= 𝛼
12
+ 2𝑚𝛼

12
+ 𝛼
13
+ 2𝑚𝛼13 − 𝛼

22

− 2𝛼
23
− 𝛼
33
− (𝛼
12
+ 𝛼
44
) 𝛾
2

,

𝑎
12
= 𝑖 (2𝑚𝛼

11
− 2𝛼
12
− 2𝑚𝛼

12
+ 𝛼
22
+ 𝛼
23
) 𝛾,

𝑎
13
= 2 (2𝑚𝛼

11
− 2𝛼
13
− 2𝑚𝛼

13
+ 𝛼
23
+ 𝛼
33
) ,

𝑎
14
= 𝑖 (2𝛼

11
− 2𝑚𝛼

12
− 𝛼
44
) 𝛾 + (2𝛼

11
− 2𝛼
13
− 𝛼
44
) ,

𝑎
15
= (2𝑚𝛼

11
− 2𝛼
13
− 𝛼
44
) .

(16)

One has

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

𝑟
−1+𝑚

[ − 𝑖𝛾 (𝑎
16
+ 𝛼
44
(4 + 4𝑚 + 𝑟

2

𝛾
2

)

− 2𝑟
2

𝜌
0
(𝜔
2

+ Ω
2

) − 2𝑖𝛼
22
𝛾cot𝜃

+ 2𝛼33csc2𝜃)Φ
2
+ 2 (𝛼

12
− 𝛼
13
) Ψ
2

+ (𝑎
17
+ (−1 − 2𝑚 + 𝑟

2

) 𝛼
44
𝛾
2

− 2𝛼
23
(−1 + 𝛾

2

) − 2𝑟
2

𝜌
0
(𝜔
2

+ Ω
2

)

−𝑎
18
cot𝜃 + 𝑎

19
csc2𝜃)Ψ

2

+ 𝑟(2𝑖 (𝑎
20
− 𝑖 (𝛼
22
− 𝛼
23
) cot𝜃) 𝑑Φ2

𝑑𝑟

− (𝑎
21
+ 2𝑟
2

𝜌
0
𝜔
2

+ 2𝑟
2

𝜌
0
Ω
2

−𝑎
22
cot𝜃 + 𝑎

23
csc2𝜃) 𝑑Ψ2

𝑑𝑟

+ 𝑟 (𝑖 (2𝛼
12
+ 𝛼
44
) 𝛾

+2 (𝛼
12
− 𝛼
13
) cot𝜃) 𝑑

2Φ
2

𝑑𝑟2

−2 (1 + 𝑚) 𝛼
44
𝑟
𝑑2Ψ
2

𝑑𝑟2
)] = 0,

(17)

where

𝑎
16
= 2𝛼
23
− 2𝛼
33
+ 2𝛼
22
𝛾
2

,

𝑎
17
= − 2𝛼

22
+ 4 (1 + 𝑚) 𝛼

44
+ 2𝛼
12
𝛾
2

,

𝑎
18
= 𝑖 (4𝛼

12
− 2 (𝛼

13
+ 𝛼
22
+ 𝛼
23
− 𝛼
33
)

− (1 + 2𝑚) 𝛼
44
) 𝛾,

𝑎
19
= (2𝛼

13
− 2𝛼
23
− 𝛼
44
− 2𝑚𝛼

44
) ,

𝑎
20
= (𝛼
22
+ 𝛼
23
+ 2 (1 + 𝑚) 𝛼

44
) 𝛾,

𝑎
21
= − 2 (𝛼

13
+ 𝛼
23
− 𝛼
33
) − 2𝛼

22
𝛾
2

+ 𝛼
44
𝛾
2

− 𝑟
2

𝛼
44
𝛾
2

+ 2𝛼
12
(1 + 𝛾

2

) ,

𝑎
22
= 𝑖 (4𝛼

12
− 2 (𝛼

13
+ 𝛼
22
) + 𝛼
44
) 𝛾,

𝑎
23
= (2𝛼

13
− 2𝛼
33
+ 𝛼
44
) ,

(18)

where 𝛾 is the wave number, 𝜔 is the angular frequency, 𝛾 =
2𝜋/𝜆, and 𝜆 is the wavelength. Substituting from (14) into (15)
and (17) and after regrouping them leads to two independent
equations for Φ

2
and Ψ

2
; these equations are called spherical

Bessel’s equations whose general solution is in the form

Φ
2
(𝑟) = 𝐴

1
𝑗
𝑛
(𝑘𝑟) + 𝐴

2
𝑦
𝑛
(𝑘𝑟) ,

Ψ
2
(𝑟) = 𝐴

3
𝑗
𝑛
(𝑘
1
𝑟) + 𝐴

4
𝑦
𝑛
(𝑘
1
𝑟) ,

(19)

where

𝑛 (𝑛 + 1) =
(𝛼
22
+ 𝛼
33
+ 2𝛼
23
) − (2𝑚 + 1) (𝛼

12
+ 𝛼
13
)

𝛼
11

+ 𝑚 (𝑚 + 1) ,

𝑘
2

=
𝛼
44
+ 𝜌
0
𝜔2

𝛼
11

+ 𝐿
1
− 𝛾
2

(𝛼
11
− 2𝛼
43
) +
𝜌
0

𝛼
11

(Ω
2

+ 𝜔
2

) ,

𝑘
2

1
=
𝜌
0

𝛼
11

(Ω
2

+ 𝜔
2

) +
(𝐿
2
+ 𝜌
0
𝜔2)

𝛼
11

+ 2𝛾
2

(𝛼
12
+ 2𝑚𝛼

12
− 𝛼
22
− 𝛼
23
) ,

𝐿
1
= ((2 + 4𝑚) 𝛼

13
− 2 (𝛼

23
+ 𝛼
33
) − 𝑚𝛼

44
) ,

𝐿
2
= 2𝛼
12
+ 2𝑚𝛼

13
− 𝛼
22
− 2𝛼𝑚

23
− 𝛼
33
,

(20)

where 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
are arbitrary constants and

𝑗
𝑛
(𝑘𝑟) and 𝑦

𝑛
(𝑘𝑟) denote spherical Bessel’s functions of the

first and second kind of order 𝑛, respectively, which are
defined in terms of Bessel’s function as follows: 𝑗

𝑛
(𝑘𝑟) =

√𝜋/2𝑘𝑟𝐽
𝑛+1/2
(𝑘𝑟), 𝑦

𝑛
(𝑘𝑟) = √𝜋/2𝑘𝑟𝑌

𝑛+1/2
(𝑘𝑟). From (19)

and (14) we get the following solutions for Φ
1
and Ψ

1
as

follows:

Φ
1
(𝑟, 𝜃, 𝑡) = 𝑒

𝑖 (𝛾𝜃−𝑤𝑡)

[𝐴
1
𝑗
𝑛
(𝑘𝑟) + 𝐴

2
𝑦
𝑛
(𝑘𝑟)] ,

Ψ
1
(𝑟, 𝜃, 𝑡) = 𝑒

𝑖 (𝛾𝜃−𝑤𝑡)

[𝐴
3
𝑗
𝑛
(𝑘
1
𝑟) + 𝐴

4
𝑦
𝑛
(𝑘
1
𝑟)] .

(21)
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Substituting from (21) into (9), we obtain the final solution of
the displacement components in the following form:

𝑢
𝑟
=
1

𝑟
𝑒
𝑖(𝛾𝜃−𝑤𝑡)

[𝐴
1
{𝑛𝑗
𝑛
(𝑘𝑟) − 𝑟𝑘𝑗

𝑛+1
(𝑘𝑟)}

+ 𝐴
2
{𝑛𝑦
𝑛+1
(𝑘𝑟) + 𝑦

𝑛+1
(𝑘𝑟)}

+𝐴
3
(𝑖𝛾 + cot𝜃) 𝑗

𝑛
(𝑘
1
𝑟) + 𝐴

4
𝑦
𝑛+1
(𝑘
1
𝑟)] ,

𝑢
𝜃
=
1

𝑟
𝑒
𝑖(𝛾𝜃−𝑤𝑡)

[𝐴
1
𝑖𝛾𝑗
𝑛
(𝑘𝑟) + 𝐴

2
𝑦
𝑛
(𝑘𝑟)

− 𝐴
3
{(1 + 𝑛) 𝑗

𝑛
(𝑘
1
𝑟) + 𝑘

1
𝑟𝑗
𝑛+1
(𝑘
1
𝑟)}

−𝐴
4
{(1 + 𝑛) 𝑦

𝑛
(𝑘
1
𝑟) + 𝑟𝑘

1
𝑦
𝑛+1
(𝑘
1
𝑟)}] .

(22)

Substituting from (22) into (2), we obtain the final solution of
the stress components in the following form:

𝜎
𝑟𝑟
= 𝑟
−2+2𝑚

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴
1
{ ((𝛼
12
+ 𝛼
13
) 𝑛

+ 𝛼
11
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑟
2

) − 𝛼
12
𝛾
2

+ 𝑖𝛼
13
𝛾cot𝜃) 𝑗

𝑛
(𝑘𝑟)

+ (2𝛼
11
− 𝛼
12
− 𝛼
13
) 𝑘𝑟𝑗
𝑛+1
(𝑘𝑟) }

+ 𝐴
3
{(𝑖 (𝛼
13
+ 𝛼
11
(−1 + 𝑛) − 𝛼

12
𝑛) 𝛾

+ (𝛼
12
+ 𝛼
11
(−1 + 𝑛)

−𝛼
13
𝑛) cot𝜃) 𝑗

𝑛
(𝑘
1
𝑟)

+ 𝑘
1
𝑟 (−𝑖 (𝛼

11
− 𝛼
12
) 𝛾 + (−𝛼

11
+ 𝛼
13
)

× cot𝜃) 𝑗
𝑛+1
(𝑘
1
𝑟) }

+ 𝐴
2
{((𝛼
12
+ 𝛼
13
) 𝑛 + 𝛼

11
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑟
2

)

− 𝛼
12
𝛾
2

+ 𝑖𝛼
13
𝛾cot𝜃) 𝑦

𝑛
(𝑘𝑟)

+ (2𝛼
11
− 𝛼
12
− 𝛼
13
) 𝑘𝑟𝑦
𝑛+1
(𝑘𝑟) }

+ 𝐴
4
{(𝑖 (𝛼
13
+ 𝛼
11
(−1 + 𝑛) − 𝛼

12
𝑛) 𝛾

+ (𝛼
12
+ 𝛼
11
(−1 + 𝑛)

−𝛼
13
𝑛) cot𝜃) 𝑦

𝑛
(𝑘
1
𝑟)

+ 𝑘
1
𝑟 (−𝑖 (𝛼

11
− 𝛼
12
) 𝛾

+ (−𝛼
11
+ 𝛼
13
) cot𝜃) 𝑦

𝑛+1
(𝑘
1
𝑟)}] ,

(23a)

𝜎
𝜃𝜃
= 𝑟
−2+2𝑚

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴
1
{((𝛼
22
+ 𝛼
23
) 𝑛

+ 𝛼
12
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑟
2

) − 𝛼
22
𝛾
2

+ 𝑖𝛼
23
𝛾cot𝜃) 𝑗

𝑛
(𝑘𝑟)

+ (2𝛼
12
− 𝛼
22
− 𝛼
23
) 𝑘𝑟𝑗
𝑛+1
(𝑘𝑟)}

+ 𝐴
3
{(𝑖 (𝛼
23
+ 𝛼
12
(−1 + 𝑛) − 𝛼

22
𝑛) 𝛾

+ (𝛼
22
+ 𝛼
12
(−1 + 𝑛)

−𝛼
23
𝑛) cot𝜃) 𝑗

𝑛
(𝑘
1
𝑟)

+ 𝑘
1
𝑟 (−𝑖 (𝛼

12
− 𝛼
22
) 𝛾 + (−𝛼

12
+ 𝛼
23
)

× cot𝜃) 𝑗
𝑛+1
(𝑘
1
𝑟) }

+ 𝐴
2
{((𝛼
22
+ 𝛼
23
) 𝑛 + 𝛼

12
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑟
2

)

− 𝛼
22
𝛾
2

+ 𝑖𝛼
23
𝛾cot𝜃) 𝑦

𝑛
(𝑘𝑟)

+ (2𝛼
12
− 𝛼
22
− 𝛼
23
) 𝑘𝑟𝑦
𝑛+1
(𝑘𝑟) }

+ 𝐴
4
{(𝑖 (𝛼
23
+ 𝛼
12
(−1 + 𝑛) − 𝛼

22
𝑛) 𝛾

+ (𝛼
22
+ 𝛼
12
(−1 + 𝑛)

−𝛼
23
𝑛) cot𝜃) 𝑦

𝑛+1
(𝑘
1
𝑟)

+ 𝑘
1
𝑟 (−𝑖 (𝛼

12
− 𝛼
22
) 𝛾

+ (−𝛼
12
+ 𝛼
23
) cot𝜃) 𝑦

𝑛+1
(𝑘
1
𝑟)} ] ,

(23b)

𝜎
𝜑𝜑
=𝑟
−2+2𝑚

𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴
1
{((𝛼
23
+ 𝛼
33
) 𝑛

+ 𝛼
13
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑟
2

) − 𝛼
23
𝛾
2

+ 𝑖𝛼
33
𝛾cot𝜃) 𝑗

𝑛
(𝑘𝑟)

+ (2𝛼
13
− 𝛼
23
− 𝛼
33
) 𝑘𝑟𝑗
𝑛+1
(𝑘𝑟)}

+ 𝐴
3
{(𝑖 (𝛼
33
+ 𝛼
13
(−1 + 𝑛) − 𝛼

23
𝑛) 𝛾

+ (𝛼
23
+ 𝛼
13
(−1 + 𝑛)

−𝛼
33
𝑛) cot𝜃) 𝑗

𝑛
(𝑘
1
𝑟)

+ 𝑘
1
𝑟 (−𝑖 (𝛼

13
− 𝛼
23
) 𝛾 + (−𝛼

13
+ 𝛼
33
)

× cot𝜃) 𝑗
𝑛+1
(𝑘
1
𝑟)}

+ 𝐴
2
{((𝛼
23
+ 𝛼
33
) 𝑛 + 𝛼

13
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑟
2

)

− 𝛼
23
𝛾
2

+ 𝑖𝛼
33
𝛾cot𝜃) 𝑦

𝑛
(𝑘𝑟)

+ (2𝛼
13
− 𝛼
23
− 𝛼
33
) 𝑘𝑟𝑦
𝑛+1
(𝑘𝑟) }

+ 𝐴
4
{(𝑖 (𝛼
33
+ 𝛼
13
(−1 + 𝑛) − 𝛼

23
𝑛) 𝛾

+ (𝛼
23
+ 𝛼
13
(−1 + 𝑛)

−𝛼
33
𝑛) cot𝜃) 𝑦

𝑛
(𝑘
1
𝑟)

+ 𝑘
1
𝑟 (−𝑖 (𝛼

13
− 𝛼
23
) 𝛾

+ (−𝛼
13
+ 𝛼
33
) cot𝜃) 𝑦

𝑛+1
(𝑘
1
𝑟)}] ,

(23c)
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𝜏
𝑟𝜃
= −
𝑟−2+2𝑚

2
𝛼
44
𝑒
𝑖(𝛾𝜃−𝑡𝜔)

× [𝐴
1
{−2𝑖 (−1 + 𝑛) 𝛾𝑗

𝑛
(𝑘𝑟) + 2𝑖𝑘𝑟𝛾𝑗

𝑛+1
(𝑘𝑟)}

+ 𝐴
3
{(−2 + (−1 + 𝑛) 𝑛 − 𝑘

2

1
𝑟
2

+ 𝛾
2

− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑗
𝑛
(𝑘
1
𝑟) + 2𝑘

1
𝑟𝑗
𝑛+1
(𝑘
1
𝑟)}

− 𝐴
2
{2𝑖 (−1 + 𝑛) 𝛾𝑦

𝑛
(𝑘𝑟) + 2𝑖𝑘𝑟𝛾𝑦

𝑛+1
(𝑘𝑟)}

+ 𝐴
4
{ (−2 + (−1 + 𝑛) 𝑛 − 𝑘

2

1
𝑟
2

+ 𝛾
2

− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑦
𝑛
(𝑘
1
𝑟) + 2𝑘

1
𝑟𝑦
𝑛+1
(𝑘
1
𝑟)}] .

(23d)

From the solutions of elastic wave equations, the systems
of equations depend on non-homogenity, rotation and the
frequency.

4. Boundary Conditions and
Frequency Equation

The solutions of the hollow sphere with different boundary
conditions are performed, the mixed boundary conditions
which consist of two kinds of boundary conditions, the inner
surface fixed and the outer surface free, that is,

𝑢
𝑟
= 𝑢
𝜃
= 0, 𝑟 = 𝑎, 𝜎

𝑟𝑟
= 𝜏
𝑟𝜃
= 0, 𝑟 = 𝑏. (24)

In this case, from (22), (23a), (23b), (23c), (23d), and (24)
we have

𝐴
1
{𝑛𝑗
𝑛
(𝑘𝑎) − 𝑎𝑘𝑗

𝑛+1
(𝑘𝑎)}

+ 𝐴
2
{𝑛𝑦
𝑛+1
(𝑘𝑎) + 𝑦

𝑛+1
(𝑘𝑎)}

+ 𝐴
3
(𝑖𝛾 + cot𝜃) 𝑗

𝑛
(𝑘
1
𝑎) + 𝐴

4
𝑦
𝑛+1
(𝑘
1
𝑎) = 0,

(25a)

𝐴
1
𝑖𝛾𝑗
𝑛
(𝑘𝑎) + 𝐴

2
𝑦
𝑛
(𝑘𝑎)

− 𝐴
3
{(1 + 𝑛) 𝑗

𝑛
(𝑘
1
𝑎) + 𝑘

1
𝑎𝑗
𝑛+1
(𝑘
1
𝑎)}

− 𝐴
4
{(1 + 𝑛) 𝑦

𝑛
(𝑘
1
𝑎) + 𝑎𝑘

1
𝑦
𝑛+1
(𝑘
1
𝑎)} = 0,

(25b)

𝐴
1
{((𝛼
12
+ 𝛼
13
) 𝑛 + 𝛼

11
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑏
2

)

− 𝛼
12
𝛾
2

+ 𝑖𝛼
13
𝛾cot𝜃) 𝑗

𝑛
(𝑘𝑏)

+ (2𝛼
11
− 𝛼
12
− 𝛼
13
) 𝑘𝑏𝑗
𝑛+1
(𝑘𝑏) }

+ 𝐴
2
{((𝛼
12
+ 𝛼
13
) 𝑛 + 𝛼

11
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑏
2

)

− 𝛼
12
𝛾
2

+ 𝑖𝛼
13
𝛾cot𝜃) 𝑦

𝑛
(𝑘𝑏)

+ (2𝛼
11
− 𝛼
12
− 𝛼
13
) 𝑘 𝑏𝑦

𝑛+1
(𝑘𝑏) }

+ 𝐴
3
{(𝑖 (𝛼
13
+ 𝛼
11
(−1 + 𝑛) − 𝛼

12
𝑛) 𝛾

+ (𝛼
12
+ 𝛼
11
(−1 + 𝑛) − 𝛼

13
𝑛)

× cot𝜃) 𝑗
𝑛
(𝑘
1
𝑏)

+ 𝑘
1
𝑏 (−𝑖 (𝛼

11
− 𝛼
12
) 𝛾 + (−𝛼

11
+ 𝛼
13
)

×cot𝜃) 𝑗
𝑛+1
(𝑘
1
𝑏) }

+ 𝐴
4
{(𝑖 (𝛼
13
+ 𝛼
11
(−1 + 𝑛) − 𝛼

12
𝑛) 𝛾

+ (𝛼
12
+ 𝛼
11
(−1 + 𝑛) − 𝛼

13
𝑛)

× cot𝜃) 𝑦
𝑛
(𝑘
1
𝑏)

+ 𝑘
1
𝑏 (−𝑖 (𝛼

11
− 𝛼
12
) 𝛾 + (−𝛼

11
+ 𝛼
13
)

× cot𝜃) 𝑦
𝑛+1
(𝑘
1
𝑏)} = 0,

(25c)
𝐴
1
{−2𝑖 (−1 + 𝑛) 𝛾𝑗

𝑛
(𝑘𝑏) + 2𝑖𝑘𝑏𝛾𝑗

𝑛+1
(𝑘𝑏)}

− 𝐴
2
{2𝑖 (−1 + 𝑛) 𝛾𝑦

𝑛
(𝑘𝑏) + 2𝑖𝑘𝑏𝛾𝑦

𝑛+1
(𝑘𝑏)}

+ 𝐴
3
{ (−2 + (−1 + 𝑛) 𝑛 − 𝑘

2

1
𝑏
2

+ 𝛾
2

− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑗
𝑛
(𝑘
1
𝑏) + 2𝑘

1
𝑏𝑗
𝑛+1
(𝑘
1
𝑏)}

+ 𝐴
4
{ (−2 + (−1 + 𝑛) 𝑛 − 𝑘

2

1
𝑏
2

+ 𝛾
2

− 𝑖𝛾cot𝜃

+csc2𝜃) 𝑦
𝑛
(𝑘
1
𝑏) + 2𝑘

1
𝑏𝑦
𝑛+1
(𝑘
1
𝑏)} .

(25d)

From (25a), (25b), (25c), and (25d) we get the following
frequency equation:


𝑎
𝑖𝑗


= 0, 𝑖, 𝑗 = 1, 2, 3, 4, (26)

where the coefficients 𝑎
𝑖𝑗
are functions of rotation, non-

homogenity, frequency, the radius 𝑟. Finally, we confined
our attention to make these quantities dimensionless to
simplify the calculation of the eigenvalues of equations. The
coefficients 𝑎

𝑖𝑗
are

𝑎
11
=𝑛𝑗
𝑛
(𝑘𝑎) − 𝑟𝑘𝑗

𝑛+1
(𝑘𝑎) ,

𝑎
12
=𝑛𝑦
𝑛+1
(𝑘𝑎) + 𝑦

𝑛+1
(𝑘𝑎) ,

𝑎
13
= (𝑖𝛾 + cot𝜃) 𝑗

𝑛
(𝑘
1
𝑎) ,

𝑎
14
=𝑦
𝑛+1
(𝑘
1
𝑎) , 𝑎

21
= 𝑖𝛾𝑗
𝑛
(𝑘𝑎) ,

𝑎
22
=𝑦
𝑛
(𝑘𝑎) ,

𝑎
23
= − (1 + 𝑛) 𝑗

𝑛
(𝑘
1
𝑎) − 𝑘

1
𝑎𝑗
𝑛+1
(𝑘
1
𝑎) ,

𝑎
24
= (1 + 𝑛) 𝑦

𝑛
(𝑘
1
𝑎) + 𝑎𝑘

1
𝑦
𝑛+1
(𝑘
1
𝑎) ,

𝑎
31
= ((𝛼
12
+ 𝛼
13
) 𝑛 + 𝛼

11
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑏
2

)

− 𝛼
12
𝛾
2

+ 𝑖𝛼
13
𝛾cot𝜃) 𝑗

𝑛
(𝑘𝑏)

+ (2𝛼
11
− 𝛼
12
− 𝛼
13
) 𝑘𝑏𝑗
𝑛+1
(𝑘𝑏) ,
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𝑎
32
= ( (𝛼

12
+ 𝛼
13
) 𝑛 + 𝛼

11
((−1 + 𝑛) 𝑛 − 𝑘

2

𝑏
2

)

− 𝛼
12
𝛾
2

+ 𝑖𝛼
13
𝛾cot𝜃) 𝑦

𝑛
(𝑘𝑏)

+ (2𝛼
11
− 𝛼
12
− 𝛼
13
) 𝑘 𝑏𝑦

𝑛+1
(𝑘𝑏) ,

𝑎
33
= { (𝑖 (𝛼

13
+ 𝛼
11
(−1 + 𝑛) − 𝛼

12
𝑛) 𝛾

+ (𝛼
12
+ 𝛼
11
(−1 + 𝑛) − 𝛼

13
𝑛)

×cot𝜃) 𝑗
𝑛
(𝑘
1
𝑏)

+ 𝑘
1
𝑏 (−𝑖 (𝛼

11
− 𝛼
12
) 𝛾 + (−𝛼

11
+ 𝛼
13
)

× cot𝜃) 𝑗
𝑛+1
(𝑘
1
𝑏) } ,

𝑎
34
= (𝑖 (𝛼

13
+ 𝛼
11
(−1 + 𝑛) − 𝛼

12
𝑛) 𝛾

+ (𝛼
12
+ 𝛼
11
(−1 + 𝑛) − 𝛼

13
𝑛)

× cot𝜃) 𝑦
𝑛
(𝑘
1
𝑏)

+ 𝑘
1
𝑏 (−𝑖 (𝛼

11
− 𝛼
12
) 𝛾

+ (−𝛼
11
+ 𝛼
13
) cot𝜃) 𝑦

𝑛1+1
(𝑘
1
𝑏) ,

𝑎
41
= − 2𝑖 (−1 + 𝑛) 𝛾𝑗

𝑛
(𝑘𝑏) + 2𝑖𝑘𝑏𝛾𝑗

𝑛+1
(𝑘𝑏) ,

𝑎
42
= − 2𝑖 (−1 + 𝑛) 𝛾𝑦

𝑛
(𝑘𝑏) − 2𝑖𝑘𝑏𝛾𝑦

𝑛+1
(𝑘𝑏) ,

𝑎
43
= (−2 + (−1 + 𝑛) 𝑛 − 𝑘

2

1
𝑏
2

+ 𝛾
2

− 𝑖𝛾cot𝜃 + csc2𝜃) 𝑗
𝑛
(𝑘
1
𝑏)

+ 2𝑘
1
𝑏𝑗
𝑛+1
(𝑘
1
𝑏) ,

𝑎
44
= ( − 2 + (−1 + 𝑛) 𝑛 − 𝑘

2

1
𝑏
2

+ 𝛾
2

−𝑖𝛾cot𝜃 + csc2𝜃) 𝑦
𝑛
(𝑘
1
𝑏)

+ 2𝑘
1
𝑏𝑦
𝑛+1
(𝑘
1
𝑏) .

(27)

5. Numerical Results and Discussion

To examine the influence of non-homogenity, rotation and
variation of the non-dimensional frequency in hollow sphere
with the radius 𝑟 have been shown graphically. Free vibra-
tions have been studied using a half-interval method. The
frequency equations have been obtained under the effects
of non-homogenity and rotation. It is found that the non-
dimensional frequency increases with the increases of radius
𝑟 for all cases. As an illustrative example, the elastic constants
for an orthotropic non-homogeneous material from Hear-
mon [36, 37] are 𝛼

23
= 3.945, 𝛼

11
= 3.198, 𝛼

33
= 2.7951,

𝛼
13
= 2.310, 𝛼

12
= 0.713, 𝛼

22
= 4.560, and 𝜌 = 2.680.

Numerical calculations are carried out for the displacement
and the stress components along the 𝑟-direction at different
values of the rotation Ω = 0.0, 1.3, 2.6 in the case of non-
homogeneous material and orthotropic material. Figure 2
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Figure 2: Variation of non-dimensional frequency versus the radius
𝑟, for the various values of rotation Ω and non-homogeneous 𝑚 =
0.65 (inner fixed surfaces and outer free surfaces) and 𝑛 = 0.
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Figure 3: Variation of non-dimensional frequency versus the radius
𝑟, for the various values of non-homogeneous 𝑚 and rotation Ω =
2.5 (inner fixed surfaces and outer free surfaces) and 𝑛 = 0.

shows the response histories of the non-dimensional frequen-
cies with the radius 𝑟 for rotating hollow sphere Ω = 2.5.
With the effect of various values of non-homogeneous 𝑚 =
0.0, 0.5, 0.9 in the case of orthotropicmaterial, it can be found
that the distribution of the non-dimensional frequencies is
increasing as the increase in the radius 𝑟 and the non-
dimensional frequencies are increasing with the increase in
the non-homogenity. Figure 3 shows the variation of the non-
dimensional frequencies with the radius 𝑟 for hollow sphere
with the effect of various values of rotation Ω = 0.0, 1.3, 2.6
in the case of non-homogeneous 𝑚 = 0.65 orthotropic
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Figure 4: Variation of non-dimensional frequency (three modes)
versus the radius 𝑟 of the hollow sphere at rotation Ω = 2.5 and
non-homogeneous 𝑚 = 0.65 (inner fixed surfaces and outer free
surfaces) and 𝑛 = 0.
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Figure 5: Variation of non-dimensional frequency (three modes)
versus the radius 𝑟 of the hollow sphere at absent of rotationΩ = 0.0
and non-homogeneous𝑚 = 0.5 (inner fixed surfaces and outer free
surfaces) and 𝑛 = 0.

material. It can be found that the distribution of the non-
dimensional frequencies is increasing with the increase in the
radius 𝑟, but the non-dimensional frequencies are increasing
with the decrease in the rotation. Figure 4 shows the response
histories of the non-dimensional frequencies (the first mode,
the second mode, and the third mode) with the radius 𝑟
at value of non-homogeneous 𝑚 = 0.65 and the rotation
Ω = 2.5. It can be found that the distribution of the non-
dimensional frequencies is increasing with the increase in the
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Figure 6: Variation of non-dimensional frequency (three modes)
versus the radius 𝑟 of the hollow sphere at rotationΩ = 2.5 and non-
homogeneous𝑚 = 0.0 (inner fixed surfaces and outer free surfaces)
and 𝑛 = 0.

radius 𝑟, for various boundary conditions, inner fixed surface,
and outer free surface. Figure 5 shows the variation of the
non-dimensional frequencies (three modes) with the radius
𝑟 for orthotropic sphere in the absence of rotation Ω = 0.0
in the case of non-homogeneous material 𝑚 = 0.65. We
observed that the frequency is increasing with the increase
of the radius 𝑟 in the case of free traction surfaces, 𝑛 =
0. Figure 6 shows the first three modes of non-dimensional
frequency for homogeneous 𝑚 = 0.0 orthotropic material
in presence of the rotation Ω = 2.5. We observed that the
frequency is increasing with the increase in the radius 𝑟 in the
case of orthotropic homogeneous hollow sphere more than
in the case non-homogeneous hollow sphere. It is evident;
non-homogenity, rotation, and orthotropic have a significant
influence on non-dimensional frequencies.

6. Conclusion

The effect of non-homogenity and rotation on surface wave
dispersion in elastodynamic problem in orthotropic hollow
sphere is studied.The vibration of sphere with the mixed sur-
faces boundary conditions is evaluated. The natural frequen-
cies (eigenvalues) are calculated and compared with those
reported in the absence and presence of non-homogenity and
rotation. The effects of non-homogenity and rotation on the
natural frequencies are shown graphically.
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