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The flow and heat transfer of a micropolar fluid past a nonlinearly stretching plate is studied numerically, by taking into account
the viscous dissipation effect. It is assumed that the plate is stretched nonlinearly from the slot where it is issued. The governing
system of partial differential equations is transformed into ordinary differential equations, which are then solved numerically using
a finite-difference scheme known as the Keller-box method. The effects of the governing parameters, namely, the material parameter
K, the Eckert number Ec, the Prandtl number Pr, and the nonlinear stretching parameter #, on the flow field and the heat transfer
characteristics are obtained and discussed. The velocity and the temperature profiles are also illustrated to aid the validity of the
numerical results obtained. It is found that both the local Nusselt number and the magnitude of the skin friction coefficient increase

with the nonlinear stretching parameter #, and the opposite trend occurs as K increases for fixed 7.

1. Introduction

The initial study by Crane [1] has attracted many researchers
to investigate similar problems on the boundary layer flow
caused by a stretching sheet, as it has a number of applications
in industry such as the extrusion of polymer sheet from a
dye, continuous casting, drawing of plastic films, and crystal
growing. The desired characteristics of the final product
strictly depend on the rate of cooling and the process of
stretching. This stretching sheet may not necessarily be linear,
as it can also take nonlinear fashion, even though the problem
might not have obvious technological relevance [2]. In view
of this, Vajravelu [3] studied the flow over a nonlinearly
stretching sheet, and Cortell [4, 5] examined the flow and heat
transfer on a nonlinear stretching sheet for two different types
of thermal boundary conditions on the sheet, namely, con-
stant surface temperature (CST) and prescribed surface tem-
perature (PST). Ganji et al. [6] reported the analytical solu-
tion of the magnetohydrodynamic flow over a nonlinearly
stretching sheet. Similar problems have been studied recently
by Ishak et al. [7], Prasad et al. [8], Van Gorder et al. [2],

Raftari et al. [9], Abbas and Hayat [10], and Abel et al. [11],
among others.

The Navier-Stokes equations alone do not adequately
describe the flow properties for fluids with diversity in
the physical structure which occur in most non-Newtonian
fluids. Hence, the theory of micropolar fluid which was
proposed by Eringen [12, 13] perhaps gives an accurate model
for fluids where the polymeric and rotating particles need
to be taken into account, by including the microrotational
momentum equation in addition to the classical momentum
equation. Studies of micropolar fluids have recently received
considerable attention due to their applications in a number
of processes that occur in industry. Such applications include
suspension solutions, solidification of liquid crystals, animal
bloods, and exotic lubricants. Some of the researchers who
investigated such fluid with nonlinear stretching sheet are
Hayat et al. [14, 15] and Rahman et al. [16], who investigated
the micropolar fluid flow past a nonlinear stretching sheet
taking into account the effects of a temperature-dependent
viscosity and variable surface temperature. El-Aziz [17] exam-
ined the micropolar boundary-layer flow and heat transfer



characteristics associated with a heated exponential stretch-
ing continuous sheet being cooled by a mixed convection
flow, and Hsiao [18] has done an analysis for the heat and mass
transfer with radiation effect of a micropolar fluid past a non-
linearly stretching sheet. Ishak et al. [19] studied the behavior
of micropolar fluid flow over a fixed or continuous moving
surface. The flow over a stretching/shrinking sheet immersed
in a micropolar fluid has been considered by Ishak et al. [20],
Yacob and Ishak [21, 22], and Rosali et al. [23], among others.
They showed the existence of dual solutions for the shrinking
case.

Motivated by the above investigations, the present paper
studies the problem of micropolar fluid flow and heat transfer
over a nonlinearly stretching plate with viscous dissipation. It
is worth mentioning that viscous dissipation plays an impor-
tant role in the polymer processing where it is considered like
an energy source for producing heat which in turn delays the
process of solidification and as a result more time is required
to cool the final product (Hassan et al. [24]). It will affect the
heat transfer problem as the source term does appear in the
energy equation when the viscosity of the fluid or the velocity
gradient is high.

2. Problem Formulation

Consider a steady two-dimensional laminar boundary layer
flow over a nonlinearly stretching plate immersed in an
incompressible micropolar fluid of ambient temperature T,
as shown in Figure 1. It is assumed that the plate is stretched
with velocity U,, = ax”, and the plate temperature varies like
T, = T, + bx™", where x is the distance from the slot where
the plate is issued and g, b, and n are constants. The boundary
layer equations are [25, 26]
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where u and v are the velocity components in the x and
y directions, respectively. Further more, y is the dynamic
viscosity, x is the vortex viscosity (or the microrotation
viscosity), p is the fluid density, k is the thermal conductivity,
¢, is the specific heat at constant pressure, T is the fluid tem-

P
perature, j is the microinertia density, N is the microrotation
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FIGURE 1: Physical model and coordinate system.

(or angular velocity), and y is the spin gradient viscosity. The
boundary conditions are

u=U,, v=0, N:—ma—u,
Jy
T=T, aty=0, ®)
u—0, N-—0, T-—T, asy— 00,

where m is a constant with 0 < m < 1. The case m = 1/2
indicates the vanishing of antisymmetric part of the stress
tensor and denotes weak concentrations (Ahmadi [27]),
which is considered in the present paper. Furthermore, we
follow the work of many recent authors by assuming that y =
(u+x/2)j = u(1+K/2)j, where K = «/p is the micropolar or
material parameter. This assumption is invoked to allow the
field of equations to predict the correct behavior in the limit-
ing case when the microstructure effects become negligible
and the total spin N reduces to the angular velocity (see
Ahmadi [27] or Yicel [28]).

In order to solve (1)-(4) subject to the boundary condi-
tions (5), we introduce the following similarity transforma-
tion (see Ziabakhsh et al. [26] and Ishak et al. [29]):

1/2
1=(22) 5 w=0x0)"r (),
N = Uw<v—;)l/2h (1), (6)
B =3 f" (), O =,

where # is the similarity variable, primes denote differentia-
tion with respect to 7, v = p/p is the kinematic viscosity, f
is the dimensionless stream function, k is the dimensionless
microrotation, and v is the stream function defined as u =
oy/0y and v = —0y/0x which identically satisfies (1). Using
transformation (6) and utilising the boundary condition N =
—(1/2)(0 u/0 y) from (5), (2) and (3) reduce to the single
equation

K n 1 " I
(1+E>f +%ff -nf"? =0, (7)
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TaBLE 1: Values of (0) for various values of Prwhen K = 0, n =1
and Ec = 0.

Pr Grubka and Bobba [31] Present results
0.72 —-1.0885 —1.088524
1.0 —-1.3333 —-1.333333
3.0 -2.5097 —-2.509725
10.0 —4.7969 —4.796873

and the energy equation (4) becomes

n+1

> f0' —2nf'0+Ec(1+K) f* =0, (8)

1
- U
Pr

where Pr is the Prandtl number and Ec is the Eckert number
defined as

c U?
Pr = Q, Fc= ————w 9)
k Cp (Tw - Too)
The transformed boundary conditions are
foy=0, =1 60)=1
(10)
f'i)—0, 0(n) —0 asy— co.

The physical quantities of interest are the skin friction
coefficient C; and the local Nusselt number Nu, which are
defined as

Tw Xqw
Cr=—%, Nuy=——2m
/ PUZJ e k (Tw - Too) (11)

where the surface shear stress 7, and the surface heat flux g,
are given by

Tw=|:(M+K)g—;l+KN] , qw:—k<%> . (12)
=0

y=0 y
Using the dimensionless variables in (6), we obtain

N

K u,
CyRe,” = (1 * E>f O, Rel? -6'(0), (13)

where Re, = U, x/v is the local Reynolds number.

3. Results and Discussion

The transformed system of (7) and (8) with the boundary
conditions (10) was solved numerically using the Keller-box
method as described in [30] for some values of parameters. In
order to validate the numerical results obtained, we compare
our results with those obtained by Grubka and Bobba [31] as
shown in Table 1, which shows a favorable agreement.
Figures 2 and 3 show the effect of the nonlinear stretching
parameter 7 on the skin friction coefficient C fRe}C/ % and the
local Nusselt number Nu, ./ Re}c/ 2, respectively, as the material
parameter K varies when Pr = 0.7 and Ec = 1. As discussed
by Alam et al. [32], Pr = 0.7 corresponds to air that may be
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FIGURE 2: Variation of the skin friction coefficient C fRei/ 2 with K
for various values of n.
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FIGURE 3: Variation of the local Nusselt number Nu,/Re!/” with K
for various values of n when Pr = 0.7 and Ec = 1.

considered as a micropolar fluid when it is heavily contami-
nated with suspended particles of dirt. It is found that all the
values of the skin friction coeflicients C fRe}C/ * are negative
and decrease slowly as K increases from K = 0 (Newtonian
fluid) to K = 2 (micropolar fluid) for all values of the non-
linearity parameter #. The same trend is observed as the plate
is being stretched (1 > 0); that is, the values of the skin fric-
tion coeflicient C Re,lc/ % decrease with respect to K. It is worth
mentioning that the plate is being as more stretched, it will
decrease the values of the skin friction coefficients. But oppo-
site trend is observed for the local Nusselt number as depicted
in Figure 3. As the plate is being stretched, the values of
the local Nusselt number Nux/Rei/ * are greater and for a
particular value of n, the local Nusselt number decreases
slowly as K increases from 0 (Newtonian fluid) to positive
values of K (micropolar fluid).

The velocity and temperature distributions obtained by
the finite-difference method for various values of the govern-
ing parameters are displayed in Figures 4 to 7. Figures 4 and 5



'

FIGURE 4: Velocity profiles f'(y) for various values of K when n =
0.landn = 1.0.
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FIGURE 5: Temperature profiles 6(#) for various values of K when
Pr=1,Ec=1,andn=0.1andn=1.

depict the effect of the micropolar/material parameter K
when Pr = 1, Ec = 1, and n = 0.1 and n = 1.0 on the velocity
and temperature profiles. On the other hand, Figures 6 and 7
display the velocity and temperature distributions for differ-
ent values of the Eckert number Ec when Pr = 0.7, K = 1,and
n =0andn = 1. Itis seen that an increase in the Eckert num-
ber Ec increases the thermal boundary layer thickness, while
stretching the plate decreases the thermal boundary layer.
There are no changes in the velocity boundary layer thickness
as illustrated in Figure 6. This is expected as the viscous
dissipation only affects the thermal field. We can see that
the velocity and the temperature profiles for all the figures
subside monotonously to zero as # increases which validate
the boundary conditions (10), asymptotically.
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FIGURE 6: Velocity profiles f'() forn =0and n = 1.
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FIGURE 7: Temperature profiles 6(#) for various values of Ec when
Pr=07,K=1,andn=0andn = 1.

4. Conclusions

We have done a numerical investigation on the effects of the
material parameter K, the viscous dissipation Ec, the nonlin-
ear stretching parameter #, and the Prandtl number Pr on the
fluid flow and heat transfer characteristics toward a nonlinear
stretching sheet immersed in a micropolar fluid. It is found
that both the magnitude of the skin friction coefficient
and the local Nusselt number increase with the nonlinear
stretching parameter n and decrease when K increases for
fixed values of n.
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