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Acoustic wave propagation in hard-walled ducts is of interest inmany fields including vehicle design,musical instruments acoustics,
and architectural and environmental noise-control. For the case of small sinusoidal perturbation of the cross-section, it is possible
to derive simple though approximate analytical formulas of its plane wave acoustic reflection and transmission spectral response
that resembles the optical situation of uniform Bragg gratings. The proof is given here, starting from the “horn equation” and
then exploiting the coupled-modes theory. Examples of the results obtained with these analytical formulas are shown for some
sinusoidally perturbed ducts and compared to results obtained through a numerical method, revealing a very good agreement.

1. Introduction

The propagation of waves in periodic media has received
much attention in the past in different fields of physics:
a comprehensive review can be found in Elachi [1], with
references on the propagation of acoustic waves in ducts with
sinusoidally perturbed walls [2–4]. An interesting feature of
wave propagation in periodic media discussed in the review
is the existence of stopbands and passbands related to the
medium periodicities.

In the last decades much research effort was dedicated
to the theoretical and experimental study of elastic wave
propagation in periodic waveguides. For instance, Fokkema
[5] dealt with periodic boundaries of elastic media; other
authors studied waves propagating along periodically corru-
gated plates [6–10] and along ducts [11–15].

The purpose of this paper is not to advance the research
work accomplished so far, but rather to provide an approx-
imate simplification of the established theory, when proper
hypotheses are satisfied. Attention is indeed limited to acous-
tic propagation in hard-walled ducts whose cross-section
undergoes a small sinusoidal perturbation with respect to a
referencemean value.Thework holds for any filling fluid, typ-
ically air, provided that the hard-wall hypothesis is verified.

Like inMunday et al. [15], the analysis is restricted to one-
dimensional (plane wave) propagation, where the waveguide
geometry is defined simply by the cross-section along the
axial coordinate.The starting point of the theoretical analysis
is the Webster horn equation, as performed by Nagarkar and
Finch [16], who studied sinusoidal horns, and byGriffiths and
Steinke [17], who reviewed the theory of one-dimensional
wave propagation in locally periodic media consisting of
an arbitrary number of identical cells and showed the
acoustic solution for some particular geometries. Lau and
Campos [18] also solved the acoustic wave equation for one-
dimensional propagation along a duct with a small wall
sinusoidal perturbation: the exact solutions were obtained as
power series expansions around the middle of the duct.

Recently, Hawwa [19] analyzed sound waves in a circular
cylindrical duct having a geometric periodicity at its wall, by
solving numerically the wave equations.

In optics, or more general in electromagnetics, a period-
ically perturbed medium is called a Bragg grating, or simply
a multilayer medium: the transmission and reflection of a
uniform grating can be expressed with simple closed-form
formulas (Kogelnik [20]).The acoustic analog of the uniform
Bragg grating is a duct whose cross-section sinusoidally
varies but, to the authors’ knowledge, a simple formula for
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Figure 1: Duct with a periodic perturbation of the cross-section.

the acoustic response of such a waveguide is not available in
literature.

This paper exploits thus the Bragg gratings theory to
solve the acoustic “horn equation,” obtaining simple formulas
for the reflection and transmission spectral response of the
waveguide as a function of acoustic and geometric parame-
ters, under the hypothesis of a small sinusoidal cross-section
variation compared to the mean reference value.

Simple and closed-form solutions are advantageous in
modeling/inversion procedures, as, for example, in bore
reconstruction, design of noise-control devices (employed,
e.g., for jet engines or HVAC systems), and even monitoring
of transportation pipelines.

The following sections describe the scenario, the mathe-
matical derivation, and the result for some example cases.

The solution provided can take into account also wave
attenuation, typically hard-wall losses (boundary layer fric-
tion), whose terms are added a posteriori.

2. Theory

The scenario considered here is a circular hard-walled duct
with a small periodic perturbation of the cross-section
along the axial coordinate (Figure 1). Two similar though
analytically different geometric cases are considered: one is
when a sinusoidal function describes the variation of the
cross-section; the other when a sinusoidal function describes
the variation of the radius of the circular cross-section.

As in Lau and Campos [18], the acoustic wavelength is
supposed to be larger than the transverse dimensions of the
duct, so that only the fundamental longitudinal mode exists.
Moreover, the changes in cross-section are supposed not to
be too rapid with respect to the transverse dimension, so that
the wavefronts remain approximately plane.

Under these hypotheses the governing geometrical
parameters reduce to the cross-section area (the shape can
be neglected), and the starting physical law is the one-
dimensional “horn equation” [17]:
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The field variable Ψ is the pressure over ambient, 𝑆 is the
cross-section area, V is the phase velocity, 𝑥 is the waveguide
axial coordinate, and 𝑡 is the time.

Let us consider harmonic waves:
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The substitution of (2) in the wave equation (1) yields
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where 𝛽 = 𝜔/V is the acoustic wavenumber.
From this point, the mathematical steps and the approx-

imations introduced follow the computation of the transfer
function for a uniform optical fiber Bragg grating (Erdogan
[21] and Kogelnik [20]), with adaptation to the acoustic
waveguide case.

The pressure field is expressed as a linear combination
of the fundamental modes propagating in the opposite
directions

𝜓 (𝑥) = 𝐴 (𝑥) 𝑒
−𝑖𝛽𝑥

+ 𝐵 (𝑥) 𝑒
𝑖𝛽𝑥
, (4)

where, according to the adopted time convention, 𝐴 and 𝐵
are the amplitudes of the waves propagating in the −𝑥 and +𝑥
directions, respectively.

The first derivative of (4) is
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with prime denoting derivative with respect to 𝑥.
In the hypothesis of weak coupling between the two
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Substituting the expressions for derivatives, andmultiply-
ing by 𝑒𝑖𝛽𝑥, the wave equation (3) yields
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The solution of (7) requires a system of two differential
equations for 𝐴 and 𝐵. Therefore 𝐴󸀠 and 𝐵󸀠 are alternately
isolated from (7), neglecting in each resulting equation the
dependency on the derivative of the other coefficient. This is
justified by the fact that 𝑆 and so 𝐴 and 𝐵 are slowly variable
functions of 𝑥 [21].

The resulting system is
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that can be expressed in this way:
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Under the hypothesis of slow section perturbations, and
far from the null frequency, it is |𝑆󸀠/𝑆| ≪ |2𝑖𝛽|, and the
coefficients 𝑐

𝑖𝑗
in (9) become
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Now, the two aforementioned geometric cases are considered;
first, when the cross-section is a cosine function of 𝑥; that is,

𝑆 (𝑥) = 𝑠 cos (𝛾𝑥) + 𝑠
0
, (11)

and second, when the radius of the circular cross-section is a
cosine function of 𝑥; that is,

𝑆 (𝑥) = 𝜋(𝑠 cos (𝛾𝑥) + 𝑠
0
)
2

. (12)

𝛾 is the perturbation wavenumber, 𝑠 is the perturbation
amplitude, and 𝑠

0
is the mean value.

The ratio between the derivative of the cross-section and
the cross-section itself 𝑆󸀠/𝑆, for 𝑠 ≪ 𝑠

0
, is approximately
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where 𝜅 = 𝑠𝛾/4𝑠
0
for the cross-section sinusoidal perturba-

tion and 𝜅 = 𝑠𝛾/2𝑠
0
for the radius sinusoidal perturbation.
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The terms that contain a rapidly oscillating dependence with
𝑥 can be neglected: they correspond to the complex exponen-
tials with high phase constant (in magnitude) compared to
the others, that is, 𝑒±𝑖𝛾𝑥, 𝑒2𝑖𝛽𝑥+𝑖𝛾𝑥, and 𝑒−2𝑖𝛽𝑥−𝑖𝛾𝑥 [21].

The result is

𝐴
󸀠
= −𝑖𝜅𝐵𝑒

𝑖(2𝛽−𝛾)𝑥
,

𝐵
󸀠
= 𝑖𝜅𝐴𝑒

−𝑖(2𝛽−𝛾)𝑥
.

(15)

By performing in the system (15) the following substitutions:
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and calling 𝜎 = 𝛽 − 𝛾/2, one obtains
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The system (17) is a standard systemof two coupled first-order
ordinary differential equations with constant coefficients, for
which closed-form solutions can be found, when appropriate
boundary conditions are specified.

Since 𝐴 corresponds to the backward propagating wave
and 𝐵 to the forward propagating one, the boundary condi-
tions, for a forward propagating wave impinging the waveg-
uide at 𝑥 = 0, are

𝐴 (𝐿) = 0

𝐵 (0) = 1
󳨐⇒

𝑎 (𝐿) = 0

𝑏 (0) = 1,
(18)

where 𝐿 is the length of the sinusoidally perturbed duct.
The solution of system (17) with boundary conditions (18)

is obtained by means of linear algebra:
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(19)

The reflection and transmission spectral responses 𝑅(𝜔)
and 𝑇(𝜔) correspond, respectively, to 𝑎(0) and 𝑏(𝐿). Hence,
finally

𝑅 (𝜔) =
𝑖𝑆 sinh 𝛿𝐿

cosh 𝛿𝐿 − 𝑖𝑃 sinh 𝛿𝐿
,
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where

𝛿 = √𝜅2 − 𝜎2,

𝑆 =
𝜅

𝛿
,

𝑃 =
𝜎

𝛿
.

(21)

According to their definition, the spectral responses 𝑅
and 𝑇 refer to the acoustic pressure amplitude: the corre-
sponding power spectral responses can be found by taking
the square of their magnitude. In absence of attenuation, the
sum of the power spectral responses is unitary, as expected.

Equations (20) are the acoustic analog of the optical
formulas for the uniform Bragg grating in Kogelnik [20], and
the parameters 𝜅 and 𝜎 are expressed here as a function of
acoustic wave parameters and waveguide geometric parame-
ters.

The reflection spectral response has a maximum for 𝜎 =
0, corresponding to the frequency 𝑓max = 𝛾V/4𝜋. For the
same frequency the transmission response has a minimum.

Finally, even if the considered one-dimensional wave
equation does not contain a loss term, one may add the
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Figure 2: Reflection ((a), (c), (e)) and transmission ((b), (d), (f)) spectral responses, inmagnitude, of a sinusoidally perturbed duct computed
with (20) (solid line) and numerical results (crosses). ((a)-(b)) Case (i); ((c)-(d)) Case (ii); ((e)-(f)) Case (iii).

absorption phenomenon a posteriori, typically due to the
duct walls, by redefining the acoustic wavenumber

𝛽 =
𝜔

V
+ 𝑖𝛼, (22)

where 𝛼(𝜔) is the absorption coefficient computed withmean
cross-section parameters and V(𝜔) is the corresponding phase
velocity.

3. Examples

Some examples of the acoustic behavior for a sinusoidally
perturbed duct, filled with air at standard conditions (20∘C,
1 atm), are presented here. They reveal the link between the
passbands/stopbands response and the waveguide geometri-
cal parameters, and they permit inferring the validity limit of
the approximate formula.
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Wave attenuation and dispersion are included too, using
(22), and 𝛼(𝜔) and V(𝜔) are computed according to the
wide-tube approximation (well described by Tijdeman [22]).
Closed-form solutions are compared with full waveform
numerical methods.

We consider a sinusoidal duct with length 𝐿, parameter-
ized by the radius of the circular cross-section 𝑟:

𝑟 (𝑥) = 𝑠 cos (𝛾𝑥) + 𝑠
0
, 0 < 𝑥 < 𝐿. (23)

The average radius 𝑠
0
is set to 2 cm, and the radius perturba-

tion frequency 𝛾/2𝜋 is set to 50m−1.
The other parameters are set to the following values:

Case (i): 𝐿 = 2m, 𝑠 = 0.02mm;
Case (ii): 𝐿 = 20m, 𝑠 = 0.2mm;
Case (iii): 𝐿 = 2m, 𝑠 = 2mm.

Figure 2 shows the reflection and transmission responses,
in magnitude, computed with (20), for the different cases,
in a frequency interval centered at the frequency 𝑓max. The
wavelength corresponding to 𝑓max is not much higher than
the duct transverse dimension, as required.

The crosses in Figure 2 are computed with an “exact” one-
dimensional simulator, based on the computation method
described byMunday et al. [15], but with transmission coeffi-
cients included: the agreement between the approximate and
the exact solution is very good.

The parameters values have been chosen to progressively
increase the 𝑠/𝑠

0
ratio, since a hypothesis for the approxima-

tion is 𝑠 ≪ 𝑠
0
: the effect of increasing this ratio is to widen

the stopband. Moreover, Case (ii) investigates the effect of
extending the duct length 𝐿, which is the other geometric
parameter of the periodic structure: a higher length results
in a sharper transition of the stopband.

The difference between approximate and theoretical val-
ues is barely noticeable even when 𝑠/𝑠

0
ratio is as large

as 1/10, which may be considered the limit of validity of
this approximation. Furthermore, the analytic formula is
able to correctly simulate the attenuation phenomenon (this
is apparent in the transmission response) which was not
theoretically justified, but simply added a posteriori.

The phases are not shown here, but they have been
verified as well.

4. Conclusion

The acoustic spectral response of a sinusoidally perturbed
hard-wall duct has been derived and given in a simple
formula, by following the optical analog of Bragg gratings.
The formula is the same as in optics, with the electromagnetic
parameters replaced by their equivalent acoustic parameters
and periodic duct geometry.

Results are valid for small cross-section perturbations and
in this case successful comparisons with a numerical method
are shown, even in case of wave attenuation.

The availability of simple analytical formulas permits a
direct analysis of the link between the acoustic response and
the duct geometrical parameters and the design of efficient

modeling/inversion procedures in the fields of bore/pipe
reconstruction, noise control, and so forth.

Finally it can be noticed that, even if the derivation
strictly requires a sinusoidal perturbation, any cross-section
deformation can be decomposed in sinusoidal functions
and therefore the results can be applied, provided that the
underlying hypotheses are satisfied, to a much broader range
of scenarios.
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