
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 281523, 9 pages
http://dx.doi.org/10.1155/2013/281523

Research Article
Hybrid Modeling of Flotation Height in Air Flotation Oven
Based on Selective Bagging Ensemble Method

Shuai Hou, Fuan Hua, Wu Lv, Zhaodong Wang, Yujia Liu, and Guodong Wang

The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Shuai Hou; houshuai20072@163.com

Received 20 September 2013; Accepted 14 November 2013

Academic Editor: Didier Georges

Copyright © 2013 Shuai Hou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The accurate prediction of the flotation height is very necessary for the precise control of the air flotation oven process, therefore,
avoiding the scratch and improving production quality. In this paper, a hybrid flotation height predictionmodel is developed. Firstly,
a simplified mechanismmodel is introduced for capturing the main dynamic behavior of the process.Thereafter, for compensation
of the modeling errors existing between actual system and mechanism model, an error compensation model which is established
based on the proposed selective bagging ensemble method is proposed for boosting prediction accuracy. In the framework of the
selective bagging ensemble method, negative correlation learning and genetic algorithm are imposed on bagging ensemble method
for promoting cooperation property between based learners. As a result, a subset of base learners can be selected from the original
bagging ensemble for composing a selective bagging ensemble which can outperform the original one in prediction accuracy with a
compact ensemble size. Simulation results indicate that the proposed hybridmodel has a better prediction performance in flotation
height than other algorithms’ performance.

1. Introduction

Air flotation oven is a type of advanced heat treatment
equipment. By virtue of the air flotation ovens, a variety of
strips with high surface quality and high performance can be
obtained [1]. Due to its excellent performance, a considerable
attention and many excellent researches on this topic have
been reported in the literature [1–9]. In air flotation oven,
the flotation height of the strip is an important factor. How-
ever, the flotation height is difficult be measure because of
high-temperature work environment and signal interference,
which is an obstacle to the optimal control of the process and
may reduce the product quality. Therefore, the research on
the prediction of flotation height becomes more and more
attractive in the air flotation oven [1, 5, 9] based on which
high-precision control can be realized. As a result, high-
product quality can be finally obtained.

Mechanismmodeling based on fluidmechanics and solid
mechanics is a way for establishing the prediction model
of flotation height. There are some mechanism models that
can be found in the literature [1–8]. Green’s function and

Galerkin’s method are applied to the research of air flota-
tion oven. The theoretical calculation and experiment are
reported. The flotation height of strip is predicted in theory
calculation and compared with experiment result [1]. The
basic theory governing of air flotation oven is discussedwhich
has been used to predict the flotation height of air cushion
craft [3]. The flotation height is given which is based on the
extensional resiliency model of an air-floated web [5]. The
formula of flotation height is given which is based on the
strip’s lateral deflection. The governing partial differential
equations are applied to the lateral deflection of strip [6]. In
summary, the mechanism models are good tools for process
analysis. However, there are some drawbacks. One major
drawback is that the mechanism model should be based on
strict assumptions, such as linearity assumption and indepen-
dence assumption among variables. As a result, the prediction
accuracy of the mechanism model will be decreased. Fur-
thermore, the mechanism models generally have a complex
structure whichmakes them difficult to adjust. Moreover, the
mechanism model may involve partial-differential part or
integral part that is hard to solve and the computational cost is
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considerable, which makes it unsuitable for online industrial
control. The above drawbacks limit the application of mech-
anism method to the real world and bring a low prediction
accuracy in flotation height prediction.

In the past decades, process modeling by machine learn-
ing algorithms has drawn more and more attention and has
been applied to the industrial process successfully [8–19].
Various machine learning algorithms have the advantages of
high accuracy and simple modeling process. The machine
learning process can automatically extract knowledge from
training data, by which the difficult-to-measure variable
flotation height can be predicted by the easy-to-measure vari-
ables. According to previous studies, machine learning can
learn the complex process or nonlinear relationship between
input-output variables very well. Finally, a simple structure
model can be derived [11]. Neural network and SVM are two
popular machine learning algorithms [12, 13]. They possess
good learning ability and have been widely used in various
process modeling problems. However, neural network and
SVM have their own drawbacks. There are some parameters
in these learning algorithms which are hardly determined.
Moreover, these learning algorithms easily overfit the training
data. As a result, the prediction performance becomes bad.
For solving these problems, ensemble learning has been
proposed recently [20–24]. Ensemble learning constructs a
highly accurate prediction model by combining an ensemble
of several neural network, or SVMs. The individual NN or
SVM in the ensemble needs only to be moderately accurate
on the training set. Many research studies prove that the
ensemble model shows better prediction performance com-
pared with the individual models.

Ensemble learning has drawnmany researchers’ attention
in the literature recently [20–27]. Bagging is a famous ensem-
ble learning algorithmwhich has already been widely used to
improve the accuracy of classification and regression prob-
lems [21–24]. The advantage of bagging is the good perfor-
mance of robustness [21, 22]. The disadvantage of bagging is
that the individualmodels are not cooperatedwith each other,
which may establish a relatively large ensemble size and low
accurate ensemble learning model. NCL is another famous
ensemble learning method [25–27], which explicitly pro-
motes cooperation between individual models. Therefore,
its learning ability is perfect. A drawback of NCL is that the
overfitting problem may occur. In summary, the common
problems of various ensemble learning algorithms are the
determination of the optimal ensemble size, the training of
the base learners, and the fusion strategy of the ensemble.

In this paper, a hybrid flotation height prediction model
is developed for combining the well generalization perfor-
mance of mechanism modeling method and the excellent
learning ability ofmachine learning algorithms. In the frame-
work of the proposed hybrid model, a simplified mechanism
model is introduced for description of the main knowledge
and complemented by an error compensation model in
the air flotation process. The simplified mechanism model
is based on thin jet model which is a branch of fluid
mechanics and is very suitable for description of the behavior
in air flotation oven. Furthermore, in order to compensate
the modeling error of the simplified mechanism model

and improve the flotation height prediction accuracy, an
error compensation model is introduced for describing the
unknown structure part that is hardlymodeled by themecha-
nisticway. Because of the excellent ability ofmachine learning
in nonlinearity problem and complex process problem the
error compensation model is established on the basis of
machine learning algorithms. In the current study, an error
compensation model is proposed, which is a modification
algorithm based on existing ensemble learning algorithms.
The proposed ensemble method is basically a selective bag-
ging ensemble method, where GA, NCL, and bagging are
combined in the way that the base learners are selected from
original bagging ensemble by GA and NCL. The proposed
method can retain the robustness property of bagging whilst
further improving its prediction accuracy by thewell learning
ability of NCL method.

The remainder of this paper is organized as follows. In
Section 2, the details of the ground effect theories and the
mathematical mechanism model of floatation height are pre-
sented. In Section 3, the proposed selective bagging ensemble
method (SBE) is introduced. Section 4 reports the hybrid
model based on mechanism model and selective bagging
ensemble model. Section 5 reports the experimental results.
Section 6 draws conclusions and future research directions.

2. Mathematical Mechanism Model of
the Flotation Height

2.1. Brief Review of Air Flotation Process. High quality pro-
duction of cold rolled metal alloy strips and coating metal
strips requires continuous heat treatment including alu-
minum strip, copper strip, and steel strip. Air flotation ovens
are used for effectively coating and heating strips where the
metal strip can suspend in the air without contacting any-
thing.Therefore, coating destruction is avoided and good sur-
face quality can be finally realized. Furthermore, it can pro-
vide the necessary temperature uniformity along the width
and length of strip. As a result, compared with conventional
continuous furnaces, air flotation oven can product better
performance and quality product in the heat treatment pro-
cess of cold-rolled metal strip. Commonly, air flotation
oven is followed by a sufficiently fast cooling equipment for
guaranteeing desired material properties, such as hardness
and grain size.

This paper studies an air flotation oven that is specifically
used for the heat treatment of aluminum strip, which is
schematically shown in Figure 1. The aluminum strips pass
through between the upper nozzles and lower nozzles at a
constant speed.The aluminum strip is suspended and heated
by the hot air emerging from the upper nozzles and lower
nozzles which are arranged on upper surface and lower sur-
face of air flotation oven.

It can be seen from Figure 1 that there are two slit nozzles
on top surface of the upper nozzles and lower nozzle in
parallel.The air is ejected from these slit nozzles and squirted
onto the surface of the aluminum strip. The external wall
which is parallel to the slit has the angle against the air
flotation oven. The ratio of the flow rate of the upper nozzle
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Figure 1: Aluminum strip and air bars in air flotation oven.

Figure 2: The single nozzle and the floating aluminum strip.

to the lower nozzle is adjusted by the blower’s rotating speed.
Furthermore, the changes of the blower’s rotating speed can
influence the pressure of the lower nozzle 𝑃

𝑡1
and that of the

upper nozzle 𝑃
𝑡2
.

During the air flotation process, flotation height is an
important variable, which is defined as the distance between
the rigid web and lower nozzles. If the floating strips are
close to the upper or lower nozzles, strip scratch may occur
whichmay cause the product to abandon.Therefore, flotation
height should be controlled in a proper position in order to
guarantee sufficient margin between the upper nozzles and
lower nozzles. After theoretical analysis, the flotation height is
determined by various parameters such as air density, density
of the aluminum alloy, strip thickness, upper nozzle pressure
𝑃
𝑡1
, and lower nozzle pressure 𝑃

𝑡2
.

2.2. Mechanism Model of Flotation Height. Generally, alu-
minum strip has strong hardness. When the aluminum strip
is floating in the air, the deflection of aluminum strip is small
which can be seen in Figure 2.Therefore, in the development
of the proposedmechanismmodel, the aluminum strip shape
is considered as straight in the horizontal direction. Based
on the above consideration, ground effect theory is applied
in this study, which is proven to be useful for describing the
aerodynamic characteristics of pressure-pad air bars in air
flotation oven [1, 3, 5, 6].

The ground effect theories are worked under the follow-
ing assumption [3]:

(1) the thickness of jet flow is much smaller than the
flotation height (𝑏/ℎ ≪ 1) and does not change along
the path of the jet;

(2) the flow profile across the jet is uniform;

(3) the jet speed does not change along the path of the jet;

(4) the path of the jet flow has a constant curvature and
is tangent to the ground;

(5) the pressure in the region surrounded by the two
streams of air jet is constant.

On the basis of ground effect theories, the vertical force
balance for the air jet requires

𝜌𝑏𝑉
2

𝑗
(1 + cos 𝜃) = 𝑃

𝑐
∗ ℎ, (1)

where 𝜌 is the air density, 𝑏 is the slit nozzle’s width, 𝑉
𝑗
is the

air velocity, and 𝑃
𝑐
is the cushion pressure (gage pressure).

The effective total pressure (gage pressure) of the air jet after
the nozzle is

𝑝
𝑗

=
𝑃
𝑐

2
+

𝜌𝑉
2

𝑗

2
, (2)

where the static pressure is assumed to be the average of the
ambient pressure and the cushion pressure, because these two
pressures are acting on the two sides of the air jet nozzle.
Substituting (1) into (2) the pressure ratio is as follows:

𝑃
𝑐

𝑃
𝑡

=
2 (1 + cos 𝜃)

ℎ/𝑏 + 1 + cos 𝜃
. (3)

The lift force per unit length of air bar is

𝐹 = 𝑃
𝑐
𝑤 + 2𝜌𝑏𝑉

2

𝑡
sin 𝜃, (4)

where 𝑤 is the distance between the two slot nozzles.The last
term in (4) is the momentum change of two air jets in the
vertical direction. By eliminating 𝑃

𝑐
and 𝜌𝑏𝑉

2

𝑡
from (4) using

(1) and (3), the equation is as follows:

𝐹 =
𝑃
𝑐

𝑃
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𝑤

𝑏
+

ℎ

𝑏
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) 𝑃
𝑡
∗ 𝑏. (5)

The lower floatation force 𝐹1 is

𝐹1 =
𝑃
𝑐1

𝑃
𝑡1

∗ (
𝑤

𝑏
+

ℎ

𝑏

2 sin 𝜃

1 + cos 𝜃
) 𝑛
1

∗ 𝑃
𝑡1

∗ 𝑏, (6)

where ℎ
𝑑
is the distance between the bottom surface of upper

nozzles and the top surface of lower nozzles (seen in Figure 1),
and 𝑛

1
is the number of lower nozzles. The upper floatation

nozzle’s flotation is ℎ
𝑑

− ℎ. The upper nozzles force 𝐹2 is

𝐹2 =
𝑃
𝑐2

𝑃
𝑡2

∗ (
𝑤

𝑏
+

ℎ
𝑑

− ℎ

𝑏

2 sin 𝜃

1 + cos 𝜃
) 𝑛
2

∗ 𝑃
𝑡2

∗ 𝑏, (7)

where 𝑛
2
is the number of upper nozzles. The strip will float

at a height where the combination of the aluminum strip’s
weight and the air force due to the upper nozzle just balances
the upward force due to the lower nozzles [5]. Consider

𝐹1 − 𝐹2 = 𝐺, (8)
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where𝐹1 is lower floatation force,𝐹2 is upper floatation force,
and 𝐺 is the weight of the strip. Substituting (6) and (7) into
(8), (9) is as follows:

[4𝑏 sin 𝜃 (𝑛
1
𝑃
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− 𝑛
2
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(9)

The flotation height ℎ can be solved from (9).

3. Selective Bagging Ensemble
Using NCL and GA

In this study, LSSVR is used as the base learning algorithm.
Themain contribution of current study focuses on the design-
ing of ensemble method, while LSSVR is directly used with-
out modification. Therefore, LSSVR will not be introduced
and the details of it can be founded in [28, 29].

In the following, the basic principle of bagging and NCL
is firstly introduced. Thereafter, a selective bagging ensemble
will be proposed.

3.1. The Basic Idea of Bagging. For bagging algorithm, each
training subset contains 𝑛 learning samples which is drawn
randomly with replacement from the original training set of
size𝑁. Such a training subset is called a bootstrap replicate of
the original set. Instead of making predictions from a single
model that is fitted to the observed data, a number of predic-
tions models are developed to predict the relationship bet-
ween input and output variables. Each model is developed
from the multiple models which are combined to improve
model accuracy and robustness [21, 22].

Let 𝑇 = {(𝑥
𝑝
, 𝑦
𝑝
, 𝑝 = 1, . . . , 𝑁)} denote a regression type

training set, and the SVM algorithm uses 𝑇 to construct a
regression predictor 𝐹

𝑅
(𝑥, 𝑇) to predict 𝑦 values. Let 𝐹 be a

bagging ensemble algorithm obtained as a simple averaging
combination of 𝑀 predictors; that is,

𝐹 (𝑥
𝑝
) =

1

𝑀

𝑀

∑

𝑖=1

𝑓
𝑖
(𝑥
𝑝
) , (10)

where 𝑀 is the number of the individual SVM in the ensem-
ble algorithm, 𝑓

𝑖
(𝑥
𝑝
) is the output of SVM 𝑖 on the data set,

and 𝐹(𝑥
𝑝
) is the output of the ensemble algorithm on the

data set.

3.2. The Basic Idea of NCL. NCL implicitly creates different
training sets by encouraging different individual models to
learn different parts or aspects of the training data, so that all

networks can be trained simultaneously and interactively on
the same training data set 𝑇 [29, 30] as follows:

𝐶
𝑖
= (𝑓
𝑖
(𝑥
𝑝
) − 𝐹 (𝑥

𝑝
))
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(𝑓
𝑖
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𝑝
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𝑝
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𝑖
(𝑥
𝑝
) − 𝐹 (𝑥

𝑝
))
2

.

(11)

The error function 𝐸
𝑖
for SVR 𝑖 in negative correlation learn-

ing is defined as

𝐸
𝑖
=

𝑁

∑

𝑝=1

(
1

2
(𝑓
𝑖
(𝑥
𝑝
) − 𝐹(𝑥

𝑝
)
2

+ 𝜆𝐶
𝑖
)) . (12)

The parameter 0 ≤ 𝜆 ≤ 1 is used to adjust the strength of
the penalty.The simple averaging of the ensemble in negative
correlation learning is defined as:

𝐸
𝑖
=

1

𝑀

𝑀

∑

𝑖=1

𝑁

∑

𝑝=1

(
1

2
(𝑓
𝑖
(𝑥
𝑝
) − 𝐹(𝑥

𝑝
)
2

+ 𝜆𝐶
𝑖
)) . (13)

3.3. Selective Bagging Using NCL. In bagging ensemble algo-
rithm, the accuracy of the individual model is not well
controlled. If there are some uncorrected individual models
with large bias, the overall prediction performance of the
ensemble model may deteriorate. Therefore, the accuracy of
the individual model is managed in this paper.The individual
model with undesirable precision is retrained until its desired
accuracy is obtained.

Moreover, the individual models in the original bagging
ensemble are trained independently. There is insufficient
cooperation between them, which may worse the overall
prediction performance. Furthermore, the original bagging
ensemble is inefficient due to its relatively large ensemble size.
In order to address above two problems, NCL algorithm is
introduced to bagging ensemble algorithm, so the coopera-
tion between individual models can be improved. By virtue
of NCL, the individual models cooperated with each other in
the original bagging ensemble and the redundant individual
models with no contribution to prediction accuracy can be
pruned from original bagging ensemble.

Bymodification ofNCL, the error function𝐸
𝑖
for 𝑖th indi-

vidual model in selective bagging is as follows:

𝐸
𝑖
= 𝑤
𝑖
⋅

𝑁

∑

𝑝=1

(
1

2
(𝑓
𝑖
(𝑥
𝑝
) − 𝐹(𝑥

𝑝
)
2

+ 𝜆𝐶
𝑖
)) . (14)

Similar to NCL, the parameter 0 ≤ 𝜆 ≤ 1 is used to adjust
the strength of the penalty. The simple average of selective
bagging is shown as follows:

𝐸 =

𝑀

∑
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𝑤
𝑖

𝑁

∑

𝑝=1

(
1

2
(𝑓
𝑖
(𝑥
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𝑝
)
2
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𝑖
)) ,

subject to ∑

𝑖

𝑤
𝑖
= 1, 0 ≤ 𝑤

𝑖
≤ 0.5, 𝑖 = 2, 3, . . . , 𝑀.

(15)

Then, the remaining problem is the determination of the
weight 𝑤

𝑖
, which will be described in the following section.
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3.4. Solving the Selective Bagging Ensemble Problem Using
Genetic Algorithm. In our proposed algorithm, genetic algo-
rithm is used to solve the optimization problem (15).Theopti-
mal subset is selected from the pool of the ensemble algo-
rithms.

In genetic algorithm, the chromosomes are represented
by a binary string of length 𝐾 × 𝑛 in which 𝐾 is fixed in
algorithm main. Individual algorithm is encoded in a binary
length of size 𝑛. To illustrate this point, the individual SVR
algorithms are encoded as follows: (in1 = 0000, in2 = 0001,

. . ., inGA𝑝 = 1111) and the chromosomes are encoded as fol-
lows: (ch1 = 00000000, ch2 = 001011, . . ., chGA𝑝 = 111001).

In the chromosomes of existing population, individuals
are repeatedly selected for breeding until the new population
is saturated. The fitness proportionate selection of roulette-
wheel is applied to this proposed algorithm, and the fitness
function is (15). The chromosomes will be selected, crossed
over and mutated in the optimal process. In the selecting
process, the standard elitism approach is adopted, so the evo-
lution process can become more stable and converges earlier.
During the crossover and mutation processes, the single-
point crossover method and flip-flop single-point mutation
is applied. Generally, the average fitness function will be
improved according to the genetic operators of crossover
andmutation.However, undesired chromosomesmay appear
repeatedly in the process. For example, in the two chromo-
somes (110100, 100110), 𝑛 = 3 and 𝐾 = 2, if single point cross-
over point occurs, the new spring will be (110110, 100100).
Similarly, given a chromosome 111101, if mutation happens
at the second point, the new offspring will be 111111. Under
such circumstances, the chromosomes are treated as bad
individuals for evolution.

In our method, the optimization problem (15) is solved
in a sequential way.The ensemble size increases progressively
and the ensemble size is finally confined by a simple approach.
Specifically, genetic algorithm is firstly used to solve the opti-
mization problem (15) with a fixed ensemble size 2.Therefore,
it can select two individual models from a pool of individual
models to compose an ensemble model 𝐸

2
. Similarly, an

ensemble model 𝐸
3
with three individual models can then be

established.Thereafter, comparison is carried out between 𝐸
2

and 𝐸
3
. If the value of objective function of 𝐸

3
is smaller than

𝐸
2
, the algorithm is expanded to find the best ensemble with

four individual models and so on. The algorithm converges
and the increment of ensemble size stops when the value

of objective function corresponding to the ensemble model
increases. It can be concluded that the minimum ensemble
error and the optimal ensemble size can be obtained by this
ensemble way. In each iteration, it can be found that genetic
algorithm (GA) is used to search for the best ensemble size 𝐾

thatminimizes the fitness function (15).The selection process
is explained in main algorithm.

The hybrid selective ensemble process is as follows.

Algorithm Main

Step 1. Generate training subset 𝑇
𝑖
from 𝑇 by bootstrap sam-

pling algorithm. Train an individual model 𝑓
𝑖
on the training

subset 𝑇
𝑖
by SVM algorithm.

Step 2. Calculate the training error 𝐸
𝑖
of 𝑓
𝑖
by (14). If 𝐸

𝑖
> 𝑒
1

repeat Step 1; otherwise if 𝑖 = 𝑖 + 1, build SVMmodel 𝑓
𝑖
with

𝑇
𝑖
.

Step 3. 𝐾 = 2.

Step 4. Find the best ensemble individual models of 𝐾 and
𝐾 + 1 models by GA.

Step 5. If the 𝑓
𝑖
is selected in Step 4, then 𝑤

𝑖
= 1/𝐾;

otherwise, 𝑤
𝑖
= 0.

Step 6. Evaluate ensemble error En
𝐾
and En

𝐾+1
on validation

set 𝐷V by (15). Evaluate En𝐾+1 on 𝐷V.

Step 7. If En
𝐾

> En
𝐾+1

and 𝐾 = 𝐾 + 1, repeat Step 4;
otherwise go to Step 8.

Step 8. Output: 𝐹(𝑥
𝑝
) = (1/𝐾) ∑

𝐾

𝑖=1
𝑓
𝑖
(𝑥
𝑝
).

4. Hybrid Model Based on Selective Bagging
Ensemble Method

In this paper, a hybrid flotation height prediction model is
developed which is made up of mechanism model and data
model. The data model is a new method based on selective
bagging ensemble, and it is used as the error compensation
model of hybrid model. The structure of the hybrid model
is shown in Figure 3. Based on the mechanism analysis,
the input variables of the hybrid model are determined: air
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Figure 4: The diagram of air flotation system.

density, the upper nozzle’s pressure, the lower nozzle’s pres-
sure, the strip thickness, and aluminum strip density. The
flotation height in air flotation oven is predicted based on the
hybrid model.

In the hybrid model, the error compensation model is
used to compensate the flotation height modeling error of
mechanism model. As a result, the prediction error of mech-
anism model can be well compensated.

5. Practical Application and Experiments

The proposed flotation height prediction model is validated
on an experimental equipment which is located in The State
Key laboratory of Rolling and Automation in Northeastern
University. A set of experimental data collected from this
experimental air flotation oven. The experimental air flota-
tion oven can be seen in Figure 4.

From Figure 4, the air flotation oven system consists of
lower fan, upper fan, two inverters, pressure sensor, and so
forth. The size of the air flotation system is 3 × 3 × 2.2m.The
inverter is SIEMENS MM440. The pressure sensor is U-tube
whose range is 0–2000 Pa and resolution is 10 Pa. The upper
nozzle pressure and lower nozzle pressure aremeasured byU-
tubes. A Leica hand-hold distance finder is used to measure
the flotation height. The range and resolution of hand-hold
distance finder are 50m and 1mm, respectively. The hand-
hold distance finder is just used for convenient measurement
under experimental conditions and it does not exist in indus-
try process.

The inner flow guide structure of air flotation oven is
shown in Figure 5.The air flotation oven consists of upper air
container, lower air container, upper nozzles, lower nozzles,
and so forth.

In air flotation oven, the speeds of upper and lower fan
are, respectively, controlled by a variable-frequency inverter,
respectively, (AC drive). The air successively flows through
fans, air containers and nozzles and finally is ejected to the
surface of aluminum strip.

The upper and lower jet speeds are adjusted by fans. Alu-
minum strip floats on a fixed height under different speed

Upper fan

Lower fan

Flow guide structure

Upper air container

Floating aluminum strip

Lower air container

· · ·· · ·

· · · · · ·
Pt1

Pt1Pt1

Pt2Pt2

Figure 5: The inner flow guide structure of air flotation device.

ratio of upper fan and lower fan. Under experimental con-
ditions, the ranges of jet speeds and mach numbers are 0–
25m/s and 0–0.0735 (incompressible fluid). The mechanical
structure let fluid flow along the length direction of experi-
ment equipment, so two-dimensional air flow is considered.

In our experiment, the width of aluminum strip is
300mm. The thickness of the strip varies from 0.4mm to
2mm at the interval of 0.2mm. Finally, 850 samples that
cover various working conditions are collected for training
the hybrid model. Additionally, 32 samples that specified to 4
given working conditions are collected for testing the hybrid
model and process analysis.

In practical experiment, there is measuring error in pro-
cess data, because of the instrumentation precision and inter-
fering signal.With the deviation of process data, the accuracy
of the model will be degraded. The abnormal data should
be eliminated. The statistics discriminant method of Pauta
criteria is applied in the experiment.The principle of Pauta is
as follows: sample data set is 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝑋 is the

average value. Deviation value is V
𝑖
= 𝑥
𝑖
− 𝑋 (𝑖 = 1, 2, . . . , 𝑛).

The standard deviation is calculated according to Bayesian
formula as follows:

𝜎 = √

𝑛

∑

𝑖=1

[
V2
𝑖

(𝑛 − 1)
]. (16)

If the sample data 𝑥
󸀠

𝑖
deviation value is |V

𝑖
| ≥ 3𝜎, the sample

data should be eliminated.
Comprising the hybrid selective bagging ensemblemodel

(SBEH), single SVM hybrid model (SVMH), basic bagging
hybrid model (BBH), and mechanism model (MM) are also
applied to this experiment. There are eight parameters that
should be tuned in our selective ensemblemethod SEH (GA

𝑔
,

GA
𝑝
, GA
𝑐
, GA
𝑚
, base learner size, individual error limit value

𝑒
1
, and 𝜆), three parameters for BBH (𝜎2 and 𝛾 for base

learner, and ensemble size), two parameters for SVMH (𝜎2
and 𝛾). The base learner size of our proposed method and
BBH ensemble have been set to 128.

In SBEH model, maximum number of generations GA
𝑔
,

population size GA
𝑝
, crossover rate GA

𝑐
, the mutation rate

GA
𝑚
of the genetic algorithm, individual error control 𝑒

1
, and

the penalty parameter𝜆have been fixed to 200, 128, 0.75, 0.02,
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Figure 6: The prediction and actual flotation height under different work condition.

10, and 0.4, respectively. The bootstrap sampling size of BBH
have been fixed to roughly 60%of the training set. Parameters
𝜎
2 and 𝛾 of single SVM hybrid model and BBH model has

been fixed to 4 and 212.
Different information about the predictive capacity of the

model can bemeasured through RMSE andMAE.TheRMSE
and MAE are defined as

RMSE = √
1

𝑁

𝑁

∑

𝑖=1

(𝑌
𝑖observed

− 𝑌
𝑖estimate

)
2

,

MAE =
1

𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑖observed

− 𝑌
𝑖estimate

󵄨󵄨󵄨󵄨󵄨
,

(17)

where 𝑁 is the number of individual models and 𝑌
𝑖
is the

flotation height.
The experiment is carried on an experimental air flotation

oven. In Figure 6, thickness of the aluminum strip is 1mm,
and 2mm. The width of the aluminum strip is 300mm. The
flotation height is tested under different lower nozzle pressure
𝑃
𝑡1
and upper nozzle pressure 𝑃

𝑡2
. The prediction value and

actual value of flotation height are shown in Figure 6.
Figure 6 shows the predicted flotation height based on the

proposed hybrid selective bagging ensemble method. Hybrid
selective bagging ensemble model has better generalization
ability and is precise than other models. Table 1 shows RMSE
and MAE of SBEH, SVMH, MM, and BBH model.

From Table 1, it can be concluded that our proposed
approach SBEH outperforms the other three algorithms.
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Table 1: Comparison of four models.

Model RMSE MAE
MM 9.07 7.57963
BBH 2.0503 1.559259
SVMH 2.3868 1.988889
SBEH 1.195385 0.903704

According to the above experimental results, the appli-
cation of hybrid method SBEH can bring improvements as
shown in Figure 5 andTable 1.These results reveal that hybrid
ensemble method is the more dominated than the mecha-
nism algorithm. The possible reason may be that fluid inter-
action that exists between different nozzles and the fluid
interaction is not well described by mechanism model while
the hybrid ensemble method is able to learn the fluid inter-
action process by its data model part that possesses good
self-learning ability. The other possible reason may be that
these assumptions in mechanism model and other unknown
factors in process are learned by date model part of hybrid
ensemble method. Furthermore, it can be found from the
comparison result that the proposed hybrid model outper-
forms the single SVR hybrid model and basic bagging hybrid
model. Therefore, it can be concluded that the proposed
hybrid method is able to further improve the prediction
performance in the prediction of flotation height.

6. Conclusions

In this paper, a mathematical mechanism model of flotation
height in air flotation oven is firstly developed. Thereafter, a
hybrid model is designed by the proposed selective bagging
ensemble method. This proposed model can compensate the
error of the mechanism model. The proposed hybrid model
can combine the well generalization performance of mecha-
nism modeling method and the excellent learning ability of
machine learning algorithms. Thereby better flotation height
prediction performance can be obtained. The simulation
results show that the proposed hybrid selective bagging
ensemblemodel does consistently improve the predicted pre-
cision versus MMmodel, BBHmodel, and SVMHmodel for
flotation height. In summary, the proposed hybrid modeling
algorithmhas a good potential in the actual air flotation oven.
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