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This paper investigates intermittent fault detection problem for a class of networked systemswithmultiple state delays and unknown
input. Polytopic-type parameter uncertainty in the state-space model matrices is considered. A novel measurement model is
employed to account for both the random measurement delays and the stochastic data missing (package dropout) phenomenon,
which are typically resulted from the limited capacity of the communication networks.We aim to design an uncertainty-dependent
fault detection filter such that, for all unknown input, all possible parameter uncertainties, and all incomplete measurements, the
error between residual and weighted fault is made as small as possible. By converting the addressed robust fault detection problem
into an alternative robust𝐻

∞
filtering problemof a certainMarkovian jumping system (MJS), a sufficient condition for the existence

of the desired robust fault detection filter is derived. A residual evaluation within an incremental form is brought forward to make
the whole method suitable for intermittent fault detection. A numerical example is utilized to demonstrate the effectiveness of the
proposed approach.

1. Introduction

For traditional control systems with point-to-point data
transmission, a variety of methods have been proposed to
deal with the modeling, identification, estimation, and con-
trol problems [1–3]. During the past decades, the rapid devel-
opments in network technologies have led to more and more
feedback control systems with control loops closed via digital
communication channels. Compared with the traditional
point-to-point wiring, in networked systems, serial commu-
nication networks are used to exchange information (refer-
ence input, plant output, control input, etc.) among control
system components (sensors, controller, actuators, etc.) [4].
The use of the communication channels can reduce the costs
of cables and power, simplify the installation and mainte-
nance of the whole system, and increase the reliability, so
network-based analysis and designs have many industrial
applications such as in automobiles, manufacturing plants,

aircrafts, and HVAC systems. However, the insertion of the
communication channels raises new interesting and chal-
lenging problems such as network-induced delays or packets
dropout, see [4–6] for some representative works.

With the increasing demand for higher performance,
higher safety, and reliability standards, fault detection and
isolation (FDI) has been an active field of research over the
past decades [7, 8]. The main purpose of fault detection is to
construct a residual signalwhich can then be comparedwith a
predefined threshold. When the residual exceeds the thresh-
old, the fault is detected and an alarm is generated. Among
different approaches for residual generation, the model-
based approaches to FDI problems for dynamic systems have
received more attention. For example, in [9], the 𝐻

∞
norm

of transfer function matrix from unknown input to residual
has been designed to be small, while the 𝐻

∞
norm (or the

smallest nonzero singular value) of transfer function matrix
from fault to residual has been guaranteed to be large. In [10],
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the error between residual and weighted fault has been made
as small as possible, and then the FDI problem can be solved
by using the 𝐻

∞
filtering approach.

Due to the popularization of the using of network cables,
it is necessary and interesting to consider the FDI problem
for networked systems with network-induced delays or data
missing, see [11, 12] and the references therein. Since network-
induced delays and data missing (dropout) phenomenon
are inherently random and time-varying [13], they have
been modeled in various probabilistic ways [14]. One of the
attractive approaches is to use binary switching sequence
viewed as a Bernoulli distributed white sequence taking on
values of 0 and 1, since such a representation is very effective
to describe network-induced delays [15] or data missing [16].
Very recently, in [17], the network-induced delay and data
dropout problems have been investigated in an integrated
way within a unified framework and the robust filtering
problem with polytopic uncertainties has been thoroughly
studied. Note that in all the aforementioned results, it has
been assumed that the delay or missing characteristics are
statistically mutually independent from transfer to transfer.
In [18], the fault detection problem for systems with missing
measurements has been discussed by characterizing the
residual dynamics by a discrete-time MJS. In [19], the diag-
nosis of intermittent faults in dynamic systems modeled as
discrete event systems has been considered. So far, to the best
of the authors’ knowledge, the robust intermittent fault detec-
tion problems in the presence of parameter uncertainty for
networked systems with simultaneous measurement delays
and data missing have not been fully investigated, which
constitutes the main focus of this paper.

In this paper, intermittent fault detection problem for
a class of uncertain networked systems with multiple state
delays and incomplete measurement is investigated. A se-
quence varying in a Markov fashion is employed in the mea-
surement model so that both the measurement delays and
data missing can be simultaneously represented. Polytopic-
type parameter uncertainty in state-space model matrices
is considered. After augmenting the state, the addressed
robust fault detection problem is converted to an equivalent
robust𝐻

∞
filtering problem for a certainMarkovian jumping

system (MJS), and a sufficient condition for the existence of
the desired robust fault detection filter is brought forward.
By introducing the new residual evaluation function within
an incremental form, the proposed method can detect the
possible intermittent fault.

Notation.The notations used throughout the paper are fairly
standard. R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-dimen-
sional Euclidean space and the set of all 𝑛 × 𝑚 real matrices.
𝑃 > 0 means that 𝑃 is real symmetric and positive definite.
The subscript “𝑇” denotes the matrix transpose. Pr{⋅} rep-
resents the occurrence probability of the event “⋅”, and when
𝑥 and 𝑦 are both stochastic variables, E{𝑥} stands for the
mathematical expectation of 𝑥. 𝑙

2
[0,∞) is the space of all

square-summable vector functions over [0,∞), with ‖𝑥‖

being the standard 𝑙
2
norm of 𝑥, that is, ‖𝑥‖ = (𝑥

𝑇

𝑥)
1/2.

RH
∞

is the set of proper and stable rational functions
with real coefficients. In symmetric block matrices, we use

“∗” to represent a term that is induced by symmetry, and
diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to
be compatible for algebraic operations and, sometimes, the
arguments of a function will be omitted in the analysis when
no confusion can arise.

2. Problem Formulation and Preliminaries

Consider the following class of discrete-time linear net-
worked systems with multiple delays in the state:

𝑥
𝑘+1

= 𝐴
0
𝑥
𝑘
+

𝑞

∑

𝑖=1

𝐴
𝑖
𝑥
𝑘−𝑖

+ 𝐵
𝑤
𝑤
𝑘
+ 𝐵
𝑓
𝑓
𝑘
,

𝑦
𝑘
= 𝛿 (𝜏

𝑘
, 0) 𝐶
0
𝑥
𝑘
+

𝑞

∑

𝑖=1

𝛿 (𝜏
𝑘
, 𝑖) 𝐶
𝑖
𝑥
𝑘−𝑖

+ 𝐷𝑤
𝑘
,

𝑥
𝑘
= 𝜑
𝑘
, 𝑘 = −𝑞, −𝑞 + 1, . . . , 0,

(1)

where 𝑥
𝑘

∈ R𝑛 stands for the state vector, 𝑤
𝑘

∈ R𝑝 is the
unknown input belonging to 𝑙

2
[0,∞), and 𝑓

𝑘
∈ R𝑙 is the

fault to be detected. 1 ≤ 𝑖 ≤ 𝑞 (𝑞 ≥ 1) are integer time
delays. 𝑦

𝑘
∈ R𝑚 is the measured output vector, which may

contain random communication delays and stochastic data
missing induced by the limited capacity of the communica-
tion networks. All systemmatrices in (1) are assumed to have
appropriate dimensions. 𝜑

𝑘
is a given real initial sequence

on [−𝑞, 0], and 𝛿(⋅, ⋅) stands for the Kronecker delta; that is,

𝛿 (𝑗, 𝑙) = {
0, if 𝑗 ̸= 𝑙,

1, if 𝑗 = 𝑙.
(2)

Furthermore, 𝜏
𝑘
is a stochastic variable whose role is to

determine, at time 𝑘, the size of the occurred delay as well as
the possibility of data missing. In this paper, {𝜏

𝑘
} is assumed

to be a discrete-time homogeneous Markov chain taking
values in the following finite state space:

Ξ = {−1, 0, . . . , 𝑞} (3)

and stationary transition probability matrix Λ = [𝜆
𝑖𝑗
], where

𝜆
𝑖𝑗
= Pr {𝜏

𝑘+1
= 𝑗 | 𝜏

𝑘
= 𝑖} . (4)

Remark 1. The assumption that the switching between dif-
ference modes abides by a Markovian chain seems realistic
since, in network-based signal transmissions, time delays and
data dropouts typically occur in a batchmode, and the status
of the network varies slower than the sampling period and
the characteristics of the network at a certain time is usually
dependent on the superior time instant. The transition
from one mode to another may obey certain probability
distribution, and our “Markov jumping” assumption of {𝜏

𝑘
}

describes this phenomenon properly.

Remark 2. In our measurement model, the event {𝜏
𝑘

= 0}

means that themeasurements are ideally transmitted over the
networkwithout any delays or datamissing, the event {𝜏

𝑘
= 𝑖}
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(1 ≤ 𝑖 ≤ 𝑞) corresponds to the case that the 𝑖-step mea-
surement delay occurs. Without loss of generality and for the
convenience in denoting the transition probability matrix,
we set the state in the state space of the Markov chain
corresponding to the measurement missing situation to −1,
so {𝜏
𝑘
= −1} means that the measurements are missing and

𝑦
𝑘
consists of pure noise only.
In this paper, we are interested in the problem of robust

fault detection for uncertain system described by (1) with
incomplete measurements. The system matrices 𝐴

0
, 𝐴
1
, . . . ,

𝐴
𝑞
, 𝐵
𝑤
, 𝐵
𝑓
, 𝐶
0
, 𝐶
1
, . . . , 𝐶

𝑞
, 𝐷 are assumed to be uncertain but

belong to a known convex compact set of polytopic type,that
is,

Ω := (𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑞
, 𝐵
𝑤
, 𝐵
𝑓
, 𝐶
0
, 𝐶
1
, . . . , 𝐶

𝑞
, 𝐷) ∈ Θ, (5)

where Θ is a given convex bounded polyhedral domain
described by V vertices as follows:

Θ := {Ω | Ω =

V

∑

𝑟=1

𝛼
𝑟
Ω
𝑟
;

V

∑

𝑟=1

𝛼
𝑟
= 1, 𝛼

𝑟
≥ 0} , (6)

where Ω
𝑟

:= (𝐴
0𝑟
, 𝐴
1𝑟
, . . . , 𝐴

𝑞𝑟
, 𝐵
𝑤𝑟

, 𝐵
𝑓𝑟
, 𝐶
0𝑟
, 𝐶
1𝑟
, . . . , 𝐶

𝑞𝑟
,

𝐷
𝑟
), 𝑟 = 1, . . . , V, denotes the 𝑟th vertex of the polytope.
Consider a full-order fault detection filter of the following

form:

𝑥
𝑘+1

= 𝐺 (𝜏
𝑘
) 𝑥
𝑘
+ 𝐾 (𝜏

𝑘
) 𝑦
𝑘
,

𝑟
𝑘
= 𝐿 (𝜏

𝑘
) 𝑥
𝑘
,

(7)

where 𝑥
𝑘

∈ R𝑛 is the filter state vector and 𝑟
𝑘

∈ R𝑙 is the
so-called residual that is compatible with the fault vector
𝑓
𝑘
. For 𝜏

𝑘
= 𝑖 ∈ Ξ, we denote matrices 𝐺(𝜏

𝑘
), 𝐾(𝜏

𝑘
), and

𝐿(𝜏
𝑘
) as 𝐺

𝑖
= 𝐺(𝜏

𝑘
= 𝑖), 𝐾

𝑖
= 𝐾(𝜏

𝑘
= 𝑖), and 𝐿

𝑖
= 𝐿(𝜏
𝑘
= 𝑖).

Our main aim is to make the error between residual 𝑟
𝑘
and

fault signal 𝑓
𝑘
as small as possible.

For the purpose of fault detection, it is not necessary to
estimate the fault 𝑓

𝑘
. Sometimes one is more interested in

the fault signal of a certain frequency interval, which can be
formulated as the weighted fault as follows:

𝑓 (𝑧) = 𝑇
𝑓
(𝑧) 𝑓 (𝑧) , (8)

where 𝑇
𝑓
(𝑧) ∈ RH

∞
is a prescribed weighting matrix.

Remark 3. Similar to [10], the introduction of a suitable
weighting matrix 𝑇

𝑓
(𝑧) can limit the frequency interval of

interest, and the system performance can then be improved.
In fact, the use of weighted fault 𝑓(𝑧) is more general than
using the original fault 𝑓(𝑧), because if we impose 𝑇

𝑓
(𝑧) = 𝐼,

we can obtain 𝑓(𝑧) = 𝑓(𝑧).
Suppose a minimal realization of 𝑓(𝑧) = 𝑇

𝑓
(𝑧)𝑓(𝑧) is

𝑥
𝑘+1

= 𝐴
𝑡
𝑥
𝑘
+ 𝐵
𝑡
𝑓
𝑘
,

𝑓
𝑘
= 𝐶
𝑡
𝑥
𝑘
+ 𝐷
𝑡
𝑓
𝑘
,

(9)

where 𝑥
𝑘

∈ R𝑛 is the weighted fault state, 𝑓
𝑘

∈ R𝑙 is the
original fault, and 𝑓

𝑘
∈ R𝑙 is the weighted fault. 𝐴

𝑡
, 𝐵
𝑡
, 𝐶
𝑡
,

and 𝐷
𝑡
are assumed to be known real constant matrices with

appropriate dimensions.
By defining

𝜁
𝑘
= [𝑤
𝑇

𝑘
𝑓
𝑇

𝑘
]
𝑇

, 𝑟
𝑘
= 𝑟
𝑘
− 𝑓
𝑘
,

𝑥
𝑘
= [𝑥
𝑇

𝑘−1
⋅ ⋅ ⋅ 𝑥
𝑇

𝑘−𝑞
]
𝑇

, 𝜂
𝑘
= [𝑥
𝑇

𝑘
𝑥
𝑇

𝑘
𝑥
𝑇

𝑘
𝑥
𝑇

𝑘
]
𝑇

(10)

and again, denoting matrices 𝐴(𝜏
𝑘
), 𝐵(𝜏

𝑘
), 𝐶(𝜏

𝑘
) and 𝐷(𝜏

𝑘
)

as 𝐴
𝑖
= 𝐴(𝜏

𝑘
= 𝑖), 𝐵

𝑖
= 𝐵(𝜏

𝑘
= 𝑖), 𝐶

𝑖
= 𝐶(𝜏

𝑘
= 𝑖), and

𝐷
𝑖
= 𝐷(𝜏

𝑘
= 𝑖), we have the overall fault detection dynamics

governed by the following system:

𝜂
𝑘+1

= 𝐴
𝑖
𝜂
𝑘
+ 𝐵
𝑖
𝜁
𝑘
,

𝑟
𝑘
= 𝐶
𝑖
𝜂
𝑘
+ 𝐷
𝑖
𝜁
𝑘
,

(11)

where

𝐴
𝑖
= [

𝐴
𝑖

0

0 𝐴
𝑡

] , 𝐵
𝑖
= [

𝐵
𝑖

𝐵
𝑡

] ,

𝐶
𝑖
= [𝐶
𝑖

−𝐶
𝑡
] , 𝐷

𝑖
= [0 −𝐷

𝑡
] ,

𝐴
𝑖
=

[
[
[

[

𝐴
0

𝐴
𝑑

0

𝐴
21

𝐴
22

0

𝛿 (𝑖, 0)𝐾
0
𝐶
0

𝐾
𝑖
𝐶
𝑖
𝑒
𝑖

𝐺
𝑖

]
]
]

]

,

𝐵
𝑖
=

[
[
[

[

𝐵
𝑤

𝐵
𝑓

0
𝑞𝑛×𝑝

0
𝑞𝑛×𝑙

𝐾
𝑖
𝐷 0

]
]
]

]

, 𝐵
𝑡
= [0 𝐵

𝑡
] ,

𝐴
21

= [

𝐼
𝑛

0
(𝑞−1)𝑛×𝑛

] , 𝐴
22

= [

0 0

𝐼
(𝑞−1)𝑛×(𝑞−1)𝑛

0
] ,

𝐴
𝑑
= [𝐴
1

⋅ ⋅ ⋅ 𝐴
𝑞
] ,

𝑒
𝑖
= [𝛿 (𝑖, 1) 𝐼

𝑛×𝑛
⋅ ⋅ ⋅ 𝛿 (𝑖, 𝑞) 𝐼

𝑛×𝑛
] ,

𝐶
𝑖
= [0
𝑙×𝑛

0
𝑙×𝑞𝑛

𝐿
𝑖
] , 𝐷

𝑖
:= 𝐷
𝑖
.

(12)

After the above manipulations, the admissible sensor
delays and data missing can be reformulated as the jumping
parameters of aMarkovian jumping system (11) with the same
transition probability matrix Λ.

The matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝐷

𝑖
, 𝑖 ∈ Ξ, are uncertain,

but they belong to prescribed matrix polytopes Ω̃
𝑖

:=

(𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, ) ∈ Θ̃

𝑖
, where Θ̃

𝑖
are given convex bounded

polyhedral domain described by V vertices as follows:

Θ̃
𝑖
:= {Ω̃

𝑖
| Ω̃
𝑖
=

V

∑

𝑟=1

𝛼
𝑟
Ω̃
𝑖𝑟
;

V

∑

𝑟=1

𝛼
𝑟
= 1, 𝛼

𝑟
≥ 0} , (13)
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and Ω̃
𝑖𝑟

= (𝐴
𝑖𝑟
, 𝐵
𝑖𝑟
, 𝐶
𝑖𝑟
, 𝐷
𝑖𝑟
) denotes the 𝑟th vertices of the

polytopes, where

𝐴
𝑖𝑟
= [

𝐴
𝑖𝑟

0

0 𝐴
𝑡

] , 𝐵
𝑖𝑟
= [

𝐵
𝑖𝑟

𝐵
𝑡

] ,

𝐶
𝑖𝑟
= [𝐶
𝑖

−𝐶
𝑡
] = 𝐶
𝑖
,

𝐷
𝑖𝑟
= [0 −𝐷

𝑡
] = 𝐷

𝑖𝑟
,

𝐴
𝑖𝑟
=

[
[
[

[

𝐴
0𝑟

𝐴
𝑑𝑟

0

𝐴
21

𝐴
22

0

𝛿 (𝑖, 0)𝐾
0
𝐶
0𝑟

𝐾
𝑖
𝐶
𝑖𝑟
𝑒
𝑖

𝐺
𝑖

]
]
]

]

,

𝐵
𝑖𝑟
=

[
[
[

[

𝐵
𝑤𝑟

𝐵
𝑓𝑟

0
𝑞𝑛×𝑝

0
𝑞𝑛×𝑙

𝐾
𝑖
𝐷
𝑟

0

]
]
]

]

,

𝐴
𝑑𝑟

= [𝐴
1𝑟

⋅ ⋅ ⋅ 𝐴
𝑞𝑟
] .

(14)

Matrices 𝐴
21
, 𝐴
22
, 𝑒
𝑖
, 𝐵
𝑡
, 𝐶
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, and 𝐷

𝑖
are the same

as defined in (12). Note that from (14), matrices 𝐴
𝑖𝑟
,

𝐵
𝑖𝑟
, 𝐶
𝑖𝑟
, and 𝐷

𝑖𝑟
are affinely dependent on the matrices

𝐴
0𝑟
, 𝐴
1𝑟
, . . . , 𝐴

𝑞𝑟
, 𝐵
𝑤𝑟

, 𝐵
𝑓𝑟
, 𝐶
0𝑟
, 𝐶
1𝑟
, . . . , 𝐶

𝑞𝑟
, 𝐷
𝑟
, then for any

𝑖 ∈ Ξ, the uncertainty polytopes (13) have the same number
of vertices V, as well as the same combination coefficients
𝛼
𝑟
with (6), but different vertices for different Markovian

model 𝑖.
Recall the following definition ofmean square stability for

MJSs.

Definition 4 (see [20]). System (11) with 𝜁
𝑘
= 0 is said to be

mean square stable if

E {
󵄩󵄩󵄩󵄩𝜂𝑘

󵄩󵄩󵄩󵄩

2

} 󳨀→ 0, as 𝑘 󳨀→ ∞ (15)

for any initial condition 𝜂
0
and initial distribution 𝜏

0
∈ Ξ.

We further introduce the following definition.

Definition 5. System (11)with uncertain Ω̃
𝑖
∈ Θ̃
𝑖
, 𝑖 ∈ Ξ (resp.,

Λ ∈ Π) is robust mean square stable if (11) is mean square
stable for every Ω̃

𝑖
∈ Θ̃
𝑖
, 𝑖 ∈ Ξ (resp., Λ ∈ Π).

Assumption 6. System (1) with 𝑤
𝑘

= 0 and 𝑓
𝑘

= 0 is
assumed to be robust mean square stable.

With Definition 5, we can transform the robust fault
detection filter design problem of system (1) to a robust 𝐻

∞

filtering problem for MJS (11). What we need to do here
is to find the filter parameters 𝐺

𝑖
, 𝐾
𝑖
and 𝐿

𝑖
(𝑖 ∈ Ξ) such

that the augmented fault detection dynamics (11) is robust
mean square stable and the infimum of 𝛾 is made small in
the feasibility of the following:

sup
𝜁𝑘 ̸= 0

E {
󵄩󵄩󵄩󵄩𝑟𝑘

󵄩󵄩󵄩󵄩

2

}

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2
< 𝛾
2

, 𝛾 > 0. (16)

We further adopt a residual evaluation stage including an
incremental evaluation function 𝐽(𝑘) and a threshold 𝐽th of
the following form:

𝐽
𝐿

(𝑘) = {

𝑘

∑

ℎ=𝑘−𝐿

𝑟
𝑇

ℎ
𝑟
ℎ
}

1/2

, (17)

𝐽
𝐿

th = sup
𝑤𝑘∈𝑙2,𝑓𝑘=0

E {𝐽
𝐿

(𝑘)} , (18)

where 𝑟
1−𝐿

= 𝑟
2−𝐿

= ⋅ ⋅ ⋅ = 𝑟
−1

= 𝑟
0
= 0 and 𝐿 denotes the

length of time window for evaluation function.
Based on (17), the occurrence of faults can be detected by

comparing 𝐽(𝑘) with 𝐽th according to the following rule:

𝐽
𝐿

(𝑘) > 𝐽
𝐿

th 󳨐⇒ with faults 󳨐⇒ alarm,

𝐽
𝐿

(𝑘) ≤ 𝐽
𝐿

th 󳨐⇒ no faults 󳨐⇒ do nothing.
(19)

Remark 7. By introducing the residual evaluation function
with an incremental form (17), one can detect the possible
intermittent fault for an uncertain networked system by
analyzing the residual signal once it is generated by the fault
detection filter (7). The reason is that the residual evaluation
signal (11) is decreased to a small value over time once the
fault disappears. This nature makes the proposed method in
this paper be used for intermittent fault detection.

3. Fault Detection Filter Design

In this section, we shall discuss the robust fault detection filter
design problem of system (1), under the existence of parame-
ter uncertainty (13).We introduce the following lemmawhich
is useful in deriving our main results in the sequel.

Lemma 8. Consider system (1) with system uncertainty (5),
for a given fault detection filter of the form (7), the augmented
dynamic (11) is robust mean square stable and satisfies the
constraint (16), if there exist matrices 𝑃

𝑖𝑟
∈ R(𝑞+2)𝑛, 𝑖 ∈ Ξ, 𝑟 =

1, . . . , V, 𝑃
𝑡
∈ R𝑛, and 𝑄

𝑖
∈ R(𝑞+2)𝑛 such that the following

LMIs

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
𝑖𝑟

𝐴
𝑇

𝑖𝑟
𝑄
𝑇

𝑖
0 𝐶

𝑇

𝑖
0 0

∗ −𝑄
𝑖
− 𝑄
𝑇

𝑖
+P𝑇
𝑟
S
𝑖

𝑄
𝑖
𝐵
𝑖𝑟

0 0 0

∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖
0 𝐵

𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ −𝐼 −𝐶
𝑡

0

∗ ∗ ∗ ∗ −𝑃
𝑡

𝐴
𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ ∗ ∗ −𝑃
𝑡

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0

(20)

hold for all 𝑖 ∈ Ξ, 𝑟 = 1, . . . , V, where 𝐴
𝑖𝑟
, 𝐵
𝑖𝑟
, 𝐶
𝑖
, and 𝐷

𝑖
are

defined in (14), 𝐵
𝑡
is defined in (12), 𝐴

𝑡
, 𝐵
𝑡
, 𝐶
𝑡
, 𝐷
𝑡
are

defined in (9) and,

P
𝑟
= [𝑃
(−1)𝑟

⋅ ⋅ ⋅ 𝑃
𝑞𝑟
]
𝑇

,

S
𝑖
= [𝜆
𝑖(−1)

𝐼
(𝑞+2)𝑛

⋅ ⋅ ⋅ 𝜆
𝑖𝑞
𝐼
(𝑞+2)𝑛

]
𝑇

.

(21)
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Proof. Considering the structure of 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝐷

𝑖
, and

imposing

𝑃̃
𝑖
= [

𝑃
𝑖

0

0 𝑃
𝑡

] (22)

for all 𝑖 ∈ Ξ, it can be concluded from the bounded real
Lemma in [21] that a sufficient condition is that there exist
matrices 𝑃

𝑖
∈ R(𝑞+2)𝑛, 𝑖 ∈ Ξ, 𝑃

𝑡
∈ R𝑛 such that the following

LMIs

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
𝑖
𝐴
𝑇

𝑖
P𝑇S
𝑖

0 𝐶
𝑇

𝑖
0 0

∗ −P𝑇S
𝑖

P𝑇S
𝑖
𝐵
𝑖

0 0 0

∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖
0 𝐵

𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ −𝐼 −𝐶
𝑡

0

∗ ∗ ∗ ∗ −𝑃
𝑡

𝐴
𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ ∗ ∗ −𝑃
𝑡

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0 (23)

hold for any 𝑖 ∈ Ξ, where 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, and 𝐵

𝑡
are defined

in (12), 𝐴
𝑡
, 𝐵
𝑡
, 𝐶
𝑡
, and 𝐷

𝑡
are defined in (9), S

𝑖
is the same

defined in (21) and

P = [𝑃
(−1)

⋅ ⋅ ⋅ 𝑃
𝑞
]
𝑇

. (24)

Following the steps as the proof of Theorem 1 in [22], it can
be shown that LMIs (23) are feasible if and only if there
exist matrices 𝑃

𝑖
∈ R(𝑞+2)𝑛, 𝑄

𝑖
∈ R(𝑞+2)𝑛, 𝑖 ∈ Ξ, and 𝑃

𝑡
∈

R𝑛 satisfying

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
𝑖

𝐴
𝑇

𝑖
𝑄
𝑇

𝑖
0 𝐶

𝑇

𝑖
0 0

∗ −𝑄
𝑖
− 𝑄
𝑇

𝑖
+P𝑇S

𝑖
𝑄
𝑖
𝐵
𝑖

0 0 0

∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖
0 𝐵

𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ −𝐼 −𝐶
𝑡

0

∗ ∗ ∗ ∗ −𝑃
𝑡

𝐴
𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ ∗ ∗ −𝑃
𝑡

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0.

(25)

We are now in the position to prove that for system (1)
with uncertainty (13), (20) ensures the robust mean square
stable as well as the constraint (16) of the augmented dynamic
(11). For an arbitrary fixed uncertain system with system
matrices Ω, one can always find a set of coefficients 𝛼

𝑟
≥

0, 𝑟 = 1, . . . , V, such that both (6) and (13) hold. Note
that LMIs (20) are affine in the matrices 𝑃

𝑖𝑟
, 𝐴
𝑖𝑟
, 𝐵
𝑖𝑟
, 𝐶
𝑖
,

and 𝐷
𝑖
, multiplying suitable inequalities of (20) by appropri-

ate scalars 𝛼
𝑟
and summing up, it can be readily shown that

(25) holds for every Ω̃
𝑖
with a matrix 𝑃

𝑖
(𝛼) = ∑

V
𝑟=1

𝛼
𝑟
𝑃
𝑖𝑟
, 𝑖 =

−1, . . . , 𝑞. By using the Bounded Real Lemma in [21], it
follows that system (1) is robust mean square stable and (16)
is satisfied. This concludes the proof.

Next, we give the robust fault detection filter design result
for system (1) with system uncertainty (13).

Theorem 9. Consider system (1) with uncertain matrices (13),
let 𝛾 > 0 be a given scalar, there exists an admissible full-order
robust fault detection filter of the form (7) ensuring that the
overall augmented dynamics (11) is robust mean square stable
and the constraint (16) is satisfied, if there exist matrices 0 <

𝑋
𝑇

𝑖𝑟
= 𝑋
𝑖𝑟

∈ R(𝑞+2)𝑛×(𝑞+2)𝑛, 𝑆
𝑖

∈ R𝑛×𝑛, 𝑍
𝑖

∈ R𝑛×𝑛, 𝑌
𝑖

∈

R𝑛×𝑛, 𝐺
𝑖
∈ R𝑛×𝑛, 𝐾

𝑖
∈ R𝑛×𝑚, 𝐿

𝑖
∈ R𝑙×𝑛, 𝑀

𝑖
∈ R𝑞𝑛×𝑞𝑛, 𝑖 =

−1, . . . , 𝑞, 𝑟 = 1, . . . , V, and 0 < 𝑃
𝑇

𝑡
= 𝑃
𝑡
∈ R𝑛×𝑛, such that the

following LMIs

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋
𝑖𝑟

Φ
12

0 Φ
14

0 0

∗ Φ
22

Φ
23

0 0 0

∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

𝑖𝑟
0 𝐵

𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ −𝐼 −𝐶
𝑡

0

∗ ∗ ∗ ∗ −𝑃
𝑡

𝐴
𝑇

𝑡
𝑃
𝑡

∗ ∗ ∗ ∗ ∗ −𝑃
𝑡

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0 (26)

hold for 𝑖 = −1, . . . , 𝑞 and 𝑟 = 1, . . . , V, where

Φ
12

=

[
[
[
[
[
[
[
[
[

[

𝐴
𝑇

0𝑟
𝑍
𝑇

𝑖
[𝐼
𝑛×𝑛

0
𝑛×(𝑞−1)𝑛

]𝑀
𝑇

𝑖
𝐴
𝑇

0𝑟
𝑌
𝑇

𝑖
+ 𝛿 (𝑖, 0) 𝐶

𝑇

0𝑟
𝐾
𝑇

0
+ 𝐺
𝑇

𝑖

𝐴
𝑇

𝑑𝑟
𝑍
𝑇

𝑖
[

0
(𝑞−1)𝑛×𝑛

𝐼
(𝑞−1)𝑛×(𝑞−1)𝑛

0
𝑛×𝑛

0
𝑛×(𝑞−1)𝑛

]𝑀
𝑇

𝑖
𝐴
𝑇

𝑑𝑟
𝑌
𝑇

𝑖
+ 𝑒
𝑇

𝑖
𝐶
𝑇

𝑖𝑟
𝐾
𝑇

𝑖

𝐴
𝑇

0𝑟
𝑍
𝑇

𝑖
[𝐼
𝑛×𝑛

0
𝑛×(𝑞−1)𝑛

]𝑀
𝑇

𝑖
𝐴
𝑇

0𝑟
𝑌
𝑇

𝑖
+ 𝛿 (𝑖, 0) 𝐶

𝑇

0𝑟
𝐾
𝑇

0

]
]
]
]
]
]
]
]
]

]

,

Φ
14

=

[
[
[

[

𝐿
𝑇

𝑖

0

0

]
]
]

]

, Φ
22

:= −

[
[
[

[

𝑍
𝑖
+ 𝑍
𝑇

𝑖
0 𝑍

𝑖
+ 𝑌
𝑇

𝑖
+ 𝑆
𝑇

𝑖

∗ 𝑀
𝑖
+ 𝑀
𝑇

𝑖
0

∗ ∗ 𝑌
𝑖
+ 𝑌
𝑇

𝑖

]
]
]

]

+X
𝑇

𝑟
S
𝑖
,
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Φ
23

=

[
[
[

[

𝑍
𝑖
𝐵
𝑤𝑟

𝑍
𝑖
𝐵
𝑓𝑟

0 0

𝑌
𝑖
𝐵
𝑤𝑟

+ 𝐾
𝑖
𝐷
𝑟

𝑌
𝑖
𝐵
𝑓𝑟

]
]
]

]

, X
𝑟
= [𝑋
(−1)𝑟

⋅ ⋅ ⋅ 𝑋
𝑞𝑟
]
𝑇

,

(27)

𝐷
𝑖𝑟
is defined in (14) and S

𝑖
is the same in (21). Moreover,

if (26) is feasible, the parameters of the desired robust fault
detection filter can be given by

𝐺
𝑖
= 𝑉
−1

𝑖
𝐺
𝑖
𝑆
−1

𝑖
𝑉
𝑖
, 𝐾

𝑖
= 𝑉
−1

𝑖
𝐾
𝑖
, 𝐿

𝑖
= 𝐿
𝑖
𝑆
−1

𝑖
𝑉
𝑖
, (28)

where 𝑉
𝑖
∈ R𝑛×𝑛 is any invertible matrix (e.g., 𝑉

𝑖
could be set

as 𝐼).

Proof. Considering (20), Let 𝑈
𝑖
∈ R𝑛×𝑛 and 𝑉

𝑖
∈ R𝑛×𝑛 be

two nonsingular matrices, and set

𝑄
𝑇

𝑖
=

[
[
[

[

𝑌
𝑇

𝑖
0 𝑄

𝑇

31𝑖

0 𝑀
𝑇

𝑖
0

𝑉
𝑇

𝑖
0 𝑄

𝑇

33𝑖

]
]
]

]

. (29)

Introducing the followind new matrices:

𝑄
𝑇

𝑖
=

[
[
[

[

𝑍
−𝑇

𝑖
0 𝑄
𝑇

31𝑖

0 𝐼 0

𝑈
𝑇

𝑖
0 𝑄
𝑇

33𝑖

]
]
]

]

, (30)

where the entries 𝑄
𝑇

31𝑖
, 𝑄𝑇
33𝑖
, 𝑄𝑇
31𝑖
, and 𝑄

𝑇

33𝑖
are uniquely

determined from the following relation:

[

[

𝑌
𝑇

𝑖
𝑄
𝑇

31𝑖

𝑉
𝑇

𝑖
𝑄
𝑇

33𝑖

]

]

[

[

𝑍
−𝑇

𝑖
𝑄
𝑇

31𝑖

𝑈
𝑇

𝑖
𝑄
𝑇

33𝑖

]

]

= [

[

𝑍
−𝑇

𝑖
𝑄
𝑇

31𝑖

𝑈
𝑇

𝑖
𝑄
𝑇

33𝑖

]

]

[

[

𝑌
𝑇

𝑖
𝑄
𝑇

31𝑖

𝑉
𝑇

𝑖
𝑄
𝑇

33𝑖

]

]

= 𝐼,

(31)

we further have the following relation

𝑄
𝑇

𝑖
𝑄
𝑇

𝑖
= 𝑄
𝑇

𝑖
𝑄
𝑇

𝑖
=

[
[
[

[

𝐼 0 0

0 𝑀
𝑇

𝑖
0

0 0 𝐼

]
]
]

]

. (32)

By defining

𝑇
𝑖
=

[
[
[

[

𝑍
𝑇

𝑖
0 𝑌
𝑇

𝑖

0 𝐼 0

0 0 𝑉
𝑇

𝑖

]
]
]

]

, (33)

we obtain

𝑇
𝑇

𝑖
𝑄
𝑖
𝐴
𝑇

𝑖𝑟
𝑄
𝑇

𝑖
𝑄
𝑇

𝑖
𝑇
𝑖
=

[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑇

0𝑟
𝑍
𝑇

𝑖
[𝐼
𝑛×𝑛

0
𝑛×(𝑞−1)𝑛

]𝑀
𝑇

𝑖
𝐴
𝑇

0𝑟
𝑌
𝑇

𝑖
+ 𝛿 (𝑖, 0) 𝐶

𝑇

0𝑟
𝐾
𝑇

0
𝑉
𝑇

0
+ 𝑍
𝑖
𝑈
𝑖
𝐺
𝑇

𝑖
𝑉
𝑇

𝑖

𝐴
𝑇

𝑑𝑟
𝑍
𝑇

𝑖

[

[

0
(𝑞−1)𝑛×𝑛

𝐼
(𝑞−1)𝑛×(𝑞−1)𝑛

0
𝑛×𝑛

0
𝑛×(𝑞−1)𝑛

]

]

𝑀
𝑇

𝑖
𝐴
𝑇

𝑑𝑟
𝑌
𝑇

𝑖
+ 𝑒
𝑇

𝑖
𝐶
𝑇

𝑖𝑟
𝐾
𝑇

𝑖
𝑉
𝑇

𝑖

𝐴
𝑇

0𝑟
𝑍
𝑇

𝑖
[𝐼
𝑛×𝑛

0
𝑛×(𝑞−1)𝑛

]𝑀
𝑇

𝑖
𝐴
𝑇

0𝑟
𝑌
𝑇

𝑖
+ 𝛿 (𝑖, 0) 𝐶

𝑇

0𝑟
𝐾
𝑇

0
𝑉
𝑇

0

]
]
]
]
]
]
]
]
]
]

]

,

𝑇
𝑇

𝑖
𝑄
𝑖
𝐶
𝑇

𝑖
=

[
[
[

[

𝑍
𝑖
𝑈
𝑖
𝐿
𝑇

𝑖

0

0

]
]
]

]

, 𝑇
𝑇

𝑖
𝑄
𝑖
(𝑄
𝑖
+ 𝑄
𝑇

𝑖
)𝑄
𝑇

𝑖
𝑇
𝑖
=

[
[
[
[
[

[

𝑍
𝑖
+ 𝑍
𝑇

𝑖
0 𝑍

𝑖
+ 𝑌
𝑇

𝑖
+ 𝑆
𝑇

𝑖

∗ 𝑀
𝑖
+ 𝑀
𝑇

𝑖
0

∗ ∗ 𝑌
𝑖
+ 𝑌
𝑇

𝑖

]
]
]
]
]

]

,

𝑇
𝑇

𝑖
𝑄
𝑖
𝑄
𝑖
𝐵
𝑖𝑟
=

[
[
[
[

[

𝑍
𝑖
𝐵
𝑤𝑟

𝑍
𝑖
𝐵
𝑓𝑟

0 0

𝑌
𝑖
𝐵
𝑤𝑟

+ 𝑉
𝑖
𝐾
𝑖
𝐷
𝑟

𝑌
𝑖
𝐵
𝑓𝑟

]
]
]
]

]

.

(34)

Performing congruence transformations to (20) by
diag{𝑄𝑇

𝑖
𝑇
𝑖
, 𝑄
𝑇

𝑖
𝑇
𝑖
, 𝐼, 𝐼, 𝐼, 𝐼}, define

𝑋
𝑖𝑟
= 𝑇
𝑇

𝑖
𝑄
𝑖
𝑃
𝑖𝑟
𝑄
𝑇

𝑖
𝑇
𝑖
, 𝐺

𝑖
= 𝑉
𝑖
𝐺
𝑖
𝑈
𝑇

𝑖
𝑍
𝑇

𝑖
,

𝐾
𝑖
= 𝑉
𝑖
𝐾
𝑖
, 𝐿

𝑖
= 𝐿
𝑖
𝑈
𝑇

𝑖
𝑍
𝑇

𝑖
, 𝑆

𝑖
= 𝑉
𝑖
𝑈
𝑇

𝑖
𝑍
𝑇

𝑖
,

(35)

then, it can be easily shown that LMIs (26) together with the
additional constraints (29) and (30) are equivalent to LMIs
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in (20). Hence, if there exist matrices 𝑋
𝑖𝑟

> 0, 𝑆
𝑖
, 𝑍
𝑖
, 𝑌
𝑖
, 𝐺
𝑖
,

𝐾
𝑖
, 𝐿
𝑖
, 𝑀
𝑖
, 𝑖 = −1, . . . , 𝑞, and 𝑃

𝑡
> 0 such that LMIs (20)

are feasible, the overall fault detection dynamic (11) is robust
mean square stable and the constraint (16) is satisfied.

Furthermore, from LMIs (26), we have for 𝑖 = −1, . . . , 𝑞,

[
[
[
[

[

𝑍
𝑖
+ 𝑍
𝑇

𝑖
0 𝑍

𝑖
+ 𝑌
𝑇

𝑖
+ 𝑆
𝑇

𝑖

∗ 𝑀
𝑖
+ 𝑀
𝑇

𝑖
0

∗ ∗ 𝑌
𝑖
+ 𝑌
𝑇

𝑖

]
]
]
]

]

> 0. (36)

This indicates that 𝑍
𝑖
and 𝑌

𝑖
are nonsingular and

[𝐼 0 −𝐼]

[
[
[
[

[

𝑍
𝑖
+ 𝑍
𝑇

𝑖
0 𝑍

𝑖
+ 𝑌
𝑇

𝑖
+ 𝑆
𝑇

𝑖

∗ 𝑀
𝑖
+ 𝑀
𝑇

𝑖
0

∗ ∗ 𝑌
𝑖
+ 𝑌
𝑇

𝑖

]
]
]
]

]

[
[
[

[

𝐼

0

−𝐼

]
]
]

]

= −𝑆
𝑖
− 𝑆
𝑇

𝑖
> 0,

(37)

which implies that 𝑆
𝑖
is nonsingular and also ensures the

existence of parameter matrices 𝐺
𝑖
, 𝐾
𝑖
, and 𝐿

𝑖
in (28). The

proof is completed.

Remark 10. In Theorem 9, uncertainty-dependent robust
fault detection filter design result is provided, which reduces
the conservatism than the uncertainty-independent results. If
we impose

𝑋
𝑖𝑟
= 𝑋
𝑖
, 𝑖 = −1, . . . , 𝑞, 𝑟 = 1, . . . , V, (38)

to (26), the uncertainty-independent result can be recovered.

Remark 11. In most cases, we can know the size of the
measurement delay or whether the data is missing at a
certain time by using the time-stamp at the system node [5],
and therefore the jumping parameters of the transformed
MJS are accessible. In this sense, Theorem 9 provides us
with network-status-dependent fault detection filter design
methods. On the other hand, if the network status is not
accessible; that is, the jumping parameters of the transformed
MJS are unavailable, a network-status-independent result can
be easily obtained by imposing

𝑆
𝑖
= 𝑆, 𝐺

𝑖
= 𝐺,

𝐾
𝑖
= 𝐾, 𝐿

𝑖
= 𝐿, 𝑖 = −1, . . . , 𝑞,

(39)

inTheorem 9.
Note that (26) are LMIs over both thematrix variables and

the prescribed scalar 𝛾
2. This implies that (i) the robust full-

order fault detection filter can be obtained from the solution
of convex optimization problems in terms of LMIs, which
can be solved via efficient interior-point algorithms [23]; (ii)
the scalar 𝛾

2 can be included as one of the optimization
variables for LMIs (20), which makes it possible to obtain
the minimum noise attenuation level bound for the fault
detection dynamics (11). Then, the uncertainty-dependent
suboptimal robust fault detection filter can be readily found
by solving the following convex optimization problem.

Problem 12. Consider the parameter uncertainty (5), the sub-
optimal robust fault detection filter for networked systems
(1) with multiple state-delays and unknown inputs based
on the idea of uncertainty dependence and network status
dependence can be brought forward as follows:

min
𝑋𝑖𝑟>0,𝑆𝑖 ,𝑍𝑖 ,𝑌𝑖,𝑀𝑖 ,𝐺𝑖 ,𝐾𝑖 ,𝐿𝑖 ,

𝑃𝑡>0,𝑖=−1,...,𝑞,𝑟=1,...,V

𝛾
2

, s.t. (26) .
(40)

For the problemsmentioned above, the parameters of the
sub-optimal robust fault detection filter can be determined
by (28), and the sub-optimal robust 𝐻

∞
attenuation level

for fault detection dynamics is given by 𝛾
∗

= √𝛾2opt, where
𝛾
2

opt are the sub-optimal solution of the corresponding convex
optimization problems.

Here is a summary of the whole fault detection method
for system (1).

Step 1. Determine the vertex of uncertain parameters of (1).

Step 2. Calculate the parameters of fault detection filter using
Theorem 9.

Step 3. Get a appropriate threshold from experiments for a
specific noise type.

Step 4. Generate a real-time residual signal from the fault
detection filter designed in Step 2.

Step 5. Compare the evaluation function with the threshold
and use the logic (19) to alarm a fault.

Remark 13. In the present work, a model-based approach is
considered since there is amathematicalmodel for the system
plant. However, when there is no such amodel and only input
and output data can be obtained in many complex systems,
data-driven methods may work better than the model based
ones since there is a leakage of prior information of system
dynamics. Please see [24, 25] for typical data-driven fault
detection methods.

4. A Numerical Example

To illustrate the effectiveness of the proposed method, we
provide a numerical examples in this section. Consider
system (1) with the following uncertain system parameters:

𝐴
0
= [

0 0.5

0.2 𝜃

] , 𝐴
1
= [

0.2 0

0.7 0.1

] ,

𝐵
𝑤
= [

0.5

0.3

] , 𝐵
𝑓
= [

−1

2

] ,

𝐶
0
= 𝐶
1
= [

0.2 0

0 0.5

] , 𝐷 = [

0.2

−0.1

] ,

(41)

where 𝜃 is an uncertain real parameter satisfying 0.1 ≤ 𝜃 ≤

0.3. The initial state values 𝜑
𝑘
are set to be 𝜑

−1
= 𝜑
0

= 0.



8 Mathematical Problems in Engineering

Let 𝑞 = 1, so the state-space of the Markov chain {𝜏
𝑘
} is Ξ =

{−1, 0, 1}. The transition probability matrix is given by

Λ :=
[
[

[

𝜆
−1,−1

𝜆
−1,0

𝜆
−1,1

𝜆
0,−1

𝜆
0,0

𝜆
0,1

𝜆
1,−1

𝜆
1,0

𝜆
1,1

]
]

]

=
[
[

[

0.7 0.2 0.1

0.3 0.4 0.3

0.2 0.3 0.5

]
]

]

, (42)

and the initial mode is set to be 𝜏
0
= 0. For 𝑘 = 0, 1, . . . , 300,

the unknown input 𝑤
𝑘
is supposed to be a randomnoise uni-

formly distributed over [−0.5, 0.5], and the fault signal 𝑓
𝑘
is

of the following intermittent form:

𝑓
𝑘
=

{

{

{

1, for 𝑘 = 200𝑠 + 101, . . . , 200𝑠 + 200 (𝑠 = 0, 1, 2) ,

0, others.
(43)

The weighting matrix is supposed to be 𝑇
𝑓
(𝑧) = (0.5𝑧)/

(𝑧 − 0.5), with the following state space realization:

𝑥
𝑘+1

= 0.5𝑥
𝑘
+ 0.25𝑓

𝑘
,

𝑓
𝑘
= 𝑥
𝑘
+ 0.5𝑓

𝑘
,

𝑥
0
= 0,

(44)

where 𝑓
𝑘
and 𝑓

𝑘
are shown in Figure 1.

With the predefined parameters, from Theorem 9, Prob-
lem 12 can be solved by using the Matlab LMI toolbox [23].
As a result, theminimumnoise attenuation level bound of the
fault detection dynamic is 𝛾opt = 1.0012, and the parameters
of the sub-optimal fault detection filter in different modes are
given by

𝐺
−1

= [

0.1311 1.3402

0.1620 0.6100
] , 𝐾

−1
= [

4.3089 8.6222

21.7929 43.5879
] ,

𝐿
−1

= [−0.7029 0.0724] , 𝐺
0
= [

0.0315 0.4950

−0.0373 0.2187
] ,

𝐾
0
= [

−0.0002 −0.0025

−0.0005 −0.0006
] , 𝐿

0
= [−0.1088 −0.0396] ,

𝐺
1
= [

−0.1343 0.8207

−0.0807 0.3832
] , 𝐾

1
= [

−0.0014 −0.0001

−0.0018 −0.0002
] ,

𝐿
1
= [−0.6086 0.2436] .

(45)

If we impose the uncertainty-independent and network-
status-independent method indicated in Remarks 10 and 11, a
fault detection filter with 𝛾opt = 1.0082 can be obtained.

Next, we consider the time-domain simulation using the
obtained fault detection filter. we arbitrarily choose 𝜃 = 0.15.
Figure 2 shows the measurement mode with random delays
and stochastic missing phenomenon. 𝜏

𝑘
= −1, 0, 1,means

that the measurement is missing, transmitted over the net-
work ideally, and with one-step delay, respectively.

Figure 3 shows the generated residual signal 𝑟
𝑘
, and the

evolution of 𝐽𝐿(𝑘) is presented in Figure 4, where we choose

0 100 200 300 400 500 600 700
Time step k

f
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d
f
w

f

fw

1

0.8
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0

Figure 1: Fault 𝑓
𝑘
and weighting fault 𝑓

𝑘
(𝑓
𝑤
).

0 100 200 300 400 500 600 700
−1.5

−1

−0.5

0

0.5

1

1.5

Time step k

𝜏
k

Figure 2: Measurement mode over network.

0 100 200 300 400 500 600 700
−1

0

1

2

3

4

5

6

Time step k

r k

×10
−3

Figure 3: Residual signal 𝑟
𝑘
.



Mathematical Problems in Engineering 9

0 100 200 300 400 500 600 700
0

2

4

6

8

Time step k

×10
−5

J k

(a)

0 100 200 300 400 500 600 700

0

1

Fa
ul

t d
et

ec
te

d 
sig

na
l

Time step k

0.5

1.5

(b)

Figure 4: Evolution of 𝐽𝐿(𝑘).

the length of time window 𝐿 = 8. After 400 times of
simulations, we get a threshold 𝐽

𝐿

th = 1.5215 × 10
−6.

Figure 4 shows the real-time fault detection result:

4.9199 × 10
−8

= 𝐽 (102) < 𝐽
𝐿

th < 𝐽 (103) = 3.1041 × 10
−6

,

1.9392 × 10
−6

= 𝐽 (220) < 𝐽
𝐿

th < 𝐽 (221) = 1.4006 × 10
−6

,

9.1655 × 10
−8

= 𝐽 (304) < 𝐽
𝐿

th < 𝐽 (305) = 3.4154 × 10
−6

,

2.5346 × 10
−6

= 𝐽 (424) < 𝐽
𝐿

th < 𝐽 (425) = 6.0104 × 10
−7

,

8.1835 × 10
−8

= 𝐽 (502) < 𝐽
𝐿

th < 𝐽 (503) = 3.2139 × 10
−6

,

1.9241 × 10
−6

= 𝐽 (617) < 𝐽
𝐿

th < 𝐽 (618) = 1.1692 × 10
−6

.

(46)

From above inequations, we can observe the fault occur-
rence can be detected after 3, 5, 3 steps, while the disappear-
ance of fault can be detected after 21, 25, 18 steps, respectively.

Remark 14. After introducing a novel residual evaluation
function of the incremental type (17), one can detect not
only the occurrence of a fault but also its disappearance. It
can be observed from Figure 4 that the disappearance of the
fault usually needs longer time to detect than the occurrence
of faults. This is because the mathematical model of the
system is based on the plant without the faults. This is of
engineering significance and the proposed method in this
paper can be applied to detect intermittent faults in many
practical industrial processes.

Remark 15. The length of time window for evaluation func-
tion 𝐿 in (17) is also a factor that can affect the fault detection
performance. Longer 𝐿 can reduce the missing alarm rate
and false alarm rate; however, it costs longer detection time.
Short 𝐿 can provide a rapid fault detection but this results in
larger missing alarm rate and false alarm rate.

5. Conclusions

In this paper, the robust intermittent fault detection problem
has been investigated for a class of discrete-time uncer-
tain networked systems with state delays and incomplete
measurements. The random delay and stochastic missing
phenomenon in themeasurements have been simultaneously

investigated. Polytopic-type parameter uncertainty in the
state-spacemodelmatrices has been considered. By augment-
ing the states, the addressed robust fault detection prob-
lem has been converted to an auxiliary robust 𝐻

∞
filtering

problem for a certain Markovian jumping system (MJS). A
sufficient condition for the design of the desired robust fault
detection filter has been established. A numerical example
has been introduced to illustrate the effectiveness of the
proposed methodology.
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