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The vorticity exterior and interior to a viscous liquid drop in steady motion in an unbounded fluid is investigated.The perturbation
solution to first order in the Reynolds number derived by Taylor and Acrivos (1964) is used. New analytical results are derived for
the attached region of positive vorticity behind the drop and for the region of positive vorticity inside the drop.

1. Introduction

In this paper we will consider the steady axisymmetric flow
of a viscous fluid past a liquid drop with constant interfacial
tension. From numerical investigations [1–4] it is known
that a detached wake consisting of a standing eddy and a
region of positive vorticity exist outside the viscous drop if the
Reynolds number, Re, and the ratio of the viscosity of the drop
to the viscosity of the surrounding fluid, 𝜅, are sufficiently
large and that a region of positive vorticity exists inside the
drop if either Re is sufficiently large or 𝜅 is sufficiently small.
In a recent paper [5] new analytical results for the detached
wake and the streamlines inside and outside the liquid drop
were derived using the singular perturbation solution for the
stream function derived by Taylor and Acrivos [6]. In this
paper we will derive corresponding analytical results for the
equivorticity lines and for the regions of positive vorticity
outside and inside the liquid drop.

The singular perturbation solution of Taylor and Acrivos
[6] will again be used. This perturbation solution has two
parameters, Re and 𝜅. Although it was derived assuming that
Re < 1, we will apply it to flows with Re > 1. There is
evidence that the predictions of this solution are applicable
for Re > 1. For example,Wellek et al. [7] found that the Taylor

and Acrivos perturbation solution predicted quite accurately
the eccentricity of the deformed drop for Reynolds numbers
up to Re = 20. Also as 𝜅 → ∞, the solution of Taylor
and Acrivos tends to the singular perturbation solution of
Proudman and Pearson [8] for the stream function for slow
viscous flow past a solid sphere. Van Dyke [9] found that the
length of the attached wake behind a solid sphere calculated
from the Proudman and Pearson perturbation solution to
first order in the Reynolds number is in good agreement with
experimental and numerical values for Reynolds number up
to about Re = 60.

We will assume also that the interfacial tension is large
so that the Weber number, We, is small, and therefore the
deformation of the spherical drop is small.

An outline of the paper is as follows. In Section 2 the
assumptions of the model are stated and the perturbation
solution of Taylor and Acrivos for the stream functions out-
side and inside the liquid drop to first order in the Reynolds
number Re is presented. In Section 3 the equivorticity lines
and the attached region of positive vorticity exterior to the
liquid drop are investigated. In Section 4 the equivorticity
lines and the region of positive vorticity inside the liquid drop
are considered. Finally the conclusions are summarised in
Section 5.
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Figure 1: Spherical polar coordinate system (𝑟, 𝜃, 𝜙) for axisymmet-
ric flow past a liquid drop. If 𝜌 > 𝜌, the gravity vector g points in the
direction shown while if 𝜌 < 𝜌, g points in the opposite direction.

2. Stokes Stream Functions

In this section we will summarise the assumptions made
in the derivation of the perturbation solution of Taylor and
Acrivos [6] and state the Stokes stream functions inside and
outside the liquid drop.

Consider the steady axisymmetric motion under gravity
of a viscous liquid drop slightly deformed from the spherical
shape in an unbounded quiescent fluid. The fluids inside and
outside the liquid drop are incompressible and immiscible
and the interfacial tension is assumed to be uniform. Fluid
variables inside the liquid drop are denoted by a circumflex.
The terminal velocity of the drop is 𝑈. The spherical polar
coordinate system (𝑟, 𝜃, 𝜙) shown in Figure 1 with origin at
the centre of mass of the drop is used. The fluid variables
are dimensionless, and since the flow is axisymmetric, they
are independent of 𝜙. The characteristic length is the radius,
𝑎, of the spherical drop with the same volume, and the
characteristic velocity is the terminal velocity, 𝑈.

Since the fluids outside and inside the liquid drop are
incompressible and the flow is axisymmetric with V𝜙 = 0

and V̂𝜙 = 0, Stokes stream functions, 𝜓(𝑟, 𝜃) and �̂�(𝑟, 𝜃), can
be introduced outside and inside the liquid drop. They are
defined in terms of the velocity components parallel to the 𝑟
and 𝜃 coordinate lines by

V𝑟 (𝑟, 𝜃) =
1

𝑟
2 sin 𝜃

𝜕𝜓

𝜕𝜃

, V𝜃 (𝑟, 𝜃) = −
1

𝑟 sin 𝜃
𝜕𝜓

𝜕𝑟

,

V̂𝑟 (𝑟, 𝜃) =
1

𝑟
2 sin 𝜃

𝜕�̂�

𝜕𝜃

, V̂𝜃 (𝑟, 𝜃) = −
1

𝑟 sin 𝜃
𝜕𝜓

𝜕𝑟

.

(1)

The continuity equations outside and inside the liquid drop
are automatically satisfied.

The perturbation parameter is the Reynolds number, Re,
defined in terms of the parameters of the flow outside the
drop by

Re = 𝑈𝑎
]
, (2)

where ] = 𝜂/𝜌 is the kinematic viscosity and 𝜂 is the shear
viscosity of the exterior fluid. Taylor and Acrivos [6] used
the method of matched asymptotic expansions outside the

liquid drop to obtain an expansion uniformly valid in 𝑟 for
𝑎 ≤ 𝑟 ≤ ∞. The inner expansion outside the drop is
the straightforward expansion in powers of Re. This inner
expansion is used to analyse the exterior flow close to the
drop which includes the region of positive vorticity. The
deformation of the drop at zero order in Re was found to be
zero. Hence the boundary condition for the first order in Re
solution was imposed at 𝑟 = 1. The inner expansion for the
stream function outside the drop to first order in Re found by
Taylor and Acrivos [6] can be written as

𝜓 (𝑟, 𝜃) =

1

4

(𝑟 − 1) sin2𝜃

× [ (1 +

1

8

(

2 + 3𝜅

1 + 𝜅

)Re)

× (2𝑟 −

𝜅

1 + 𝜅

−

𝜅

1 + 𝜅

1

𝑟

)

−

Re
8

(

2 + 3𝜅

1 + 𝜅

)

× (2𝑟 −

𝜅

1 + 𝜅

−

𝜅

5(1 + 𝜅)
2

1

𝑟

−

𝜅 (6 + 5𝜅)

5(1 + 𝜅)
2

1

𝑟
2
) cos 𝜃]

+ 𝑂 (Re2) ,

(3)

as Re → 0, where 𝜅 is the ratio of the shear viscosity of the
drop to the shear viscosity of the exterior fluid:

𝜅 =

𝜂

𝜂

. (4)

Since shear viscosity is nonnegative, the range of values of 𝜅
is 0 ≤ 𝜅 ≤ ∞. For an inviscid gas bubble, 𝜅 = 0, while for
a solid sphere, 𝜅 = ∞. The stream function inside the liquid
drop to first order in Re can be written as

�̂� (𝑟, 𝜃) = −

𝑟
2
(1 − 𝑟

2
) sin2𝜃

4 (1 + 𝜅)

× [1 +

𝜅 (2 + 3𝜅)

40(1 + 𝜅)
2
Re

+Re (2 + 3𝜅) (5 + 4𝜅)
40(1 + 𝜅)

2
(1 − 𝑟 cos 𝜃)]

+ 𝑂 (Re2) ,

(5)

as Re → 0.
The deformation of the drop to first order in Re is

proportional to the Weber number We and depends on the
density ratio 𝛾 (and on 𝜅) where

We =
𝜌𝑎𝑈
2

𝜎

, 𝛾 =

𝜌

𝜌

, (6)
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and 𝜎 is the uniform interfacial tension. The boundary
conditions for the order Re solutionwere imposed on the zero
order surface of the drop, 𝑟 = 1, which is not deformed. The
results therefore apply only for small Weber number.

3. Attached Region of Positive Vorticity
Exterior to the Liquid Drop

Consider first the fluid flow exterior to the liquid drop.
Since the flow is axisymmetric, the vorticity 𝜔 expressed

in terms of the stream function 𝜓(𝑟, 𝜃) is

𝜔 = −

1

𝑟 sin 𝜃
𝐷
2
𝜓e𝜙 = 𝜔𝜙e𝜙, (7)

where

𝐷
2
=

𝜕
2

𝜕𝑟
2
+

sin 𝜃
𝑟
2

𝜕

𝜕𝜃

(

1

sin 𝜃
𝜕

𝜕𝜃

) , (8)

and e𝜙 is the unit base vector parallel to the 𝜙-coordinate line
in the direction of increase of 𝜙. For the exterior flow close to
the drop the stream function is given by (3). With the aid of
the identities

𝐷
2
(𝑓 (𝑟) sin2𝜃) = (

𝑑
2
𝑓

𝑑𝑟
2
−

2

𝑟
2
𝑓) sin2𝜃,

𝐷
2
(𝑓 (𝑟) sin2𝜃 cos 𝜃) = (

𝑑
2
𝑓

𝑑𝑟
2
−

6

𝑟
2
𝑓) sin2𝜃 cos 𝜃,

(9)

it can be verified that

𝜔𝜙 (𝑟, 𝜃) = −

1

2

(

2 + 3𝜅

1 + 𝜅

)

sin 𝜃
𝑟

× [ (1 + (

2 + 3𝜅

1 + 𝜅

)

Re
8

)

1

𝑟

+

Re
8

{ 4 − 3 (

2 + 3𝜅

1 + 𝜅

)

1

𝑟

+

3𝜅 (4 + 5𝜅)

5(1 + 𝜅)
2
𝑟
2

−

2𝜅

(1 + 𝜅) 𝑟
3
} cos 𝜃] .

(10)

The curves 𝜔𝜙 = constant in an axial plane 𝜙 = constant are
the equivorticity lines [10].

To zero order in Re

𝜔𝜙 = −
1

2

(

2 + 3𝜅

1 + 𝜅

)

sin 𝜃
𝑟
2
, (11)

and hence 𝜔𝜙 < 0 except when 𝜃 = 0 and 𝜃 = 𝜋 in which
case 𝜔𝜙 = 0. When Re > 0, 𝜔𝜙 may not always be negative
everywhere. We will show that a region of positive vorticity
exists behind the drop and that it is attached to the surface of
the drop.Wewill then investigate the properties of this region
of positive vorticity.

From (10), 𝜔𝜙(𝑟, 𝜃) > 0 if cos 𝜃 > 𝐻(𝑟; 𝜅,Re), where

𝐻(𝑟; 𝜅,Re) = (

8

Re
+

2 + 3𝜅

1 + 𝜅

) 5(1 + 𝜅)
2
𝑟
2

× ([−20(1 + 𝜅)
2
𝑟
3

+ 15 (1 + 𝜅) (2 + 3𝜅) 𝑟
2

−3𝜅 (4 + 5𝜅) 𝑟 + 10𝜅 (1 + 𝜅) ])

−1
.

(12)

The dividing curve in an axial plane 𝜙 = constant between a
region of positive vorticity and a region of negative vorticity
outside the drop is

cos 𝜃 = 𝐻 (𝑟; 𝜅,Re) . (13)

The curve will be attached to the surface of the drop, 𝑟 = 1, if
there is a solution, 𝜃 = 𝜃𝑃, to the equation

cos 𝜃𝑃 = 𝐻 (1; 𝜅,Re)

=

5 (1 + 𝜅) [8 (1 + 𝜅) + (2 + 3𝜅)Re]
(5 + 4𝜅) (2 + 5𝜅)Re

.

(14)

Since cos 𝜃𝑃 ≤ 1, (14) has a solution for 𝜃𝑃 only if Re ≥ Re𝑃,
where

Re𝑃 =
40(1 + 𝜅)

2

𝜅 (8 + 5𝜅)

. (15)

We have

Re𝑃 = 8 (1 +
2

5𝜅

+

9

25𝜅
2
+ 𝑂(

1

𝜅
3
)) as 𝜅 → ∞,

Re𝑃 =
5

𝜅

(1 +

11

8

𝜅 +

9

64

𝜅
2
+ 𝑂 (𝜅

3
)) as 𝜅 → 0.

(16)

If Re < Re𝑃, there is no region of positive vorticity attached
to the surface of the drop. It can be shown that Re𝑃 is a
decreasing function of 𝜅.

For an inviscid gas bubble, 𝜅 = 0 and Re𝑃 = ∞. This
indicates that there is not a region of positive vorticity
attached to an inviscid gas bubble. For an inviscid gas bubble
there is also no downstream wake with standing eddies
because no vorticity is generated upstream on the surface of
an inviscid bubble [5].

For a solid sphere, 𝜅 = ∞ and Re𝑃 = 8. At Re = 8

the perturbation solution of Proudman and Pearson [5, 8, 9]
predicts that an attached wake consisting of two standing
eddies first appears downstream of the solid sphere. The
standing eddies are due to the accumulation of vorticity
generated upstream on the surface of the sphere. For a solid
sphere, the attached region of positive vorticity and the
attached wake first appear at the same value of the Reynolds
number, Re = 8.

For 0 < 𝜅 < ∞ the standing eddy is detached from the
surface of the liquid drop. It first appears in the flow down-
stream of the drop at Reynolds number Re𝐴. A perturbation
solution with perturbation parameter 1/𝜅 as 𝜅 → ∞, and a
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numerical solution have been derived for Re𝐴 [5]. It can be
shown that Re𝐴 > Re∗, where

Re∗ = 120 (2 + 3𝜅) (1 + 𝜅)
2

𝜅 (2 + 3𝜅) (4 + 5𝜅)

. (17)

It is readily verified that Re𝑃 < Re∗, and hence the attached
region of positive vorticity appears outside the drop before
the appearance of the standing eddy.

The value of 𝜅 for given Re > 8 at which the region of
positive vorticity first occurs as 𝜅 is increased from zero is
obtained by solving (14) with 𝜃𝑃 = 0 for 𝜅. This gives the
quadratic equation

5 (Re− 8) 𝜅2 + 8 (Re−10) 𝜅 − 40 = 0. (18)

For Re > 8, (18) has one real positive root

𝜅𝑃 =
−8 (Re−10) + [32Re (2Re− 15)]1/2

10 (Re− 8)
. (19)

Consider now the range of 𝜃𝑃 on the outer surface of the
drop for 0 < 𝜅 ≤ ∞ and Re𝑃 ≤ Re ≤ ∞. It can be shown
from (14) that

𝜕𝜃𝑃

𝜕Re
> 0,

𝜕𝜃𝑝

𝜕𝜅

> 0, (20)

and hence 𝜃𝑃 is an increasing function of Re and 𝜅. Also,

lim
Re→∞

𝜃𝑃 = cos−1 [5 (1 + 𝜅) (2 + 3𝜅)
(5 + 4𝜅) (2 + 5𝜅)

] , (21)

lim
𝜅→∞

𝜃𝑃 = cos−1 [3
4

+

2

Re
] . (22)

Equation (21) gives themaximumvalue of 𝜃𝑃 for a given value
of 𝜅 while (22) gives the maximum value of 𝜃𝑃 for a given
value of Re. Further

lim
Re→∞

lim
𝜅→∞

𝜃𝑃 = lim
𝜅→∞

lim
Re→∞

𝜃𝑃 = cos−1 (3
4

) = 41.4
0
. (23)

For Re𝑃 ≤ Re ≤ ∞, 𝜃𝑃 lies in the range 0 ≤ 𝜃𝑃 ≤ 41.4
0.

WhenRe = Re𝑃, 𝜃𝑃 = 0 andwhenRe = ∞ and 𝜅 = ∞, 𝜃𝑃 =

41.4
0. In Figure 2, 𝜃𝑃 is plotted against Re for a range of values

of 𝜅. Each curve starts at 𝜃𝑃 = 0, Re = Re𝑃, increases
steadily for Re > Re𝑃, and tends to (21) for large values of
Re. The distribution of vorticity over the outer surface of the
drop, 𝑤𝜙(1, 𝜃), is illustrated in Figures 3 and 4. The vorticity
is positive on the outer surface of the drop for 0 ≤ 𝜃 < 𝜃𝑃

provided either Re > Re𝑃 or 𝜅 > 𝜅𝑃.
Consider now the maximum point of extension, 𝑟 = 𝑟𝑃,

of the region of positive vorticity downstream of the drop.
By putting 𝜃 = 0 in (13), we find that 𝑟𝑃 satisfies the cubic
equation

𝑄 (𝑟) = 0, (24)

where

𝑄 (𝑟) = 𝑟
3
− (

2 + 3𝜅

2 (1 + 𝜅)

−

2

Re
) 𝑟
2

+

3𝜅 (4 + 5𝜅)

20(1 + 𝜅)
2
𝑟 −

𝜅

2 (1 + 𝜅)

.

(25)
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Figure 2: Graphs of 𝜃𝑃 plotted against Re for a range of values of 𝜅.
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When 𝜅 = 0, which describes an inviscid gas bubble, (24)
reduces to

𝑟
2
[𝑟 − (1 −

2

Re
)] = 0. (26)

The roots of (26) are 𝑟 = 0 (twice) and 𝑟 = 1−2/Re which do
not lie outside the inviscid bubble. These results indicate that
there is not a region of positive vorticity in the flow outside
an inviscid gas bubble. We therefore consider 𝜅 > 0.

Consider first Re = Re𝑃. Then (24) reduces to

(𝑟 − 1) [20(1 + 𝜅)
2
𝑟
2
− 𝜅 (2 + 5𝜅) 𝑟 + 10𝜅 (1 + 𝜅)] = 0, (27)

which has one real root, 𝑟 = 1, and two complex conjugate
roots. When Re = Re𝑃, 𝑟𝑃 = 1 and 𝜃𝑃 = 0. The region of
positive vorticity first appears behind the drop.
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Consider next Re > Re𝑃. We first show that (24) always
has a positive real root greater than unity. Now

𝑄 (1) = −

2 (Re−Re𝑃)
ReRe𝑃

, (28)

and hence 𝑄(1) < 0 since Re > Re𝑃. Also since 𝑄(𝑟) → ∞

as 𝑟 → ∞, it follows that 𝑄(𝑟) = 0 for some 𝑟 = 𝑟𝑃 > 1.
This root is the end point on the axis of symmetry 𝜃 = 0 of
the region of positive vorticity.

Since the production of vorticity at the interface increases
as 𝜅 and Re increase, we can expect that 𝑟𝑃 attains its
maximum value when 𝜅 = ∞ and Re = ∞. We have seen
that this is indeed the case for 𝜃𝑃 which attains its maximum
value when 𝜅 = ∞ and Re = ∞. When 𝜅 = ∞ and Re = ∞,
(24) becomes

𝑟
3
−

3

2

𝑟
2
+

3

4

𝑟 −

1

2

= 0. (29)

Now the standard form of a cubic equation is [11]

𝑠
3
+ 3𝐻𝑠 + 𝐺 = 0. (30)

In order to transform (29) to the standard form, let

𝑟 = 𝑠 +

1

2

. (31)

Then (29) becomes

𝑠
3
−

3

8

= 0. (32)

Thus𝐺2+4𝐻3 > 0 and there is one real root and two complex
conjugate roots [11]. The real root is 𝑠 = 0.72, and hence

𝑟𝑃 (max) = 1.22. (33)

The region of positive vorticity behind the drop is therefore
a thin layer attached to the rear surface of the drop. Its
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Figure 5:The numerical solution for 𝑟𝑃, the end point of the region
of positive vorticity behind the drop, plotted against Re for a range
of values of 𝜅.
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Figure 6: Graphs of ̂𝜃𝑃 plotted against Re for a range of values of 𝜅.

maximum extension is 0 ≤ 𝜃 ≤ 41.40 and 1 ≤ 𝑟 ≤ 1.22. The
dividing curve (13) generates a surface of revolution about
the line 𝜃 = 0 which encloses the attached region of positive
vorticity downstream of the drop.

A straightforward perturbation solution of (24) for 𝑟𝑃 in
terms of the perturbation parameter

𝜀 =

Re−Re𝑃
Re𝑃

, Re > Re𝑃, (34)
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is readily derived:

𝑟𝑃 = 1 +
𝜅 (8 + 5𝜅)

(25𝜅
2
+ 48𝜅 + 20)

𝜀 + 𝑂 (𝜀
2
) , (35)

as 𝜀 → 0. For small 𝜅,

𝑟𝑃 − 1 =
2𝜅

5

(1 + 𝑂 (𝜅)) 𝜀, as 𝜅 → 0, (36)

while for large 𝜅,

𝑟𝑃 − 1 =
1

5

(1 −

8

25𝜅

+ 𝑂(

1

𝜅
2
)) 𝜀, as 𝜅 → ∞. (37)

Equations (36) and (37) give an approximation to the maxi-
mum thickness of the region of positive vorticity for small 𝜀
when 𝜅 is small and 𝜅 is large, respectively.

The numerical solution for the real root of (24) is plotted
in Figure 5. For each value of 𝜅 the curve starts at 𝑟 = 1, Re =

Re𝑃. The graphs clearly show that 𝑟𝑃 increases as both 𝜅 and
Re increase and that (33) gives an upper bound for 𝑟𝑃.

We have seen that if Re or 𝜅 are sufficiently large, a thin
region of positive vorticity exists behind the drop and is
attached to the surface. It appears before the appearance of
the standing eddies and occurs due to the accumulation of
positive vorticity at the outer surface of the drop. The size
of the region of positive vorticity increases as each of Re
and 𝜅 increases because the generation of positive vorticity
at the outer surface increases as Re and 𝜅 increase as shown
in Figures 3 and 4.

4. Region of Positive Vorticity inside the
Liquid Drop

Inside the drop the equivorticity lines have more structure
than the streamlines [5]. In this section we investigate the
region of positive vorticity inside the drop and compare
its properties with the properties of the attached region of
positive vorticity outside the drop.

The vorticity �̂� inside the drop is given by

�̂� = −

1

𝑟 sin 𝜃
𝐷
2
�̂�e𝜙 = �̂�𝜙e𝜙, (38)

where𝐷2 and �̂�(𝑟, 𝜃) are defined by (8) and (5). With the aid
of the identities (9) it can be shown that

�̂�𝜙 (𝑟, 𝜃) = −

5𝑟 sin 𝜃
2 (1 + 𝜅)

× [1 +

Re
8

(

2 + 3𝜅

1 + 𝜅

)

−7Re (2 + 3𝜅) (5 + 4𝜅)
200(1 + 𝜅)

2
𝑟 cos 𝜃] .

(39)

To zero order in Re,

�̂�𝜙 (𝑟, 𝜃) = −
5𝑟 sin 𝜃
2 (1 + 𝜅)

. (40)

Thus when Re = 0, �̂�𝜙(𝑟, 𝜃) < 0 if 𝜃 ̸= 0 and 𝜃 ̸= 𝜋. The
equivorticity lines, 𝜔𝜙 = constant, in the plane 𝜙 = constant
are straight lines parallel to the axis of symmetry, 𝜃 = 0.

Consider now �̂�𝜙(𝑟, 𝜃) to first order in Re. From (39),
�̂�𝜙(𝑟, 𝜃) > 0 if

𝑟 cos 𝜃 > 25 (1 + 𝜅) [8 (1 + 𝜅) + Re (2 + 3𝜅)]
7 (2 + 3𝜅) (5 + 4𝜅)Re

. (41)

The region of positive vorticity therefore consists of the part
of the drop

25 (1 + 𝜅) [8 (1 + 𝜅) + Re (2 + 3𝜅)]
7 (2 + 3𝜅) (5 + 4𝜅)Re

< 𝑟 cos 𝜃 < 1. (42)

It exists provided Re > R̂e𝑃, where

R̂e𝑃 =
200(1 + 𝜅)

2

(2 + 3𝜅) (10 + 3𝜅)

. (43)
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Figure 9: Equivorticity lines inside the drop in an axial plane for 𝜅 = 2 and Re = 0, 5, 14, and 40. When 𝜅 = 2, R̂e𝑃 = 14.

We have

R̂e𝑃 =
200

9

[1 −

2

𝜅

+

61

9𝜅
2
+ 𝑂(

1

𝜅
3
)] as 𝜅 → ∞,

R̂e𝑃 = 10 [1 +
𝜅

5

+

19

100

𝜅
2
+ 𝑂(

1

𝜅
3
)] as 𝜅 → 0.

(44)

It can be shown that R̂e𝑃 is an increasing function of 𝜅, which
compares with Re𝑃 which is a decreasing function of 𝜅. The
Reynolds number R̂e𝑃 increases steadily from 10 at 𝜅 = 0 for
an inviscid gas bubble to 22.22 at 𝜅 = ∞ for a solid sphere.
For Re < 10, the region of positive vorticity inside the drop
does not exist for any value of 𝜅 while for Re > 22.22 it exists
for all values of 𝜅.

The value of 𝜅 for given Re at which the region of positive
vorticity first occurs as 𝜅 decreases from 𝜅 = ∞ is obtained
by solving (43) for 𝜅. This yields the quadratic equation

(200 − 9Re) 𝜅2 + 4 (100 − 9Re) 𝜅 + 20 (10 − Re) = 0. (45)

For 10 < Re < 22.22, (45) has one real positive root:

𝜅𝑃 =
−2 (100 − 9Re) + 2[2Re (18Re−175)]1/2

(200 − 9Re)
. (46)

The region of positive vorticity exists for 0 ≤ 𝜅 < 𝜅𝑃. It does
not exist for 𝜅 > 𝜅𝑃.
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Figure 10: Equivorticity lines inside the drop in an axial plane for Re = 15 and 𝜅 = 0, 0.5, 2.72, and 10. When Re = 15, 𝜅𝑃 = 2.72.

On the inner surface of the liquid drop the region of
positive vorticity extends over the range 0 ≤ 𝜃 ≤ ̂

𝜃𝑃, where
̂
𝜃𝑃 is obtained from (41) with 𝑟 = 1:

̂
𝜃𝑃 = cos−1 [25 (1 + 𝜅) [8 (1 + 𝜅) + (2 + 3𝜅)Re]

7 (2 + 3𝜅) (5 + 4𝜅)Re
] . (47)

It can be verified that

𝜕
̂
𝜃𝑃

𝜕Re
> 0,

𝜕
̂
𝜃𝑃

𝜕𝜅

< 0, (48)

and hence ̂𝜃𝑃 is an increasing function of Re and a decreasing
function of 𝜅. Also

lim
Re→∞

̂
𝜃𝑃 = cos−1 [25 (1 + 𝜅)

7 (5 + 4𝜅)

] , (49)

lim
𝜅→0

̂
𝜃𝑃 = cos−1 [5

7

(1 +

4

Re
)] . (50)

Equation (49) gives the maximum value of ̂𝜃𝑃 for a given
value of 𝜅 while (50) gives the maximum value of ̂𝜃𝑃 for a
given value of Re. Further,

lim
Re→∞

lim
𝜅→0

̂
𝜃𝑃 = lim
𝜅→0

lim
Re→∞

̂
𝜃𝑃 = cos−1 (5

7

) = 44.4
0
. (51)
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Figure 11: Equivorticity lines for flow past a drop with 𝜅 = 5 and
Re = 40. The direction of flow is from left to right.

Equation (51) gives the maximum value of ̂𝜃𝑃. It compares
with 41.40 for the maximum value of 𝜃𝑃 derived in (23). In
Figure 6, ̂𝜃𝑃 is plotted against Re for values of 𝜅 ranging from
0 to∞. The curves are confined to a narrow band emanating
from 10 ≤ Re ≤ 22.22. The limiting cases, 𝜅 = ∞ and
𝜅 = 0, are reversed in Figures 2 and 6. The distribution
of vorticity over the inner surface of the drop, �̂�𝜙(1, 𝜃), is
shown in Figures 7 and 8.The vorticity is positive on the inner
surface for 0 < 𝜃 <

̂
𝜃𝑃 provided Re > R̂e𝑃 or 𝜅 < 𝜅𝑃. The

vorticity is discontinuous across the interface 𝑟 = 1 and the
angles 𝜃𝑃 and ̂𝜃𝑃 are different for given values of 𝜅 and Re.

In Figure 9 the equivorticity lines inside the drop are
plotted for 𝜅 = 2 and a range of values of Re. When 𝜅 = 2,
the region of positive vorticity exists for Re > R̂e = 14. In
Figure 10 the equivorticity lines inside the drop are plotted
for Re = 15 and a range of values of 𝜅. When Re = 15, the
region of positive vorticity exists for 0 ≤ 𝜅 < 𝜅𝑃 = 2.72.

If 0 ≤ 𝜅 < 1, then R̂e𝑃 < Re𝑃, and as Re increases
from zero, the region of positive vorticity occurs inside the
drop before it occurs outside and ̂𝜃𝑃 > 𝜃𝑃. If 𝜅 > 1, then
Re𝑃 < R̂e𝑃 and the region of positive vorticity occurs outside
the drop before it occurs inside and 𝜃𝑃 > ̂

𝜃𝑃. When 𝜅 < 1

the generation of vorticity at the interface due to the no-slip
condition is more effective in the interior because the interior
fluid is less viscous than the exterior fluid. When 𝜅 > 1, the
opposite is the case.

In Figure 11, the equivorticity lines inside and outside the
drop are plotted for 𝜅 = 5 and Re = 40. For these values
of 𝜅 and Re, 𝜃𝑃 = 36

0 and ̂𝜃𝑃 = 23.4
0. We see that there is

also a region of positive vorticity upstream of the drop. In a
diagram showing the streamlines there would be a standing
eddy downstream of the drop since when 𝜅 = 5 and Re = 40,
Re > Re𝐴 [5].

5. Concluding Remarks

The significant fluid dynamical features in flow past a liquid
drop are the detached wake behind the drop, the attached

region of positive vorticity outside the drop, and the region
of positive vorticity at the rear inside the drop. Using the
perturbation solution of Taylor and Acrivos [6] to first order
in Re, we have derived in this paper analytical expressions
for the main properties of the regions of positive vorticity
outside and inside the drop. The results should be useful in
numerical and experimental investigations when the Weber
number, and therefore the deformation of the drop, is small.
The analytical results are in qualitative agreement with the
numerical results of Dandy and Leal [4] who present plots
of the equivorticity lines and regions of positive vorticity in
flow past a liquid drop. The expansions for large values of
the viscosity ratio 𝜅 should be useful in flow past a very
viscous drop because they tend to results for a solid sphere
derived from the perturbation solution of Proudman and
Pearson [8] which are in good agreement with numerical and
experimental results. The expansions for small values of 𝜅
should be useful in flow past a gas bubble.
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