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Location problems exist in the real world and they mainly deal with finding optimal locations for facilities in a network, such as
net servers, hospitals, and shopping centers. The inverse location problem is also often met in practice and has been intensively
investigated in the literature. As a typical inverse location problem, the inverse 1-median problem on tree networks with variable
real edge lengths is discussed in this paper, which is to modify the edge lengths at minimum total cost such that a given vertex
becomes a 1-median of the tree network with respect to the new edge lengths. First, this problem is shown to be solvable in linear
time with variable nonnegative edge lengths. For the case when negative edge lengths are allowable, the NP-hardness is proved
under Hamming distance, and strongly polynomial time algorithms are presented under 𝑙

1
and 𝑙
∞
norms, respectively.

1. Introduction

Location problems have found important applications in
operations research, computer science, and logistics manage-
ment. The 𝑝-median problem is a typical location problem
and has been intensively considered in the literature. The
𝑝-median problem on an undirected graph is to locate 𝑝
facilities on edges or vertices of the graph such that the sum
of the weighted distances of the vertices to the closest facility
is minimized. This problem possesses the vertex optimality
property which asserts that there exists an optimal solution
such that all facilities are located at the vertices of the graph.
Kariv and Hakimi [1] showed that the 𝑝-median problem is
NP-hard even if the graph 𝐺 is a planar graph of maximum
degree 3. Therefore, many investigations are dedicated to
special graph classes which allow a more efficient algorithm.
In the case of tree networks, the 1-median problem is solvable
in linear time by Hua [2] and Goldman [3].

However, in an established network, the locations of
facilities have already been fixed. The changing environment
might make the existing facilities deviate from the median

places of the network. Instead of finding optimal locations,
the task is to modify parameters at minimum cost such that
the prespecified locations become optimal. This arises what
we call the inverse𝑝-median problem. In recent years, inverse
𝑝-median problem found an increasing interest [4–8].

Burkard et al. [9] considered inverse 𝑝-median problems
with variable vertex weights and showed that discrete inverse
𝑝-median problems with real weights can be solved in poly-
nomial time, if 𝑝 is fixed and not an input parameter.Burkard
et al. [9, 10] investigated the inverse 1-median problem with
variable vertex weights and showed that the problem is
solvable by a greedy-type algorithm in 𝑂(𝑛 log 𝑛) time if
the underlying network is a tree or the location problem
is defined in the plane (if the distances between the points
are measured in the Manhattan or maximum metric) and in
𝑂(𝑛
2
) time on cycles.The inverse Fermat-Weber problemwas

studied by Burkard et al. [11]. They derived a combinatorial
approachwhich solves the problem in𝑂(𝑛 log 𝑛) time for unit
cost and under the assumption that the prespecified point
that should become a 1-median does not coincide with a
given point in the plane. Galavii [12] proposed linear time
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algorithms for the inverse 1-median problem with variable
vertex weights on trees (with nonnegative weights) and on
paths (with negative weights while the weights of endpoints
are arbitrary). Under weighted Hamming distance, Guan
and Zhang [13] presented polynomial time algorithm for the
inverse 1-median problem with variable vertex weights on
trees. Bonab et al. [14] showed that the inverse 𝑝-median
problem with variable edge lengths is strongly NP-hard
on general graphs and weakly NP-hard on series-parallel
graphs. In [14], the authors also presented a polynomial time
algorithm for the inverse 2-median problem with positive
variable edge lengths on trees and a linear time algorithm for
the special case of star graphs. In this paper, we first provide a
linear time algorithm to solve the inverse 1-median problem
on tree networks with variable nonnegative edge lengths. For
the case when negative edge lengths are allowable, we show
that this problem is NP-hard under Hamming distance and
we propose strongly polynomial time algorithms under 𝑙

1
and

𝑙
∞

norms, respectively.
The paper is organized as follows. In Section 2, we define

the inverse 1-median problem on trees with variable edge
lengths, thenwe show some properties of this problem. Based
on these properties, a linear time algorithm for variable
nonnegative edge lengths is presented; when negative edge
lengths are allowable, the NP-hardness of the problem under
Hamming distance is proved and the strongly polynomial
time algorithms of the problem under 𝑙

1
and 𝑙
∞

norms
are proposed in Section 3. Some final remarks are given in
Section 4.

2. Preliminaries

Let 𝑇 = (𝑉, 𝐸) be an undirected tree graph with vertex set
𝑉 = {V

1
, . . . , V

𝑛
} and edge set 𝐸 with |𝐸| = 𝑛 − 1. The weight

of a vertex V ∈ 𝑉 is denoted by 𝑤V ≥ 0, and the length of
each edge 𝑒 ∈ 𝐸 is denoted by 𝑙

𝑒
> 0. The 1-median problem

on trees is to locate a facility on 𝑉 such that the sum of the
weighted distances of the vertices to this facility isminimized.

Let𝐶(𝑎) : 𝑅𝐸 → 𝑅 be a criterion function (having length
vectors as argument) such that 𝐶(0) = 0 and 𝐶(𝑎) ≤ 𝐶(𝑏) if
𝑎 ≤ 𝑏. (For 𝑎, 𝑏 ∈ 𝑅𝐸, 𝑎 ≤ 𝑏 means that 𝑎

𝑒
≤ 𝑏
𝑒
, for all

𝑒 ∈ 𝐸.) Suppose that the unique path from 𝑠 ∈ 𝑉 to 𝑡 ∈ 𝑉
is denoted by 𝑃(𝑠, 𝑡). Let V

0
be a specific vertex in 𝑉. Denote

the adjusted edge length vector by 𝑥. Let 𝑑
𝑥
(𝑠, 𝑡) denote the

length of 𝑃(𝑠, 𝑡) with respect to 𝑥. The lower bound of 𝑥
𝑒
is

denoted by 𝑙
𝑒
≤ 0 for each 𝑒 ∈ 𝐸. Readers can refer to [15]

for other graph theory terms not defined here. The inverse
1-median problem on tree networks with variable real edge
lengths can be formally described as follows:

min 𝐶 (|𝑙 − 𝑥|)

s.t. ∑

V∈𝑉\{V0}

𝑤V𝑑𝑥 (V0, V) − ∑

V∈𝑉\{V}

𝑤V𝑑𝑥 (V, V) ≤ 0,

∀ V ∈ 𝑉 \ {V
0
} ,

𝑥
𝑒
≥ 𝑙
𝑒
, 𝑒 ∈ 𝐸. (1)

If we delete an edge 𝑒 from𝑇, the tree𝑇will be partitioned
into two subtrees, one of which containing the prespecified
vertex V

0
is denoted by𝑇󸀠

𝑒
= (𝑉
󸀠

𝑒
, 𝐸
󸀠

𝑒
), and the other is denoted

by 𝑇󸀠󸀠
𝑒
= (𝑉
󸀠󸀠

𝑒
, 𝐸
󸀠󸀠

𝑒
), where 𝑉󸀠

𝑒
, 𝑉󸀠󸀠
𝑒
denote the vertex sets and

𝐸
󸀠

𝑒
,𝐸󸀠󸀠
𝑒
denote the edge sets of𝑇󸀠

𝑒
,𝑇󸀠󸀠
𝑒
, respectively. Let𝐷

𝑥
(𝑡) =

∑V∈𝑉\{𝑡} 𝑤V𝑑𝑥(𝑡, V), and let 𝐵𝑒 = ∑V∈𝑉󸀠󸀠
𝑒

𝑤V −∑V∈𝑉󸀠
𝑒

𝑤V for each
𝑒 ∈ 𝐸; then for any V ∈ 𝑉 \ {V

0
},

𝐷
𝑥
(V
0
) − 𝐷
𝑥
(V) = ∑

V∈V\{V0}

𝑤V𝑑𝑥 (V0, V) − ∑

V∈V\{V}

𝑤V𝑑𝑥 (V, V)

= ∑

𝑒∈𝑃(V0 ,V)

( ∑

V∈𝑉󸀠󸀠
𝑒

𝑤V − ∑

V∈𝑉󸀠
𝑒

𝑤V)𝑥𝑒

= ∑

𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑥
𝑒
,

(2)

and the first constraint of (1) can be changed to

∑

𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀V ∈ 𝑉 \ {V

0
} . (3)

So, we can simplify (1) as

min 𝐶 (|𝑙 − 𝑥|)

s.t. ∑

𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀ V ∈ 𝑉 \ {V

0
} ,

𝑥
𝑒
≥ 𝑙
𝑒
, 𝑒 ∈ 𝐸.

(4)

For any V
𝑟
∈ 𝑉 \ {V

0
}, without loss of generality, suppose

the sequence of vertices and edges in 𝑃(V
0
, V
𝑟
) is V
0
, 𝑒
1
, V
1
,

𝑒
2
, V
2
, . . . , V

𝑟−1
, 𝑒
𝑟
, V
𝑟
. We have

∑

V∈𝑉󸀠󸀠
𝑒𝑖

𝑤V ≤ ∑

V∈𝑉󸀠󸀠
𝑒𝑖−1

𝑤V − 𝑤V𝑖−1
,

∑

V∈𝑉󸀠
𝑒𝑖

𝑤V ≥ ∑

V∈𝑉󸀠
𝑒𝑖−1

𝑤V + 𝑤V𝑖−1
.

(5)

Therefore,

∑

V∈𝑉󸀠󸀠
𝑒𝑖

𝑤V − ∑

V∈𝑉󸀠
𝑒𝑖

𝑤V ≤ ( ∑

V∈𝑉󸀠󸀠
𝑒𝑖−1

𝑤V − 𝑤V𝑖−1
)−( ∑

V∈𝑉󸀠
𝑒𝑖−1

𝑤V + 𝑤V𝑖−1
)

= ∑

V∈𝑉󸀠󸀠
𝑒𝑖−1

𝑤V − ∑

V∈𝑉󸀠
𝑒𝑖−1

𝑤V − 2𝑤V𝑖−1
.

(6)
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Then, for 𝑖 = 1, 2, . . . , 𝑟, by (2), we have

𝐷
𝑥
(V
0
) − 𝐷
𝑥
(V
𝑖
) = ∑

𝑒∈𝑃(V0 ,V𝑖)

𝐵
𝑒
𝑥
𝑒
=

𝑖

∑

𝑗=1

𝐵
𝑒𝑗
𝑥
𝑒𝑗
,

𝐵
𝑒𝑖
− 𝐵
𝑒𝑖−1
= (∑

V∈𝑉󸀠󸀠
𝑒𝑖

𝑤V − ∑

V∈𝑉󸀠
𝑒𝑖

𝑤V)−( ∑

V∈𝑉󸀠󸀠
𝑒𝑖−1

𝑤V − ∑

V∈𝑉󸀠
𝑒𝑖−1

𝑤V)

≤ (( ∑

V∈𝑉󸀠󸀠
𝑒𝑖−1

𝑤V − ∑

V∈𝑉󸀠
𝑒𝑖−1

𝑤V)−2𝑤V𝑖−1
)

−( ∑

V∈𝑉󸀠󸀠
𝑒𝑖−1

𝑤V − ∑

V∈𝑉󸀠
𝑒𝑖−1

𝑤V)

= − 2𝑤V𝑖−1

≤ 0.

(7)

According to (7), we further obtain the following two formu-
las:

𝐷
𝑥
(V
0
) − 𝐷
𝑥
(V
𝑗
) = 𝐷

𝑥
(V
0
) − 𝐷
𝑥
(V
𝑖
)

+ ∑

𝑒∈𝑃(V𝑖 ,V𝑗)

𝐵
𝑒
𝑙
𝑒
, 0 ≤ 𝑖 < 𝑗 ≤ 𝑟,

(8)

𝐵
𝑒𝑖−1
≥ 𝐵
𝑒𝑖
, 𝑖 = 2, . . . , 𝑟. (9)

From the above analysis, we have the following.

Theorem 1. If there exists a vertex V
𝑡
∈ 𝑉 satisfying 𝐷

𝑙
(V
0
) −

𝐷
𝑙
(V
𝑡
) ≤ 0, then 𝐵

𝑒𝑡
≤ 0 and 𝐷

𝑙
(V
0
) − 𝐷

𝑙
(V) ≤ 0 for each

V ∈ 𝑉󸀠󸀠
𝑒𝑡
, where 𝑒

𝑡
denotes the edge of the path 𝑃(V

0
, V
𝑡
) incident

with vertex V
𝑡
.

Proof. By contradiction. If 𝐵
𝑒𝑡
> 0, then from (9) we have

𝐵
𝑒
> 0 for each edge 𝑒 ∈ 𝑃(V

0
, V
𝑡
). By (2), 𝐷

𝑙
(V
0
) − 𝐷
𝑙
(V
𝑡
) =

∑
𝑒∈𝑃(V0 ,V𝑡)

𝐵
𝑒
𝑙
𝑒
> 0, which contradicts the fact that 𝐷

𝑙
(V
0
) −

𝐷
𝑙
(V
𝑡
) ≤ 0. So 𝐵

𝑒𝑡
≤ 0. As 𝐵

𝑒
≤ 𝐵
𝑒𝑡
≤ 0, for each 𝑒 ∈ 𝑃(V

𝑡
, V)

and V ∈ 𝑉󸀠󸀠
𝑒𝑡
, by (8), we can deduce that 𝐷

𝑙
(V
0
) − 𝐷

𝑙
(V) =

𝐷
𝑙
(V
0
) −𝐷
𝑙
(V
𝑡
) +∑
𝑒∈𝑃(V𝑡 ,V)

𝐵
𝑒
𝑙
𝑒
≤ 0. This completes the proof.

Based on the above properties, we will present some algo-
rithms of the problem under different norms and analyses
their complexities in the next section.

3. Algorithms and Complexities

3.1. The Problem with Variable Nonnegative Edge Lengths
(I1MT-N). In this section, we consider the following prob-
lem:

I1MT-N. When 𝑙
𝑒
= 0 for each 𝑒 ∈ 𝐸, we call

(4) Problem I1MT-N, which is the inverse 1-median
problem on trees with variable nonnegative edge
lengths.

Denote the optimal solution of Problem I1MT-N by 𝑙∗.
We present Algorithm 2 to solve this problem. particulary,
Algorithm 2 can solve Problem I1MT-N under all kinds of
norms only by edge length reduction.

Algorithm 2.

Step 1. Let 𝐸 = 0, 𝑉 = {V
0
}.

Step 2. Let 𝐸󸀠 = {𝑒󸀠 | 𝑒󸀠 = (V, V) ∈ 𝐸 \ 𝐸, V ∈ 𝑉 \𝑉, V ∈ 𝑉}.
For each 𝑒󸀠 ∈ 𝐸󸀠,

(1) if 𝐵
𝑒
󸀠 > 0, then let 𝑙∗

𝑒
󸀠 = 0 and 𝐸 = 𝐸 ∪ {𝑒󸀠};

(2) if 𝐵
𝑒
󸀠 ≤ 0, then for each 𝑒 ∈ {𝑒󸀠} ∪ 𝐸󸀠󸀠

𝑒
󸀠 , let 𝑙∗𝑒 = 𝑙𝑒 and

𝐸 = 𝐸 ∪ {𝑒
󸀠
} ∪ 𝐸
󸀠󸀠

𝑒
󸀠 .

Step 3. Let 𝑉 = {V | (V, V) = 𝑒󸀠 ∈ 𝐸󸀠, V ∈ 𝑉 and 𝐵
𝑒
󸀠 > 0}. If

𝐸 = 𝐸, stop. Otherwise, turn to Step 2.

Theorem 3. Algorithm 2 correctly finds the optimal solution
𝑙
∗of Problem I1MT-N in linear time.

Proof. First, we show that 𝑙∗obtained by Algorithm 2 is a
feasible solution of Problem I1MT-N. It is clear that 𝑙∗

𝑒
= 0

or 𝑙∗
𝑒
= 𝑙
𝑒
; so it satisfies 𝑙∗

𝑒
≥ 0 for each 𝑒 ∈ 𝐸. For each vertex

V ∈ 𝑉 \ {V
0
} and 𝑒 ∈ 𝑃(V

0
, V), from Step 2 of Algorithm 2,

when 𝐵
𝑒
> 0, 𝑙∗
𝑒
= 0; and when 𝑙∗

𝑒
= 𝑙
𝑒
> 0, 𝐵

𝑒
≤ 0. Hence,

∑
𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑙
∗

𝑒
≤ 0 for each V ∈ 𝑉 \ {V

0
}. Therefore, 𝑙∗ is a

feasible solution of Problem I1MT-N.

Suppose 𝑙∗ is not the optimal solution of Problem I1MT-N
and suppose that the optimal solution is 𝑙󸀠.Thenunder 𝑙󸀠 there
exists at least one edge 𝑒 ∈ 𝐸 satisfying one of the following
two cases:

Case 1 (𝐵
𝑒
> 0 and 𝑙󸀠

𝑒
> 0). Without loss of generality, sup-

pose 𝑒 = (V
𝑖−1
, V
𝑖
) ∈ 𝑃(V

0
, V
𝑖
) = V
0
, 𝑒
1
, V
1
, 𝑒
2
, V
2
, . . . , V

𝑖−1
, 𝑒
𝑖
, V
𝑖
.

By (9), 𝐵
𝑒𝑗
≥ 𝐵
𝑒
> 0 for 𝑗 = 1, . . . , 𝑖 − 1. Notice that 𝑙󸀠

𝑒
≥ 0

for each 𝑒 ∈ 𝐸. We have∑𝑖
𝑗=1
𝐵
𝑒𝑗
𝑙
󸀠

𝑒𝑗
> 0, which contradicts the

feasibility of 𝑙󸀠.

Case 2 (𝐵
𝑒
≤ 0 and 𝑙󸀠

𝑒
≥ 0, 𝑙

󸀠

𝑒
̸= 𝑙
𝑒
). We define a new vector

𝑙
󸀠󸀠
∈ 𝑅
𝐸 such that

𝑙
󸀠󸀠

𝑒
= {

𝑙
𝑒
, if 𝑒 = 𝑒,
𝑙
󸀠

𝑒
, otherwise.

(10)

From the result of Case 1, we know thatwhen𝐵
𝑒
> 0, 𝑙󸀠󸀠
𝑒
= 𝑙
󸀠

𝑒
=

0. And it is easy to see that 𝑙󸀠󸀠
𝑒
≥ 0 for each 𝑒 ∈ 𝐸.Then,we have

∑
𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑙
󸀠󸀠

𝑒
= ∑
𝑒∈𝑃(V0 ,V),𝐵𝑒≤0

𝐵
𝑒
𝑙
󸀠󸀠

𝑒
≤ 0 for each vertex V ∈ 𝑉.

So 𝑙󸀠󸀠is a feasible solution of Problem I1MT-N. But𝐶(|𝑙−𝑙󸀠󸀠|) <
𝐶(|𝑙 − 𝑙

󸀠
|), a contradiction to the optimality assumption of 𝑙󸀠.

Therefore, Algorithm 2 correctly finds the optimal solu-
tion 𝑙∗of Problem I1MT-N.
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The main computation of Algorithm 2 is to compute 𝐵
𝑒

for each edge 𝑒 ∈ 𝐸, then to modify the corresponding edge
length of 𝑒 according to 𝐵

𝑒
from Step 2. Notice that

𝐵
𝑒
= ∑

V∈𝑉󸀠󸀠
𝑒

𝑤V − ∑

V∈𝑉󸀠
𝑒

𝑤V

= 2 ∑

V∈𝑉󸀠󸀠
𝑒

𝑤V − ∑

V∈𝑉

𝑤V,

(11)

where ∑V∈𝑉𝑤V is a constant. Let V
0
be the root vertex and

conduct the breadth-first method to 𝑇. We can compute 𝐵
𝑒

iteratively from the edges incident with the leaves at the
bottom layer up to V

0
in the rooted tree. So Problem I1MT-

N can be solved in 𝑂(|𝐸|) time by using Algorithm 2.
From Algorithm 2, we know that for Problem I1MT-N

it is not necessary to increase the edge lengths of the tree
network. So to solve Problem I1MT-N is equivalent to solving
the following program:

min 𝐶 (𝑙 − 𝑥)

s.t. ∑

𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀ V ∈ 𝑉 \ {V

0
} ,

0 ≤ 𝑥
𝑒
≤ 𝑙
𝑒
, 𝑒 ∈ 𝐸.

(12)

3.2. The Problem with Variable Real Edge Lengths

3.2.1. The Model Under 𝑙
1
Norm with Variable Real Edge

Lengths (I1MT-R-𝑙
1
). In this section, we consider the fol-

lowing inverse 1-median problem on trees with variable real
edge lengths under 𝑙

1
norm when edge length increase is

forbidden.

I1MT-R-𝑙
1
. When 𝑙

𝑒
< 0 for each 𝑒 ∈ 𝐸 and the

criterion function 𝐶(𝑎) : 𝑅𝐸 → 𝑅 is a function
such that 𝐶(𝑎) = 𝑐𝑎, where 𝑐 is the cost vector and
𝑐
𝑒
> 0 is the cost of decreasing 𝑙

𝑒
by one unit for each

𝑒 ∈ 𝐸, we call (4) Problem I1MT-R-𝑙
1
, which is the

inverse 1-median problem on trees with variable real
edge lengths under 𝑙

1
norm.

Problem I1MT-R-𝑙
1
can be formally described as follows:

min ∑

𝑒∈𝐸

𝑐
𝑒
(𝑙
𝑒
− 𝑥
𝑒
)

s.t. ∑

𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀ V ∈ 𝑉 \ {V

0
} ,

𝑙
𝑒
≤ 𝑥
𝑒
≤ 𝑙
𝑒
, 𝑒 ∈ 𝐸.

(13)

For a path 𝑃(V
0
, V
𝑟
) = V

0
, 𝑒
1
, V
1
, 𝑒
2
, V
2
, . . . , V

𝑟−1
, 𝑒
𝑟
, V
𝑟
,

suppose that 𝐵
𝑒𝑖−1
> 0 and 𝐵

𝑒𝑖
≤ 0, where 2 ≤ 𝑖 ≤ 𝑟. Denote

the optimal solution of Problem I1MT-R-𝑙
1
by 𝑙opt. We have

the following.

Theorem 4. 𝑙opt
𝑒𝑗
= 𝑙
𝑒𝑗
for 𝑗 = 𝑖, 𝑖 + 1, . . . , 𝑟.

Proof. By (9), clearly 𝐵
𝑒𝑗
> 0 for 𝑗 = 1, 2, . . . , 𝑖 − 1 and 𝐵

𝑒𝑖
≤ 0

for 𝑗 = 𝑖, 𝑖 + 1, . . . , 𝑟. Suppose to the contrary that there exists
an edge 𝑒

𝑘
∈ 𝑃(V

𝑖−1
, V
𝑟
) such that 𝑙

𝑒𝑘
≤ 𝑙

opt
𝑒𝑘
< 𝑙
𝑒𝑘
. Similar to

the proof of Case 2 in Theorem 3, we define a new feasible
solution 𝑙󸀠󸀠 such that 𝑙󸀠󸀠

𝑒𝑘
= 𝑙
𝑒𝑘
and 𝑙󸀠󸀠
𝑒𝑗
= 𝑙

opt
𝑒𝑗

when 𝑗 ̸= 𝑘. Then
we have ∑

𝑒∈𝑃(V0 ,V)
𝐵
𝑒
𝑙
󸀠󸀠

𝑒
≤ ∑
𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑙
opt
𝑒
≤ 0 for each vertex

V ∈ 𝑉. But 𝑐
𝑒
(𝑙
𝑒
− 𝑙
󸀠󸀠

𝑒
) < 𝑐
𝑒
(𝑙
𝑒
− 𝑙

opt
𝑒
), and therefore 𝑐(𝑙 − 𝑙󸀠󸀠) <

𝑐(𝑙 − 𝑙
opt
), a contradiction to the fact that 𝑙opt is the optimal

solution of Problem I1MT-R-𝑙
1
.This completes the proof.

FromTheorem 4, we only need to determine the optimal
adjusted edge lengths 𝑙opt

𝑒
with 𝐵

𝑒
> 0. We construct the

subtree 𝑇𝑆 = (𝑉𝑆, 𝐸𝑆) of 𝑇 with 𝐸𝑆 = {𝑒 | 𝐵
𝑒
> 0, 𝑒 ∈ 𝐸},

𝑇
𝑆
= 𝑇[𝐸

𝑆
], and 𝑉𝑆 = 𝑉(𝑇𝑆). Clearly, V

0
∈ 𝑉
𝑆. Regard 𝑇𝑆

as a directed tree with the orientation from the root V
0
to

all leaves (e.g., by conducting the breadth-first method). For
each V ∈ 𝑉𝑆, let 𝑃(V) denote the path from V

0
to V on the tree

𝑇
𝑆. We can simplify (13) as

min ∑

𝑒∈𝐸
𝑆

𝑐
𝑒
(𝑙
𝑒
− 𝑥
𝑒
)

s.t. ∑

𝑒∈𝑃(V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀V ∈ 𝑉

𝑆
\ {V
0
} ,

𝑙
𝑒
≤ 𝑥
𝑒
≤ 𝑙
𝑒
, ∀𝑒 ∈ 𝐸

𝑆
.

(14)

In [16, 17], the authors considered the shortest path
improvement problem, which is how to shorten the lengths
of edges with as less cost as possible such that the distances
between specified sources and terminals are reduced to the
required bounds. It is not difficult to see that (14) is in fact a
shortest path improvement problem for tree networks with
single source V

0
and the required bound 0 under 𝑙

1
norm.

Let 𝜃
𝑒
= 𝐵
𝑒
(𝑙
𝑒
− 𝑥
𝑒
) ≥ 0, 𝑏

𝑒
= 𝐵
𝑒
(𝑙
𝑒
− 𝑙
𝑒
) > 0, and

𝑝
𝑒
= 𝑐
𝑒
/𝐵
𝑒
> 0 for each 𝑒 ∈ 𝐸𝑆. Let 𝑟V = ∑𝑒∈𝑃(V) 𝐵𝑒𝑙𝑒 > 0 for

each V ∈ 𝑉𝑆. Equation (14) can be formulated as the following
linear program:

min ∑

𝑒∈𝐸
𝑆

𝑝
𝑒
𝜃
𝑒

s.t. ∑

𝑒∈𝑃(V)

𝜃
𝑒
≥ 𝑟V, ∀V ∈ 𝑉

𝑆
\ {V
0
} ,

0 ≤ 𝜃
𝑒
≤ 𝑏
𝑒
, ∀𝑒 ∈ 𝐸

𝑆
.

(15)

Equation (15) is a combinatorial linear program and can
be solved by a strongly polynomial time algorithm [18].
Moreover, (15) can be solved much faster [16, 17]. In [16],
the authors presented a steepest descent-type combinatorial
algorithm to solve this problem, which runs in 𝑂(|𝑉|2) time.
In [17], the authors formulated the dual problem of (15)
as a minimum cost flow problem on a two-terminal serial-
parallel graph and then gave an algorithm to obtain the
primal optimal solution of (15), with the whole procedure
running in 𝑂(|𝑉| log |𝑉|) time.
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From the above analysis, we have the following theorem.

Theorem 5. Problem I1MT-R-𝐿
1

can be solved in
𝑂(|𝑉| log |𝑉|) time.

3.2.2. The Model under Hamming Distance with Variable Real
Edge Lengths (I1MT-R-H). Nowwe consider themodel under
Hamming distance.The definition of Hamming distance will
be given in this section.

I1MT-R-H. When 𝑙
𝑒
< 0 for each 𝑒 ∈ 𝐸 and 𝑐

𝑒
> 0

is the cost of decreasing 𝑙
𝑒
for each 𝑒 ∈ 𝐸, we call the

following program (16) Problem I1MT-R-H, which is
the inverse 1-median problem on trees with variable
real edge lengths under Hamming distance:

min ∑

𝑒∈𝐸

𝑐
𝑒
𝐻(𝑥
𝑒
, 𝑙
𝑒
)

s.t. ∑

𝑒∈𝑃(V0 ,V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀ V ∈ 𝑉 \ {V

0
} ,

𝑙
𝑒
≤ 𝑥
𝑒
≤ 𝑙
𝑒
, 𝑒 ∈ 𝐸,

(16)

where the Hamming distance𝐻(𝑥
𝑒
, 𝑙
𝑒
) is defined as

𝐻(𝑥
𝑒
, 𝑙
𝑒
) = {

0, 𝑥
𝑒
= 𝑙
𝑒
,

1, 𝑥
𝑒
̸= 𝑙
𝑒
.

(17)

From a similar discussion in the former Section 3.2.1,
Problem I1MT-R-H can be formulated as follows:

min ∑

𝑒∈𝐸
𝑆

𝑐
𝑒
𝐻(𝑥
𝑒
, 𝑙
𝑒
)

s.t. ∑

𝑒∈𝑃(V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀V ∈ 𝑉

𝑆
\ {V
0
} ,

𝑙
𝑒
≤ 𝑥
𝑒
≤ 𝑙
𝑒
, ∀𝑒 ∈ 𝐸

𝑆
.

(18)

Equation (18) is a shortest path improvement problem for
tree networks with single source V

0
and the required bound

0 under Hamming distance [19]. In [19], the authors proved
that even if the network is a chain network, the problem is
still NP-hard. So, we have the following.

Theorem 6. Problem I1MT-R-H is NP-hard.

3.2.3. The Model under 𝑙
∞

Norm with Variable Real Edge
Lengths (I1MT-R-𝑙

∞
). Weconsider themodel under 𝑙

∞
norm

as follows:

I1MT-R-𝑙
∞
. When 𝑙

𝑒
< 0 for each 𝑒 ∈ 𝐸 and the

criterion function 𝐶(𝑎) : 𝑅𝐸 → 𝑅 is a function
such that 𝐶(𝑎) = ||𝑐𝑎||

∞
, where 𝑐 is the cost vector,

𝑐
𝑒
> 0 is the cost of decreasing 𝑙

𝑒
by one unit for each

𝑒 ∈ 𝐸, and ‖𝑢‖
∞
= max

𝑒∈𝐸
|𝑢
𝑒
| stands for 𝑙

∞
norm of

vector 𝑢, we call (4) Problem I1MT-R-𝑙
∞
, which is the

inverse 1-median problem on trees with variable real
edge lengths under 𝑙

∞
norm.

Also from a similar discussion in Section 3.2.1, Problem
I1MT-R-𝑙

∞
can be formally described as follows:

min max
𝑒∈𝐸
𝑆

𝑐
𝑒
(𝑙
𝑒
− 𝑥
𝑒
)

s.t. ∑
𝑒∈𝑃(V)

𝐵
𝑒
𝑥
𝑒
≤ 0, ∀V ∈ 𝑉

𝑆
\ {V
0
} ,

𝑙
𝑒
≤ 𝑥
𝑒
≤ 𝑙
𝑒
, ∀𝑒 ∈ 𝐸

𝑆
.

(19)

Let 𝑡󸀠
𝑒
= 𝐵
𝑒
(𝑥
𝑒
− 𝑙
𝑒
), 𝑡
𝑒
= 𝐵
𝑒
(𝑙
𝑒
− 𝑙
𝑒
), ℎ
𝑒
= 𝑐
𝑒
/Be, 𝐿𝑦(𝑃(V)) =

∑
𝑒∈𝑃(V) 𝑦𝑒, and 𝑈(V) = −∑

𝑒∈𝑃(V) 𝐵𝑒𝑙 𝑒 for each 𝑒 ∈ 𝐸
𝑆 and

V ∈ 𝑉𝑆 \ {V
0
}. First, we suppose that ℎe = 1 for each 𝑒 ∈ 𝐸

𝑆.
Equation (19) can be formulated as the following program:

min max
𝑒∈𝐸
𝑆

(𝑡
𝑒
− 𝑡
󸀠

𝑒
)

s.t. 𝐿
𝑡
󸀠 (𝑃 (V)) ≤ 𝑈 (V) , ∀V ∈ 𝑉

𝑆
\ {V
0
} ,

0 ≤ 𝑡
󸀠

𝑒
≤ 𝑡
𝑒
, ∀𝑒 ∈ 𝐸

𝑆
.

(20)

In [20], the authors presented a strongly polynomial time
algorithm to solve this type of problem,which runs in𝑂(|𝑉|3)
time. Because the network concerned here is tree network, we
now give a simplified procedure to solve (20) which runs in
𝑂(|𝑉|

2
) time.

On tree 𝑇𝑆, if max{𝐿
𝑡
(𝑃(V)) − 𝑈(V) | V ∈ 𝑉𝑆 \ {V

0
}} ≤ 0,

we need do nothing. Hence, we only consider the case that
max{𝐿

𝑡
(𝑃(V)) −𝑈(V) | V ∈ 𝑉𝑆 \ {V

0
}} > 0. Clearly, the optimal

solution 𝑡∗ satisfies max{𝐿
𝑡
∗(𝑃(V))−𝑈(V) | V ∈ 𝑉𝑆 \ {V

0
}} = 0.

Denote 𝜃∗ = ‖𝑡 − 𝑡∗‖
∞
, then for any edge 𝑒 ∈ 𝐸𝑆, we have

𝑡
∗

𝑒
= max{𝑡

𝑒
− 𝜃
∗
, 0}.

As the procedure in [20], first we sort the edges by their
lengths in an increasing order. Beginning with the shortest
edge, say 𝑒󸀠, set 𝑡󸀠

𝑒
= 𝑡
𝑒
− 𝑡
𝑒
󸀠 for each 𝑒 ∈ 𝐸

𝑆, and check
if max{𝐿

𝑡
󸀠(𝑃(V)) − 𝑈(V) | V ∈ 𝑉

𝑆
\ {V
0
}} < 0. If yes,

we know that the lengths are overreduced and 𝜃∗ < 𝑡
𝑒
󸀠 . If

max{𝐿
𝑡
󸀠(𝑃(V)) − 𝑈(V) | V ∈ 𝑉𝑆 \ {V

0
}} = 0, 𝑡∗ = 𝑡󸀠 is the

optimal solution. If max{𝐿
𝑡
󸀠(𝑃(V))−𝑈(V) | V ∈ 𝑉𝑆 \ {V

0
}} > 0,

then 𝜃∗ > 𝑡
𝑒
󸀠 , and in this case we contract the edges 𝑒 with

𝑡
󸀠

𝑒
= 0 into vertices and repeat the process on the resulted

networkwith respect to 𝑡󸀠. Since at least one vertex disappears
in each contraction, the procedure has at most |𝑉| iterations.
For the time complexity, to find the shortest edge 𝑒󸀠 can be
completed in 𝑂(|𝐸|) time, and in each iteration, the time for
checking if max{𝐿

𝑡
󸀠(𝑃(V)) − 𝑈(V) | V ∈ 𝑉𝑆 \ {V

0
}} < 0 is

𝑂(|𝑉|). Hence, the complexity of this procedure is 𝑂(|𝑉|2).
In the following, we assume that 𝜃∗ < 𝑡

𝑒
󸀠 , which means that

the preliminary procedure is finishedwhile the optimality has
not been reached.

Because the path between any two vertices on tree
network is unique, let𝑄 denotes the set of vertices which does
not satisfy the upper bound demand. Let |𝑃| be the number
of edges of path 𝑃. Let

𝜃 = max{
𝐿
𝑡
(𝑃 (V)) − 𝑈 (V)

|𝑃 (V)|
| V ∈ 𝑄} , (21)

then 𝜃∗ = 𝜃 is the optimal reduction.
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Remark 7. Note that when ℎ
𝑒
̸= 1 for each 𝑒 ∈ 𝐸𝑆, (20) can be

formulated as the following program:

min max
𝑒∈𝐸
𝑆

ℎe (𝑡𝑒 − 𝑡
󸀠

𝑒
)

s.t. 𝐿
𝑡
󸀠 (𝑃 (V)) ≤ 𝑈 (V) , ∀V ∈ 𝑉

𝑆
\ {V
0
} ,

0 ≤ 𝑡
󸀠

𝑒
≤ 𝑡
𝑒
, ∀𝑒 ∈ 𝐸

𝑆
.

(22)

In this case, we denote 𝜃∗ = ‖ℎ(𝑡 − 𝑡∗)‖
∞
; then for any

edge 𝑒 ∈ 𝐸𝑆, we have 𝑡∗
𝑒
= max{𝑡

𝑒
− 𝜃
∗
/ℎ
𝑒
, 0}. We sort the

edges by 𝑡
𝑒
ℎ
𝑒
(𝑒 ∈ 𝐸

𝑆
) in an increasing order to conduct the

preliminary procedure to ensure that 𝜃∗ < 𝑡
𝑒
󸀠ℎ
𝑒
󸀠 , where 𝑒󸀠 is

the edge satisfying 𝑡
𝑒
󸀠ℎ
𝑒
󸀠 = min{𝑡

𝑒
ℎ
𝑒
| 𝑒 ∈ 𝐸

𝑆
}. Let

𝜃 = max{
𝐿
𝑡
(𝑃 (V)) − 𝑈 (V)

∑
𝑒∈𝑃(V) 1/ℎ𝑒

| V ∈ 𝑄} , (23)

then 𝜃∗ = 𝜃 is the optimal reduction. Similar discussions
show that the above procedure correctly solves program (22),
and its computational complexity is 𝑂(|𝑉|2).

From the above analysis, we have the following theorem.

Theorem 8. Problem I1MT-R-𝑙
∞

can be solved in 𝑂(|𝑉|2)
time.

4. Conclusion

In this paper, we discussed the inverse 1-median problem
with variable edge lengths on tree networks. We showed
that this problem is solvable in linear time with variable
nonnegative edge lengths under all kinds of norms. For the
casewhen negative edge lengths are allowable, by formulating
this problem to some known combinatorial optimization
problems, we showed that this problem is NP-hard under
Hamming distance and we proposed strongly polynomial
time algorithms under 𝑙

1
and 𝑙
∞

norms, respectively.
As a future research topic, it will be meaningful to

consider the problem on other networks such as the interval
graph, the cactus graph, and the block graph, especially
under the Hamming distance. We know that Algorithm 2
can solve Problem I1MT-N under all kinds of norms. But
when negative edge lengths are allowable, we only dealt
with the problems under the constraint that the edge length
increase is forbidden. So we can further study the complexity
of the problems such that the edge lengths can either be
reduced or increased. In addition, for the inverse 𝑝-median
problems for 𝑝 ≥ 2, designing the optimal or approximation
algorithms and analysing their computational complexities
are also promising.
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