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We study strong list edge coloring of subcubic graphs, and we prove that every subcubic graph with maximum average degree less
than 15/7, 27/11, 13/5, and 36/13 can be strongly list edge colored with six, seven, eight, and nine colors, respectively.

1. Introduction

All graphs in this paper are finite and simple. For a graph 𝐺

with vertex set𝑉(𝐺) and edge set𝐸(𝐺), a proper edge coloring
of𝐺 is an assignment of colors to the edges of𝐺 so that no two
adjacent edges receive the same color. A strong edge coloring
is a proper edge coloring so that two edges adjacent to a
common edge receive different colors. The strong chromatic
index of 𝐺, denoted by 𝜒

󸀠

𝑠
(𝐺), is the minimum number of

colors needed for a strong edge coloring of 𝐺.
Strong edge coloring was introduced by Fouquet and

Jolivet [1, 2]. This type of coloring can be used to represent
the conflict-free channel assignment in radio networks.

Denote by Δ the maximum degree of the graph. In 1985,
Erdös and Ne ̆set ̆ril conjectured that the strong chromatic
index of a graph is at most (5/4)Δ2 when Δ is even and
(1/4)(5Δ

2
− 2Δ + 1) when Δ is odd. Andersen proved the

conjecture for Δ = 3 [3]. Strong edge coloring of cubic Halin
graphs has been studied in [4, 5].

Let mad (𝐺) = max
𝐻⊆𝐺,|𝑉(𝐻)|≥1

(2|𝐸(𝐻)|/|𝑉(𝐻)|) be the
maximum average degree of the graph 𝐺. Hocquard and
Valicov [6] considered the subcubic graphs with bounded
maximum average degree, and they proved the following
results.

Theorem 1. Let 𝐺 be a subcubic graph.

(i) If mad (𝐺) < 15/7, then 𝜒
󸀠

𝑠
(𝐺) ≤ 6.

(ii) If mad (𝐺) < 27/11, then 𝜒
󸀠

𝑠
(𝐺) ≤ 7.

(iii) If mad (𝐺) < 13/5, then 𝜒
󸀠

𝑠
(𝐺) ≤ 8.

(iv) If mad (𝐺) < 36/13, then 𝜒
󸀠

𝑠
(𝐺) ≤ 9.

Themain purpose of this paper is to generalize the study
of list version so that the admissible colors on edges are
constrained. An edge list 𝐿 of a graph 𝐺 is a mapping that
assigns a finite set to each edge of 𝐺. Denote 𝐿 = {𝐿(𝑒) : 𝑒 ∈

𝐸(𝐺)}. We say that 𝐿 is a 𝑘-edge list if |𝐿(𝑒)| ≥ 𝑘 for each edge
𝑒 in𝐺. The graph𝐺 is strongly 𝐿-edge colorable if there exists
a strong edge coloring 𝑐 of 𝐺 such that 𝑐(𝑒) ∈ 𝐿(𝑒) for every
edge 𝑒 of 𝐺. For a positive integer 𝑘, a graph 𝐺 is strongly
𝑘-edge choosable if for every 𝑘-edge list 𝐿, 𝐺 is strongly 𝐿-
edge colorable. The strong list chromatic index 𝜒

󸀠

𝑙𝑠
(𝐺) is the

minimum positive integer 𝑘 for which 𝐺 is strongly 𝑘-edge
choosable.

In this paper, we consider strong list edge coloring of
subcubic graphs and extendTheorem 1 to the list version. We
prove the following theorem.

Theorem 2. Let 𝐺 be a subcubic graph.

(i) If mad (𝐺) < 15/7, then 𝜒
󸀠

𝑙𝑠
(𝐺) ≤ 6.

(ii) If mad (𝐺) < 27/11, then 𝜒
󸀠

𝑙𝑠
(𝐺) ≤ 7.

(iii) If mad (𝐺) < 13/5, then 𝜒
󸀠

𝑙𝑠
(𝐺) ≤ 8.

(iv) If mad (𝐺) < 36/13, then 𝜒
󸀠

𝑙𝑠
(𝐺) ≤ 9.

The paper is organized as follows. In Section 2, we will
prove two lemmas which will be applied a lot in the proof of
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Theorem 2. Theorem 2 will be proved in Sections 3, 4, 5, and
6.

Before proceeding we introduce some notations and
definitions. The degree of a vertex V in a graph is denoted by
𝑑(V). A vertex of degree 𝑘 is called a 𝑘-vertex. A 𝑘-neighbor of
V is a 𝑘-vertex adjacent to V.𝑁(V) is the set of the neighbors of
V. A 𝑡-thread of 𝐺 is a path 𝑃

𝑡
= 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑡
with 𝑑(𝑥

𝑖
) = 2 for

𝑖 = 1, 2, . . . , 𝑡. Two edges are at distance atmost 2 if either they
are adjacent or they are adjacent to a common edge. Denote
by𝑁
2
(𝑒) the set of edges at distance at most 2 from the edge 𝑒.

Define LSC(𝑁
2
(𝑒)) as the set of colors used by edges in𝑁

2
(𝑒).

Denote 𝐿󸀠(𝑒) = 𝐿(𝑒) \ LSC(𝑁
2
(𝑒)).

2. Lemmas

Lemma 3. Let 𝐺 be the graph obtained from a path 𝑥
1
𝑥
2

𝑥
3
𝑥
4
𝑥
5
by adding two vertices 𝑢, V so that 𝑢 is adjacent to 𝑥

3

and V is adjacent to𝑥
4
. Let 𝐿 be an edge list of𝐺. If |𝐿(𝑥

𝑖
𝑥
𝑖+1

)| ≥

3 for 𝑖 = 1, 2, 3, |𝐿(𝑥
4
𝑥
5
)| ≥ 2, |𝐿(𝑥

3
𝑢)| ≥ 5, and |𝐿(𝑥

4
V)| ≥ 4,

then 𝐺 has a strong 𝐿-edge coloring.

Proof. If there is a color 𝑎 ∈ 𝐿(𝑥
1
𝑥
2
) ∩ 𝐿(𝑥

4
𝑥
5
), then we first

color the edges 𝑥
1
𝑥
2
and 𝑥

4
𝑥
5
with the color 𝑎. So we can

further color the rest of edges with the available colors in the
order of 𝑥

2
𝑥
3
, 𝑥
3
𝑥
4
, 𝑥
4
V, and 𝑥

3
𝑢.

Now we assume that 𝐿(𝑥
1
𝑥
2
) ∩ 𝐿(𝑥

4
𝑥
5
) = 0. Denote

𝐿(𝑥
1
𝑥
2
) = {𝑎, 𝑏, 𝑐} and 𝐿(𝑥

4
𝑥
5
) = {𝑑, 𝑒}. If there is a color 𝑡 ∈

𝐿(𝑥
2
𝑥
3
)\{𝑎, 𝑏, 𝑐}, we first color the edge 𝑥

2
𝑥
3
with the color 𝑡.

Then after coloring all the other edges, the edge 𝑥
1
𝑥
2
still has

one color available. Therefore, we can color the edges with
an available color in the order of 𝑥

4
𝑥
5
, 𝑥
3
𝑥
4
, 𝑥
4
V, and 𝑥

3
𝑢.

Thus we can further assume 𝐿(𝑥
2
𝑥
3
) = {𝑎, 𝑏, 𝑐}. Similarly, we

can also assume that 𝐿(𝑥
3
𝑥
4
) = {𝑎, 𝑏, 𝑐}. If there is a color

𝑠 ∈ {𝑎, 𝑏, 𝑐} ∩ 𝐿(𝑥
4
V), then we first color the edges 𝑥

1
𝑥
2
and

𝑥
4
V with the color 𝑠. So we can further color the rest of edges

with the available colors in the order of 𝑥
2
𝑥
3
, 𝑥
3
𝑥
4
, 𝑥
3
𝑢, and

𝑥
4
𝑥
5
. Therefore we can assume that {𝑎, 𝑏, 𝑐} ∩ 𝐿(𝑥

4
V) = 0. We

first color the edges𝑥
1
𝑥
2
,𝑥
2
𝑥
3
,𝑥
3
𝑥
4
, and𝑥

4
𝑥
5
with the colors

𝑎, 𝑏, 𝑐, and 𝑑, respectively. Then |𝐿
󸀠
(𝑥
3
𝑢)| ≥ 1, |𝐿󸀠(𝑥

4
V)| ≥ 3,

and thus we can further color the edges 𝑥
3
𝑢 and 𝑥

4
V. This

completes the proof of the lemma.

Lemma 4. Let 𝑃 = 𝑥𝑦𝑧𝑢V be a path and 𝐿 an edge list so that
|𝐿(𝑒)| ≥ 2 if 𝑒 ∈ {𝑥𝑦, 𝑧𝑢, 𝑢V} and |𝐿(𝑦𝑧)| ≥ 3. Then 𝑃 has a
strong 𝐿-edge coloring.

Proof. We only need to prove the lemma when each |𝐿(𝑒)| is
equal to its lower bound. If there is a color 𝑎 ∈ 𝐿(𝑥𝑦) ∩ 𝐿(𝑢V),
we color both 𝑥𝑦 and 𝑢V with 𝑎. Then |𝐿

󸀠
(𝑧𝑢)| ≥ 1 and

|𝐿
󸀠
(𝑦𝑧)| ≥ 2, so we can further color the edges 𝑧𝑢 and

𝑦𝑧.
Now assume that 𝐿(𝑥𝑦) ∩ 𝐿(𝑢V) = 0. Denote 𝐿(𝑥𝑦) =

{𝑎, 𝑏} and 𝐿(𝑢V) = {𝑐, 𝑑}. If 𝑎 ∈ 𝐿(𝑧𝑢), we first color 𝑧𝑢
with 𝑎 and the edge 𝑥𝑦 with 𝑏 and then color the edge 𝑦𝑧

with an available color. Since 𝑎, 𝑏 ∉ 𝐿(𝑢V), there is still one
color available for the edge 𝑢V. Thus 𝑃 has a strong 𝐿-edge
coloring. Similarly we can obtain a strong 𝐿-edge coloring
of 𝑃 if 𝐿(𝑧𝑢) ∩ 𝐿(𝑢V) ̸= 0. Now we further assume 𝐿(𝑧𝑢) ∩

[𝐿(𝑥𝑦) ∪ 𝐿(𝑢V)] = 0. That is, 𝐿(𝑥𝑦), 𝐿(𝑧𝑢), and 𝐿(𝑢V) are
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Figure 1: The configuration of Claim 4(1).

mutually disjoint, and it is easy to see that 𝑃 has a strong 𝐿-
edge coloring.

3. Proof of (i) of Theorem 2

Let 𝐻 be a counterexample with |𝐸(𝐻)| as small as possible.
Then there exists a 6-edge list 𝐿 such that 𝐻 is not strongly
𝐿-edge colorable. We can assume that𝐻 is connected; other-
wise, we can color independently each connected component.
A 3-vertex is bad if it is adjacent to a 1-vertex; otherwise it is
good.

Claim 1. A 1-vertex is adjacent to a 3-vertex in 𝐻 and each
bad 3-vertex is adjacent to two 3-vertices.

Proof. Let 𝑢 be a 1-vertex and V its neighbor. Since 𝐻 is a
minimum counterexample, 𝐻 \ {𝑢V} has a strong 𝐿-edge
coloring. If 𝑑(V) = 2 or V is adjacent to only one 3-vertex, we
have |𝐿󸀠(𝑢V)| ≥ 1, and thus we can easily extend the coloring
to𝐻, a contradiction.

Claim 2. 𝐻 does not contain a 𝑡-thread with 𝑡 ≥ 3.

Proof. Suppose that𝐻 contains a 𝑡-thread 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑡
with 𝑡 ≥

3. Then 𝐻
󸀠
= 𝐻 \ {𝑥

1
𝑥
2
, 𝑥
2
𝑥
3
} has a strong 𝐿-edge coloring

by the minimality of 𝐻. It is easy to see that |𝐿󸀠(𝑥
1
𝑥
2
)| ≥ 2

and |𝐿
󸀠
(𝑥
2
𝑥
3
)| ≥ 2. Hence we can extend the coloring of 𝐻󸀠

to𝐻, a contradiction.

Claim 3. 𝐻 does not contain a path 𝑥
2
𝑥
3
𝑥
4
𝑥
5
such that 𝑥

2
,

𝑥
3
, 𝑥
4
, 𝑥
5
are all bad 3-vertices.

Proof. Suppose that 𝐻 contains such a path 𝑥
2
𝑥
3
𝑥
4
𝑥
5
. Let

𝑥
1
, 𝑢, V be the 1-neighbors of 𝑥

2
, 𝑥
3
, 𝑥
4
, respectively. By the

minimality of 𝐻, 𝐻 \ [{𝑥
𝑖
𝑥
𝑖+1

| 𝑖 = 1, . . . , 4} ∪ {𝑥
3
𝑢, 𝑥
4
V}]

has a strong 𝐿-edge coloring 𝑓. Since |𝐿(𝑒)| ≥ 6, we have
|𝐿
󸀠
(𝑥
𝑖
𝑥
𝑖+1

)| ≥ 3 for each 𝑖 = 1, 2, 3, |𝐿󸀠(𝑥
4
𝑥
5
)| ≥ 2, |𝐿󸀠(𝑥

3
𝑢)| ≥

5, and |𝐿
󸀠
(𝑥
4
V)| ≥ 4. By Lemma 3, we can further extend the

coloring to the rest of the edges of𝐻 to obtain a strong 𝐿-edge
coloring of𝐻, a contradiction.

Claim 4. 𝐻 does not contain the following three configura-
tions:

(1) a path 𝑥𝑢V𝑤𝑦𝑟𝑠𝑡𝑡
2
such that 𝑢, V,𝑤, 𝑟, 𝑠, and 𝑡 are bad

3-vertices, 𝑦 is a good vertex, and another neighbor 𝑧
of 𝑦 is a 2-vertex (see Figure 1),
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Figure 2: The configuration of Claim 4(2).
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(2) a path 𝑥𝑢V𝑤𝑦𝑟𝑠𝑡𝑡
2
such that 𝑢, V,𝑤, 𝑟, 𝑠, and 𝑡 are bad

3-vertices, 𝑦 is a good vertex, and another neighbor 𝑧
of 𝑦 is a bad 3-vertex (see Figure 2),

(3) a path 𝑥𝑢V𝑤𝑦𝑟𝑠 such that 𝑢, V, 𝑤, 𝑟, and 𝑠 are bad 3-
vertices, 𝑦 is a good vertex, and another neighbor 𝑧
of 𝑦 is a bad 3-vertex which is also adjacent to a bad
3-vertex (see Figure 3).

Proof. (1) Suppose that there exists a path 𝑥𝑢V𝑤𝑦𝑟𝑠𝑡𝑡
2
such

that 𝑢, V, 𝑤, 𝑟, 𝑠, and 𝑡 are bad 3-vertices, 𝑦 is a good vertex,
and 𝑦 is adjacent to a 2-vertex (see Figure 1). Denote𝑁(𝑢) =

{𝑥, 𝑢
1
, V}, 𝑁(V) = {𝑢, V

1
, 𝑤}, 𝑁(𝑤) = {V, 𝑤

1
, 𝑦}, 𝑁(𝑟) =

{𝑦, 𝑟
1
, 𝑠}, 𝑁(𝑠) = {𝑟, 𝑠

1
, 𝑡}, and 𝑁(𝑡) = {𝑠, 𝑡

1
, 𝑡
2
}, where 𝑢

1
,

V
1
, 𝑤
1
, 𝑟
1
, 𝑠
1
, 𝑡
1
are 1-vertices, and𝑁(𝑥) = {𝑢, 𝑥

1
, 𝑥
2
},𝑁(𝑦) =

{𝑤, 𝑟, 𝑧},𝑁(𝑧) = {𝑦, 𝑧
1
}, and𝑁(𝑡

2
) = {𝑡, 𝑡

3
, 𝑡
4
}.Then𝐻\{𝑢𝑢

1
,

𝑢V, VV
1
, V𝑤,𝑤𝑤

1
, 𝑤𝑦, 𝑦𝑧, 𝑦𝑟, 𝑟𝑟

1
, 𝑟𝑠, 𝑠𝑠

1
, 𝑠𝑡, 𝑡𝑡
1
} has a strong 𝐿-

edge coloring 𝐶 by the minimality of 𝐻. We are going to
extend the coloring 𝐶 to𝐻. For each uncolored edge 𝑒 in𝐻,
we use 𝐿󸀠(𝑒) to denote the set of colors available for 𝑒. Then
𝐿
󸀠
(𝑢𝑢
1
) = 𝐿(𝑢𝑢

1
) \ {𝐶(𝑥𝑢), 𝐶(𝑥𝑥

1
), 𝐶(𝑥𝑥

2
)} has at least three

colors because |𝐿(𝑒)| ≥ 6 for each edge 𝑒 in 𝐻. Similarly we
have the following:

(1) |𝐿󸀠(𝑒)| ≥ 3 if 𝑒 ∈ {𝑢𝑢
1
, 𝑢V, 𝑠𝑡, 𝑡𝑡

1
, 𝑦𝑧},

(2) |𝐿󸀠(𝑒)| ≥ 5 if 𝑒 ∈ {VV
1
, V𝑤,𝑤𝑦, 𝑦𝑟, 𝑟𝑠, 𝑠𝑠

1
},

(3) |𝐿󸀠(𝑒) ≥ 6 if 𝑒 ∈ {𝑤𝑤
1
, 𝑟𝑟
1
}.

By Lemma 3, we only need to

(i) either extend the coloring𝐶 to 𝑦𝑧, 𝑦𝑟, 𝑟𝑠, 𝑠𝑠
1
, 𝑠𝑡, 𝑡𝑡
1
so

that there are still two colors available for 𝑟𝑟
1
,

(ii) or extend the coloring 𝐶 to 𝑦𝑧, 𝑦𝑟, 𝑟𝑟
1
, 𝑟𝑠, 𝑠𝑠

1
, 𝑠𝑡, 𝑡𝑡
1

so that |{𝐶(𝑦𝑧), 𝐶(𝑦𝑟), 𝐶(𝑟𝑟
1
), 𝐶(𝑟𝑠)} ∩ [𝐿(𝑤𝑦) \

{𝐶(𝑧𝑧
1
)}]| ≤ 3.

If there is a color 𝑎 ∈ 𝐿
󸀠
(𝑦𝑧) ∩ 𝐿

󸀠
(𝑠𝑡), we color the edges

𝑦𝑧 and 𝑠𝑡 with the color 𝑎. Then we may further color the
edges 𝑡𝑡

1
, 𝑠𝑠
1
, 𝑟𝑠, and 𝑦𝑟. This gives a coloring in (i). Thus

𝐿
󸀠
(𝑦𝑧)∩𝐿

󸀠
(𝑠𝑡) = 0. Similarlywe can show𝐿

󸀠
(𝑦𝑧)∩𝐿

󸀠
(𝑠𝑠
1
) = 0.

Denote 𝐿󸀠(𝑦𝑧) = {𝑎, 𝑏, 𝑐}.
If 𝑎 ∉ 𝐿

󸀠
(𝑦𝑤), we first color the edge 𝑦𝑧 with the color 𝑎,

and then by Lemma 3, we can further extend 𝐶 to the edges
𝑦𝑧, 𝑦𝑟, 𝑟𝑟

1
, 𝑟𝑠, 𝑠𝑠

1
, 𝑠𝑡, and 𝑡𝑡

1
. Since the edge 𝑦𝑧 is colored

with 𝑎 not in 𝐿
󸀠
(𝑤𝑦), such extension satisfies (ii). Therefore

𝐿
󸀠
(𝑦𝑧) ⊆ 𝐿

󸀠
(𝑤𝑦). Similarly we can show that 𝐿󸀠(𝑤𝑦) =

𝐿
󸀠
(𝑦𝑟) = 𝐿

󸀠
(𝑟𝑠). Denote 𝐿󸀠(𝑤𝑦) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. We first color

the edges 𝑦𝑧, 𝑦𝑟, and 𝑟𝑠 with 𝑎, 𝑏, and 𝑐, respectively. Then
𝐿
󸀠
(𝑤𝑦) \ {𝑎, 𝑏, 𝑐} has two colors. By Lemma 3, we can first

extend 𝐶 to the edges 𝑢𝑢
1
, 𝑢V, VV

1
, V𝑤, 𝑤𝑤

1
, and 𝑤𝑦. Since

{𝑎, 𝑏, 𝑐}∩ [𝐿
󸀠
(𝑠𝑡)∪𝐿

󸀠
(𝑠𝑠
1
)] = 0, we can further color the edges

𝑡𝑡
1
, 𝑠𝑡, 𝑟𝑟

1
, and 𝑠𝑠

1
in order.

In each case, we can extend the coloring 𝐶 to a strong 𝐿-
edge coloring of 𝐻, a contradiction. Therefore, the configu-
ration in Figure 1 does not exist.

Similarly we can also show that the configurations in
Figures 2 and 3 do not exist either.

Let𝑀(𝑥) = 𝑑(𝑥)−(15/7) be the initial charge of𝑥 for each
vertex 𝑥. Then ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) < 0. We assign a new charge to

each vertex according to the following rules.
R1. For each good 3-vertex 𝑥, if 𝑥𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑡
𝑥
𝑡+1

is a path
in which 𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑡
is a maximal 𝑡-thread, then 𝑥 sends 1/14

to each 𝑥
𝑖
for 𝑖 = 1, . . . , 𝑡, and if 𝑥𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑡
𝑥
𝑡+1

is a path in
which 𝑥

𝑖
is a bad 3-vertex for each 𝑖 = 1, . . . , 𝑡, 𝑥 sends 1/7 to

each 𝑥
𝑖
for 𝑖 = 1, . . . , 𝑡.

R2. Each bad 3-vertex sends 8/7 to its 1-neighbor.
Nowwe consider the new charge𝑀󸀠(𝑥) for each vertex 𝑥.

(1) If 𝑑(𝑥) = 1, then by Claim 1, 𝑥 is adjacent to a bad
3-vertex. Thus𝑀󸀠(𝑥) = 1 − (15/7) + (8/7) = 0.

(2) If 𝑑(𝑥) = 2, then by R1, 𝑥 receives 2×(1/14) = (1/7) in
total from some 3-vertices.Thus𝑀󸀠(𝑥) = 2−(15/7)+

(1/7) = 0.

(3) If 𝑥 is a bad 3-vertex, then𝑀
󸀠
(𝑥) = (8/7) − (8/7) = 0.

(4) Assume that 𝑥 is a good 3-vertex. Denote by 𝑡 and 𝑠

the numbers of bad 3-vertices and 2-vertices receiving
charges from 𝑥, respectively. By Claim 2 and Claim 4,
we have 0 ≤ 𝑡 ≤ 6 and 0 ≤ 𝑠 ≤ 6. Hence 𝑀󸀠(𝑥) =

3 − (15/7) − (𝑡/7) − (𝑠/14) = (6/7) − (𝑡/7) − (𝑠/14).

If 𝑡 = 0, then 𝑠 ≤ 6. Hence𝑀󸀠(𝑥) ≥ (6/7)−(6/14) > 0.

If 0 < 𝑡 ≤ 3, then 𝑠 ≤ 4. Hence𝑀󸀠(𝑥) ≥ (6/7)−(3/7)−

(4/14) > 0.

If 𝑡 = 4, then 𝑠 ≤ 2. Hence 𝑀󸀠(𝑥) ≥ (6/7) − (4/7) −

(2/14) > 0.

If 𝑡 = 5, then 𝑠 ≤ 2. Hence 𝑀󸀠(𝑥) ≥ (6/7) − (5/7) −

(2/14) ≥ 0.

If 𝑡 = 6, then 𝑠 = 0. Hence𝑀󸀠(𝑥) ≥ (6/7) − (6/7) ≥ 0.

Therefore we have 0 ≤ ∑
𝑥∈𝑉(𝐻)

𝑀
󸀠
(𝑥) = ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) <

0.
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𝑥
1

𝑥
2

𝑥 𝑢 � 𝑤

𝑧

𝑦

Figure 4: The configuration of Claim 7(1).
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𝑥
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𝑥

𝑢
1

𝑢
2

𝑢

�

�

1

�
2

𝑤

𝑡
1

𝑡

𝑡
2

𝑦 𝑧

Figure 5: The configuration of Claim 7(2).

4. Proof of (ii) of Theorem 2

Let 𝐻 be a counterexample with |𝐸(𝐻)| as small as possible.
Then there exists a 7-edge list 𝐿 such that 𝐻 is not strongly
𝐿-edge colorable.

Claim 5. There is no 1-vertex in𝐻.

Proof. Suppose to the contrary that 𝐻 contains a 1-vertex
𝑢, such that V is its neighbor. Since 𝐻 is a minimum
counterexample,𝐻󸀠 = 𝐻 \ {𝑢V} has a strong 𝐿-edge coloring.
Hence |𝐿󸀠(𝑢V)| ≥ 1, we can easily extend this coloring to𝐻, a
contradiction.

Claim 6. 𝐻 does not contain a 𝑡-thread with 𝑡 ≥ 3.

Proof. The proof is similar to that of Claim 2 and thus
omitted.

Claim 7. 𝐻 does not contain the following two configura-
tions:

(1) A path 𝑥𝑢V𝑤 such that 𝑢 and V are 2-vertices, 𝑥 is a 3-
vertex, and𝑤 is a 3-vertex which has two 2-neighbors
and one 3-neighbor (see Figure 4).

(2) A path 𝑢𝑤V where 𝑑(𝑢) = 𝑑(V) = 3 and 𝑑(𝑤) = 2 and
both 𝑢 and V have three 2-neighbors (see Figure 5).

Proof. (1) Suppose that𝐻 contains a path 𝑥𝑢V𝑤 in Figure 4.
Let 𝐻󸀠 = 𝐻 \ {𝑢V, V𝑤,𝑤𝑦}. Since 𝐻 is a minimal counterex-
ample, 𝐻󸀠 has a strong 𝐿-edge coloring. Then |𝐿

󸀠
(𝑤𝑦)| ≥ 1,

|𝐿
󸀠
(V𝑤)| ≥ 2, and |𝐿󸀠(𝑢V)| ≥ 3, andwe can extend the coloring

to𝐻, a contradiction.
(2) Suppose that 𝐻 contains the configuration in Fig-

ure 5, where 𝑦, 𝑢
1
, 𝑤, V

1
, and 𝑧 are 2-vertices and 𝑢 and

V are 3-vertices. Since 𝐻 is a minimum counterexample,

𝐻
󸀠
= 𝐻 \ {𝑦𝑢, 𝑢𝑢

1
, 𝑢𝑤, 𝑤V, VV

1
, V𝑧} has a strong 𝐿-edge colo-

ring. Now |𝐿
󸀠
(𝑢𝑢
1
)| ≥ 3 and |𝐿

󸀠
(VV
1
)| ≥ 3. We first color the

two edges 𝑢𝑢
1
and VV

1
to obtain a strong 𝐿-edge coloring of

𝐻 \ {𝑦𝑢, 𝑢𝑤,𝑤V, V𝑧}. It is easy to check that |𝐿󸀠(𝑦𝑢)| ≥ 2,
|𝐿
󸀠
(𝑢𝑤)| ≥ 3, |𝐿󸀠(𝑤V)| ≥ 3, and |𝐿󸀠(V𝑧)| ≥ 2. By Lemma 4, we

can further extend the coloring to𝐻, a contradiction.

Let 𝑀(𝑥) = 𝑑(𝑥) − (27/11) be the initial charge of 𝑥 for
each vertex 𝑥. Then ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) < 0. A 2

𝑘
-vertex is a 2-

vertex with 𝑘 3-neighbors. We assign a new charge to each
vertex according to the following rules.

R1. Let 𝑥 be a 2
2
-vertex and 𝑢 a 3-neighbor of 𝑥. If 𝑢

is adjacent to three 2-vertices, then 𝑢 sends 2/11 to 𝑥;
otherwise 𝑢 sends 3/11 to 𝑥.
R2. Let 𝑥 be a 2

1
-vertex and 𝑢 be its 3-neighbor. 𝑢

sends 5/11 to 𝑥.
(1) If 𝑥 is a 2

1
-vertex, then by R2, 𝑥 receives 5/11 from its

3-neighbor. Thus𝑀󸀠(𝑥) = 2 − (27/11) + (5/11) = 0.
(2) If 𝑥 is a 2

2
-vertex with two neighbors 𝑢 and V and

if one of 𝑢, V has three 2-neighbors, then by Claim 7
the other one has at most two 2-neighbors. Hence 𝑥
receives (2/11) + (3/11) = 5/11 from its neighbors. If
neither 𝑢 nor V has three 2-neighbors, then 𝑥 receives
(3/11) + (3/11) = 6/11 from its neighbors. Therefore
𝑀
󸀠
(𝑥) ≥ 2 − (27/11) + (5/11) ≥ 0.

(3) Assume 𝑑(𝑥) = 3. By Claim 7, we only consider the
following three cases: (a) if 𝑥 is adjacent to three 2

2
-

vertices, then 𝑥 sends out 3 × (2/11) = 6/11 to
its neighbors; (b) if 𝑥 is adjacent to at most two 2

2
-

vertices, then it sends out at most 2 × (3/11) = 6/11

to its neighbors; (c) if 𝑥 is adjacent to one 2
1
-vertex,

then it sends out 5/11 to its neighbors. In each case,
we have𝑀󸀠(𝑥) ≥ 3 − (27/11) − (6/11) = 0.

Therefore we have 0 ≤ ∑
𝑥∈𝑉(𝐻)

𝑀
󸀠
(𝑥) = ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) <

0.

5. Proof of (iii) of Theorem 2

Let 𝐻 be a counterexample with |𝐸(𝐻)| as small as possible.
Then there exists an 8-edge list 𝐿 such that𝐻 is not strongly
𝐿-edge colorable.

Claim 8. There is no 1-vertex in𝐻.

Proof. The proof is similar to that of Claim 5 and thus
omitted.

Claim 9. There are no two adjacent 2-vertices in𝐻.

Proof. Suppose that there are two adjacent 2-vertices 𝑢 and
V. Let 𝑤 be the other neighbor of V. Since 𝐻 is a minimum
counterexample, 𝐻 \ {𝑢V, V𝑤} has a strong 𝐿-edge coloring.
Then |𝐿󸀠(𝑢V)| ≥ 3 and |𝐿󸀠(V𝑤)| ≥ 1. Hence, we can extend the
coloring to𝐻 easily, a contradiction.

Claim 10. A 3-vertex is not adjacent to three 2-vertices in𝐻.
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Proof. Suppose to the contrary that a 3-vertex 𝑢 is adjacent to
three 2-vertices 𝑥, V, and𝑤. Since𝐻 is aminimumcounterex-
ample, 𝐻 \ {𝑥𝑢, 𝑢V, 𝑢𝑤} has a strong 𝐿-edge coloring. Thus
|𝐿
󸀠
(𝑥𝑢)| ≥ 3, |𝐿󸀠(𝑢V)| ≥ 3, and |𝐿

󸀠
(𝑢𝑤)| ≥ 3. Therefore, we

can extend the coloring to𝐻, a contradiction.

Claim 11. 𝐻 does not contain a path 𝑃 = 𝑢V𝑤𝑥𝑦 where 𝑢, 𝑤,
and 𝑦 are 2-vertices and V and 𝑥 are 3-vertices.

Proof. Suppose to the contrary that𝐻 contains a path 𝑢V𝑤𝑥𝑦,
where 𝑢, 𝑤, and 𝑦 are 2-vertices and V and 𝑥 are 3-vertices.
By the minimality of 𝐻, 𝐻 \ {V𝑤,𝑤𝑥} has a strong 𝐿-edge
coloring. Uncolor 𝑢V and 𝑥𝑦. It is easy to check that |𝐿󸀠(𝑢V)| ≥
2, |𝐿󸀠(𝑥𝑦)| ≥ 2, |𝐿󸀠(V𝑤)| ≥ 3, and |𝐿

󸀠
(𝑤𝑥)| ≥ 3. By Lemma 4,

we can extend the coloring to the path 𝑢V𝑤𝑥𝑦 to obtain a
strong 𝐿-edge coloring of𝐻, a contradiction.

Let𝑀(𝑥) = 𝑑(𝑥)−(13/5) be the initial charge of𝑥 for each
vertex 𝑥. Then ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) < 0. We assign a new charge to

each vertex according to the following rule.
R. Let 𝑥 be a 3-vertex and 𝑡 the number of 2-neighbors of

𝑥. 𝑥 sends 2/5𝑡 to each adjacent 2-vertices if 𝑡 ̸= 0.
Obviously𝑀󸀠(𝑥) ≥ 0 if 𝑑(𝑥) = 3.
Let 𝑥 be a 2-vertex and 𝑢, V its neighbors. By Claims 9

and 10, both 𝑢 and V are 3-vertices and have at most two 2-
neighbors. If one 3-neighbor of𝑥 is adjacent to two 2-vertices,
then by Claim 11, the other neighbor of 𝑥 is adjacent to only
one 2-vertex. Hence 𝑥 receives (1/5) + (2/5) = 3/5 from its
neighbors. If each neighbor of 𝑥 is adjacent to only one 2-
vertex, then 𝑥 receives (2/5)+(2/5) = 4/5 from its neighbors.
Hence𝑀󸀠(𝑥) ≥ 2 − (13/5) + (3/5) = 0.

Therefore we have 0 ≤ ∑
𝑥∈𝑉(𝐻)

𝑀
󸀠
(𝑥) = ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) <

0. This contradiction completes the proof.

6. Proof of (iv) of Theorem 2

Let 𝐻 be a counterexample with |𝐸(𝐻)| as small as possible.
Then there exists a 9-edge list 𝐿 such that 𝐻 is not strongly
𝐿-edge colorable.

Claim 12. There is no 1-vertex in𝐻.

Proof. The proof is similar to that of Claim 5 and thus
omitted.

Claim 13. There are no two adjacent 2-vertices in𝐻.

Proof. The proof is similar to that of Claim 9 and thus
omitted.

Claim 14. No 3-vertex is adjacent to two 2-vertices in𝐻.

Proof. Suppose to the contrary that a 3-vertex 𝑢 is adjacent to
two 2-vertices V,𝑤. Let𝑥 be the third neighbor of 𝑢. Since𝐻 is
a minimum counterexample,𝐻\ {𝑢V, 𝑢𝑤, 𝑢𝑥} has a strong 𝐿-
edge coloring.Then |𝐿󸀠(𝑢𝑥)| ≥ 1, |𝐿󸀠(𝑢V)| ≥ 3, and |𝐿󸀠(𝑢𝑤)| ≥
3. Hence we can extend the coloring to 𝐻, a contradiction.

Claim 15. If a 3-vertex 𝑥 has a 2-neighbor, then each 3-
neighbor of 𝑥 is not adjacent to a 2-vertex.

Proof. Suppose to the contrary that 𝑥 has a 3-neighbor 𝑦 such
that 𝑦 is also adjacent to a 2-vertex 𝑢. Let 𝑧 be the 2-neighbor
of 𝑥. We first assume that 𝑢 = 𝑧. By the choice of 𝐻, 𝐻 \

{𝑥𝑧, 𝑦𝑧} has a strong 𝐿-edge coloring with the edges 𝑥𝑧 and
𝑦𝑧 uncolored. Then it is easy to see that |𝐿󸀠(𝑥𝑧)| ≥ 3 and
|𝐿
󸀠
(𝑦𝑧)| ≥ 3, and thus we may further color the edges 𝑥𝑧 and

𝑦𝑧 to get a strong 𝐿-edge coloring of𝐻, a contradiction.
Now we assume that 𝑢 ̸= 𝑧. Let V be the other neighbor of

𝑧. Let 𝐶 be a strong 𝐿-edge coloring of 𝐻 \ {V𝑧, 𝑧𝑥, 𝑥𝑦, 𝑦𝑢}
obtained from a strong 𝐿-edge coloring of 𝐻 − {𝑧} by
uncoloring the edges𝑥𝑦 and𝑦𝑢. It is easy to see that |𝐿󸀠(V𝑧)| ≥
2, |𝐿󸀠(𝑧𝑥)| ≥ 3, |𝐿󸀠(𝑥𝑦)| ≥ 2, and |𝐿

󸀠
(𝑦𝑢)| ≥ 2. By Lemma 4,

𝐶 can be extended to those four uncolored edges, and thus𝐻
has a strong 𝐿-edge coloring, a contradiction.

Let 𝑀(𝑥) = 𝑑(𝑥) − (36/13) be the initial charge of 𝑥
for each vertex 𝑥. Then ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) < 0. We assign a new

charge to each vertex according to the following rules.

R1. Each 2-vertex receives 5/13 from each adjacent
vertex.
R2. If a 3-vertex 𝑥 is adjacent to a 2-vertex then 𝑥

receives 1/13 from each 3-neighbor.

Obviously if 𝑑(𝑥) = 2, then 𝑀
󸀠
(𝑥) = 2 − (36/13) +

(10/13) = 0.

If 𝑑(𝑥) = 3 and 𝑥 is not adjacent to a 2-vertex, then
𝑀
󸀠
(𝑥) ≥ 3 − (36/13) − 3 × (1/13) = 0.

If 𝑑(𝑥) = 3 and 𝑥 is adjacent to a 2-vertex, then by
Claims 14 and 15,𝑀󸀠(𝑥) = 3 − (36/13) − (5/13) + 2 ×

(1/13) = 0.

Therefore we have 0 ≤ ∑
𝑥∈𝑉(𝐻)

𝑀
󸀠
(𝑥) = ∑

𝑥∈𝑉(𝐻)
𝑀(𝑥) <

0. This contradiction completes the proof.

7. Conclusion

This paper studies strong list edge coloring of subcubic
graphs. The result can be used to deal with the conflict-free
channel assignment problem inwireless radio networkswhen
the admissible channels on the links between transceivers
are constrained. We believe that the upper bounds on the
maximum average degree in Theorem 2 are not sharp. It
would be interesting to find sharp upper bounds for the
maximum average degree.
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