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Existence of global solutions to continuous nonlocal convection-fragmentation equations is investigated in spaces of distributions
with finite higher moments. Under the assumption that the velocity field is divergence-free, we make use of the method of
characteristics and Friedrichs’s lemma (Mizohata, 1973) to show that the transport operator generates a stochastic dynamical
system. This allows for the use of substochastic methods and Kato-Voigt perturbation theorem (Banasiak and Arlotti, 2006) to
ensure that the combined transport-fragmentation operator is the infinitesimal generator of a strongly continuous semigroup. In
particular, we show that the solution represented by this semigroup is conservative.

1. Motivation and Introduction

The process of fragmentation of clusters occurs in many
branches of natural sciences ranging from physics, through
chemistry, engineering, biology, to ecology and in numerous
domains of applied sciences, such as the depolymerization,
the rock fractures, and the breakage of droplets.The fragmen-
tation rate can be size and position dependent, and new parti-
cles resulting from the fragmentation are spatially distributed
across the space. Fragmentation equations, combined with
transport terms, have been used to describe a wide range
of phenomena. For instance, in ecology or aquaculture, we
have phytoplankton population in flowing water. In chemical
engineering, we have applications describing polymerization,
polymer degradation, and solid drugs breakup in organisms
or in solutions. We also have external processes such as
oxidation, melting, or dissolution, which cause the exposed
surface of particles to recede, resulting in the loss of mass
of the system. Simultaneously, they widen the surface pores
of the particle, causing the loss of connectivity and thus
fragmentation, as the pores join each other (see [1–4] and
references therein). Various types of pure fragmentation
equations have been comprehensively analyzed in numerous
works (see, e.g., [5–9]). Conservative and nonconservative

regimes for pure fragmentation equations have been thor-
oughly investigated, and, in particular, the breach of the mass
conservation law (called shattering) has been attributed to a
phase transition creating a dust of “zero-size” particles with
nonzero mass, which are beyond the model’s resolution. But
fragmentation and transport processes combined in the same
model are still barely touched in the domain of mathematical
and abstract analysis. Kinetic-type models with diffusion
were globally investigated in [5] and later extended in [10],
where the author showed that the diffusive part does not affect
the breach of the conservation laws, and, very recently, in [11],
the author investigated equations describing fragmentation
and coagulation processes with growth or decay and proved
an analogous result.

In this paper, we present and analyze a special and
noncommon type of transport process. In social grouping
population, if we define a spatial dynamical system in
which locally group-size distribution can be estimated, but
in which we also allow immigration and emigration from
adjacent areas with different distributions, we obtain the
general model consisting of transport, direction changing,
and fragmentation and coagulation processes describing
the dynamics a population of, for example, phytoplankton,
which is a spatially explicit group-size distribution model
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as presented in [12]. We analyze, in this work, the model
consisting of transport and fragmentation processes, hoping
that it will bring a significant contribution to the analysis
of the full problem (with transport, direction changing, and
fragmentation and coagulation processes) which remains an
open problem.

2. Well Posedness of the Transport Problem
with Fragmentation

We consider the following Cauchy problem [12]:

𝜕

𝜕𝑡
𝑝 (𝑡, 𝑥,𝑚)

= − div (𝜔 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚))

− 𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)

+ ∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑡, 𝑥, 𝑠) 𝑑𝑠,

𝑝 (0, 𝑥,𝑚) =
𝑜

𝑝 (𝑥,𝑚) , 𝑎.𝑒. (𝑥,𝑚) ∈ R
3

×R
+
,

(1)

where, in terms of the mass size 𝑚 and the position 𝑥, the
state of the system is characterized at any moment 𝑡 by the
particle-mass-position distribution 𝑝 = 𝑝(𝑡, 𝑥,𝑚) (𝑝 is also
called the density or concentration of particles), with 𝑝 : R

+
×

R3 × R
+
→ R
+
. The three-dimensional vector 𝜔 = 𝜔(𝑥,𝑚)

represents the velocity of the transport and is supposed to
be a known quantity depending on 𝑚 and 𝑥; 𝑎(𝑥,𝑚) is the
average fragmentation rate; that is, it describes the ability of
aggregates of size 𝑚 and position 𝑥 to break into smaller
particles. Once an aggregate of mass 𝑠 and position 𝑥 breaks,
the expected number of daughter particles of size 𝑚 is the
nonnegative measurable function 𝑏(𝑥, 𝑠, 𝑚) defined on R3 ×

R × R. The space variable 𝑥 is supposed to vary in the whole
ofR3. The function

𝑜

𝑝 (𝑥,𝑚) represents the density of groups
of size𝑚 at position 𝑥 at the beginning (𝑡 = 0).

2.1. Fragmentation Equation. Let us introduce necessary
assumptions that will be useful in our analysis. Since a group
of size 𝑚 ≤ 𝑠 cannot split to form a group of size 𝑠, the
function 𝑏(𝑥, 𝑠, 𝑚) has its support in the set

R
3

× {(𝑠, 𝑚) ∈ R
+
×R
+
: 𝑚 < 𝑠} . (2)

After the fragmentation of amass 𝑠particle, the sumofmasses
of all daughter particles should again be 𝑠; hence it follows
that, for any 𝑠 > 0, 𝑥 ∈ R3

∫

𝑠

0

𝑚𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 = 𝑠. (3)

Because the space variable 𝑥 varies in the whole of R3

(unbounded) and since the total number of individuals in a
population is notmodified by interactions among groups, the
following conservation law is supposed to be satisfied:

𝑑

𝑑𝑡
N (𝑡) = 0, (4)

where N(𝑡) = ∫
R3
∫
∞

0

𝑝(𝑡, 𝑥,𝑚)𝑚𝑑𝑚𝑑𝑥 is the total number
of individuals in the space (or total mass of the ensemble).
Since 𝑝 = 𝑝(𝑡, 𝑥,𝑚) is the density of groups of size 𝑚 at
the position 𝑥 and time 𝑡 and that mass is expected to be
a conserved quantity, the most appropriate Banach space to
work in is the space

X
1
:= 𝐿
1
(R
3

×R
+
, 𝑚𝑑𝑚𝑑𝑥) . (5)

But because uniqueness of solutions of (1) proved to be amore
difficult problem [11], we restrict our analysis to a smaller class
of functions, so we introduce the following class of Banach
spaces (of distributions with finite higher moments):

X
𝑟
:= 𝐿
1
(R
3

×R
+
, 𝑚
𝑟

𝑑𝑚𝑑𝑥) , 𝑟 ≥ 1, (6)

which coincides with X
1
for 𝑟 = 1 and is endowed with the

norm ‖ ⋅ ‖
𝑟
. We assume that

o
𝑝∈ X

𝑟
, and, for each 𝑡 ≥ 0, the

function (𝑥,𝑚) → 𝑝(𝑥,𝑚) = 𝑝(𝑡, 𝑥,𝑚) is from the spaceX
𝑟

with 𝑟 ≥ 1. When any subspace 𝑆 ⊆ X
𝑟
, we will denote by

𝑆
+
the subset of 𝑆 defined as 𝑆

+
= {𝑔 ∈ 𝑆; 𝑔(𝑥,𝑚) ≥ 0,𝑚 ∈

R
+
, 𝑥 ∈ R3}. Note that any 𝑔 ∈ (X

𝑟
)
+
will possess moments

𝑀
𝑞
(𝑡) := ∫

∞

0

𝑚
𝑞

𝑔 (𝑡, 𝑥,𝑚) 𝑑𝑚 (7)

of all orders 𝑞 ∈ [0, 𝑟]. InX
𝑟
, we define from the expressions

on the right-hand side of (1) the operators 𝐴 and 𝐵 by

[𝐴𝑔] (𝑥,𝑚) := 𝑎 (𝑥,𝑚) 𝑔 (𝑥,𝑚) ,

𝐷 (𝐴) := {𝑔 ∈ X
𝑟
: 𝑎𝑔 ∈ X

𝑟
} ,

(8)

[𝐵𝑔] (𝑥,𝑚) := ∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑑𝑠,

𝐷 (𝐵) := 𝐷 (𝐴) .

(9)

Lemma 1. (𝐴 + 𝐵,𝐷(𝐴)) is a well-defined operator.

Proof. To prove that𝐵 is well defined on𝐷(𝐴) as stated in (9),
we use the condition (3) to show that

𝑠
𝑟

− ∫

𝑠

0

𝑚
𝑟

𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 = 𝑠
𝑟

− ∫

𝑠

0

𝑚
𝑟−1

𝑚𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚

≥ 𝑠
𝑟

− 𝑠
𝑟−1

∫

𝑠

0

𝑚𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 = 0.

(10)

Hence

∫

𝑠

0

𝑚
𝑟

𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 ≤ 𝑠
𝑟 (11)
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for 𝑟 ≥ 1, 𝑚 > 0. Note that the equality holds for 𝑟 = 1. For
every 𝑝 ∈ 𝐷(𝐴)

+
, changing the order of integration by the

Fubini theorem, we have

󵄩󵄩󵄩󵄩𝐵𝑝
󵄩󵄩󵄩󵄩𝑟

= ∫
R3
∫

∞

0

[𝐵𝑝] (𝑥,𝑚)𝑚
𝑟

𝑑𝑚𝑑𝑥

= ∫
R3
∫

∞

0

(∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠)𝑚
𝑟

𝑑𝑠) 𝑑𝑚𝑑𝑥

= ∫
R3
∫

∞

0

(∫

𝑠

0

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠)𝑚
𝑟

𝑑𝑚)𝑑𝑠𝑑𝑥

≤ ∫
R3
∫

∞

0

𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑠
𝑟

𝑑𝑠𝑑𝑥

=
󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩𝑟

< ∞,

(12)

where we have used inequality (11). The result follows from
the fact that any arbitrary element 𝑝 of 𝐷(𝐴) can be written
in the form𝑝 = 𝑝

+
−𝑝
−
, where𝑝

+
, 𝑝
−
∈ 𝐷(𝐴)

+
.Then ‖𝐵𝑝‖

𝑟
≤

‖𝐴𝑝‖
𝑟
, for all 𝑝 ∈ 𝐷(𝐴), so that we can take 𝐷(𝐵) := 𝐷(𝐴),

and (𝐴 + 𝐵,𝐷(𝐴)) is well defined.

2.2. Cauchy Problem for the Transport Operator in Λ =R3 ×
R
+
. Λ is endowed with the Lebesgue measure 𝑑𝜇 = 𝑑𝜇

𝑚,𝑥
=

𝑑𝑚𝑑𝑥. Our primary objective in this section is to analyze the
solvability of the transport problem

𝜕

𝜕𝑡
𝑝 (𝑡, 𝑥,𝑚) = − div (𝜔 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)) ,

𝑝 (0, 𝑥,𝑚) =
𝑜

𝑝 (𝑥,𝑚) , 𝑚 ∈ R
+
, 𝑥 ∈ R

3

(13)

in the spaceX
𝑟
.

Furthermore, to simplify the notationwe put k = (𝑥,𝑚) ∈
Λ. We consider the function 𝜔 : Λ → R3 and D̃ the expre-
ssion appearing on the right-hand side of (13). Then

D̃ [𝑝 (𝑡, k)] : = − div (𝜔 (k) 𝑝 (𝑡, k))

= (∇ ⋅ 𝜔 (k)) 𝑝 (𝑡, k) + 𝜔 (k) ⋅ (∇𝑝 (𝑡, k)) .
(14)

We assume that 𝜔 is divergence-free and globally Lipschitz
continuous. Then div𝜔(k) := ∇ ⋅ 𝜔(k) = 0, and (14) becomes

D̃ [𝑝 (𝑡, k)] := 𝜔 (k) ⋅ (∇𝑝 (𝑡, k)) . (15)

For k ∈ Λ and 𝑡 ∈ R, the initial value problem

𝑑r

𝑑𝑠
= 𝜔 (r) , 𝑠 ∈ R,

r (𝑡) = k

(16)

has one and only one solution r(𝑠) taking values in Λ. Thus
we can consider the function 𝜙 : Λ×R2 → Λ defined by the
condition that, for (k, 𝑡) ∈ Λ ×R,

𝑠 󳨀→ 𝜙 (k, 𝑡, 𝑠) , 𝑠 ∈ R, (17)

is the only solution of the Cauchy problem (16). The integral
curves given by the 𝜙-parameter family (r)

𝜙
(with r(𝑠) =

𝜙(k, 𝑡, 𝑠), 𝑠 ∈ R, the only solution of (16)) are called the
characteristics of D̃.The function 𝜙 possesses many desirable
properties [13–15] that will be relevant for studying the
transport operator in X

𝑟
. Some of them are listed in [5,

Proposition 10.1]. Now we can properly study the transport
operator D. Using the above proposition in our application,
we can take

D𝑝 = D̃𝑝, with D̃𝑝 represented by (15) ,

𝐷 (D) := {𝑝 ∈ X
𝑟
,D𝑝 ∈ X

𝑟
} .

(18)

Note that D𝑝 is understood in the sense of distribution.
Precisely speaking, if we take 𝐶1

0
(Λ) as the set of the test

functions, each 𝑝 ∈ 𝐷(D) if and only if 𝑝 ∈ 𝐿
1
(Λ), and there

exists 𝑔 ∈ X
𝑟
such that

∫
Λ

𝜉𝑔𝑑𝜇 = ∫
Λ

𝑝𝜕 ⋅ (𝜉𝜔) 𝑑𝜇 = ∫
Λ

𝑝𝜔 ⋅ 𝜕𝜉𝑑𝜇, (19)

for all 𝜉 ∈ 𝐶1
0
(Λ), where

𝜔 ⋅ 𝜕𝜉 (k) :=
3

∑

𝑗=1

𝜔
𝑗
𝜕
𝑗
𝜉 (k) (20)

with 𝜔
𝑗
= 𝜔
𝑗
(k), the 𝑗th component of the velocity 𝜔(k).

The middle term in (19) exists as 𝜔 is globally Lipschitz
continuous, and the last equality follows as 𝜔 is divergence-
free. If this is the case, we defineD𝑝 = 𝑔.

Now we can show that the operatorD is the generator of
a stochastic semigroup onX

𝑟
.

Theorem 2. If the function 𝜔 is globally Lipschitz continuous
and divergence-free, then the operator (𝐷(D),D) defined
by (18) is the generator of a strongly continuous stochastic
semigroup (𝐺D(𝑡))𝑡≥0, given by

[𝐺D (𝑡) 𝑝] (k) = 𝑝 (𝜙 (k, 𝑡, 0)) (21)

for any 𝑝 ∈ X
𝑟
and 𝑡 > 0.

Proof. Let (𝑍
0
(𝑡))
𝑡≥0

be the family defined by the right-hand
side of the relation (21). The proof of the theorem will follow
three steps.

(i) First we show that (𝑍
0
(𝑡))
𝑡≥0

is a strongly continuous
semigroup of bounded linear operators. We need some
properties of 𝜙 as listed in [5] and given as follows. The
function 𝜙 has the following properties:

(𝑝
1
) 𝜙(k, 𝑡, 𝑡) = k for all k ∈ Λ, 𝑡 ∈ R;

(𝑝
2
) 𝜙(𝜙(k, 𝑡, 𝑠), 𝑠, 𝜏) = 𝜙(k, 𝑡, 𝜏) for all k ∈ Λ, 𝑡, 𝑠, and 𝜏 ∈
R;
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(𝑝
3
) 𝜙(k, 𝑡, 𝑠) = 𝜙(k, 𝑡 − 𝑠, 0) = 𝜙(k, 0, 𝑠 − 𝑡) for all k ∈ Λ,
𝑡, 𝑠 ∈ R;

(𝑝
4
) |𝜙(k, 𝑡, 𝑠) − 𝜙(y, 𝑡, 𝑠)| ≤ 𝑒𝐾|𝑡−𝑠||k − y| for all k, y ∈ Λ,
𝑡, 𝑠 ∈ R;

(𝑝
5
) function Λ×R ×R ∋ (k, 𝑡, 𝑠) → 𝜙(k, 𝑡, 𝑠) is continu-
ous;

(𝑝
6
) the transformation T defined by 𝑡 = 𝑡, 𝑠 = 𝑠, and
y = 𝜙(k, 𝑡, 𝑠) is a topological homeomorphism which
is bimeasurable, and its inverseT−1 is represented by
𝑡 = 𝑡, 𝑠 = 𝑠, and k = 𝜙(y, 𝑠, 𝑡);

(𝑝
7
) for all 𝑡, 𝑠 ∈ R the transformation of Λ onto itself
defined by y = 𝜙(k, 𝑡, 𝑠) is measure preserving.

Then by the properties (𝑝
6
) and (𝑝

7
), we see that, for any

𝑝, the composition (k, 𝑡) → 𝑝(𝜙(k, 𝑡, 0)), in (21), is a
measurable function satisfying the equality

󵄩󵄩󵄩󵄩𝑍0(𝑡)𝑝
󵄩󵄩󵄩󵄩𝑟 =
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟. (22)

Hence the family (𝑍
0
(𝑡))
𝑡≥0

is of bounded linear operators
from X

𝑟
→ X

𝑟
. Then we can easily verify the following

relations:

(𝑖
𝑎
) 𝑍
0
(0) = 𝐼;

(𝑖
𝑏
) 𝑍
0
(𝑡 + 𝑠) = 𝑍

0
(𝑡)𝑍
0
(𝑠), for all 𝑡, 𝑠 ∈ R;

(𝑖
𝑐
) lim
𝑡→0
+‖𝑍
0
(𝑡)𝑝 − 𝑝‖

𝑟
= 0, for each 𝑝 ∈ X

𝑟
.

In fact, (𝑖
𝑎
) and (𝑖

𝑏
) follow immediately from the properties

(𝑝
1
) and (𝑝

2
). To prove (𝑖

𝑐
), we can follow the argument of

Example 3.10 in [5]. Thus, it is enough to show (𝑖
𝑐
) for 𝑝 ∈

𝐶
∞

0
(Λ). For such 𝑝

𝑠
, we have lim

𝑡→0
+(𝑍
0
(𝑡)𝑝)(k) = 𝑝(k) for

all k ∈ Λ. Furthermore, if |𝑝(k)| ≤ 𝑀 for all k ∈ Λ, then
|(𝑍
0
(𝑡)𝑝)(k)| ≤ 𝑀 for all k ∈ Λ, and, because the support

of 𝑍
0
(𝑡)𝑝 is bounded, the Lebesgue dominated convergence

theorem shows that (𝑖
𝑐
) is satisfied. Thus (𝑍

0
(𝑡))
𝑡≥0

is a 𝐶
0
-

semigroup.
(ii) Secondly, we prove that the generator 𝑇

0
of (𝑍
0
(𝑡))
𝑡≥0

is an extension ofD.
Let Y be the set of real-valued functions which are

defined on Λ, are Lipschitz continuous, and compactly
supported. ObviouslyY ⊂ 𝐷(D) because if 𝑝 ∈ Y, then the
first-order partial derivatives of 𝑝 are measurable, bounded,
and compactly supported and thus, multiplied by Lipschitz
continuous functions of 𝜔, belong to 𝐿

1
(Λ, 𝑑𝜇). For any fixed

𝑝 ∈ Y, we denote by 𝜗 the real-valued function defined on
Λ × 𝑅

+
by

𝜗 (k, 𝑡) = (𝑍
0
(𝑡) 𝑝) (k) . (23)

From the previous considerations and properties (𝑝
3
)–(𝑝
5
)

there exists a measurable subset 𝐸 of Λ×𝑅
+
, with 𝜇(Λ × 𝑅

+
\

𝐸) = 0, such that at each point (k, 𝑡) ∈ 𝐸 the function 𝜗 has
measurable first-order partial derivatives. In particular,

𝜕𝜗

𝜕𝑡
(k, 𝑡) = (𝑍

0
(𝑡)D𝑝) (k) , (k, 𝑡) ∈ 𝐸, (24)

and, therefore, if we let 𝜆
𝑝
:= ess sup

(k)∈Λ|D𝑝|, then
󵄨󵄨󵄨󵄨𝜕𝑡𝜗 (k, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝜆𝑝 (25)

for any (k, 𝑡) ∈ 𝐸. From this and from part (i) of the proof it
follows that, for every ℎ > 0,

󵄩󵄩󵄩󵄩󵄩
ℎ
−1

(𝑍
0
(ℎ)𝑝 − 𝑝) −D𝑝

󵄩󵄩󵄩󵄩󵄩𝑟

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ℎ
−1

∫

ℎ

0

(𝑍
0
(𝑠) − 𝐼)D𝑝𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟

󳨀→ 0

(26)

as ℎ → 0+. This proves thatY ⊂ 𝐷(𝑇
0
) and that 𝑇

0
𝑝 = D𝑝,

for all 𝑝 ∈ Y. Next we prove that Y is a core of D, that is,
that (D, 𝐷(D)) is the closure of (D,Y). Let 𝜛

𝜀
, 𝜀 > 0, be a

mollifier (see Example 2.1 in [5]), and, for 𝑝, let 𝜛
𝜀
∗ 𝑝 be the

mollification of 𝑝. We use the Friedrichs lemma, [16, pp. 313–
315], or [17, Lemma 1.2.5], which states that there is 𝐶 > 0,
independent of 𝜀, such that for any𝐿

𝑟
function𝑝, 1 ≤ 𝑟 < ∞,

we have
󵄩󵄩󵄩󵄩D (𝜛𝜀 ∗ 𝑝) − 𝜛𝜀 ∗D𝑝

󵄩󵄩󵄩󵄩𝑟 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟, (27)

lim
𝜀→0
+

(
󵄩󵄩󵄩󵄩𝜛𝜀 ∗ 𝑝 − 𝑝

󵄩󵄩󵄩󵄩𝑟 +
󵄩󵄩󵄩󵄩D (𝜛𝜀 ∗ 𝑝) −D𝑝

󵄩󵄩󵄩󵄩𝑟) = 0. (28)

Estimates of Equation (2.9) in [5] and the above relation (27)
imply

󵄩󵄩󵄩󵄩D(𝜛𝜀 ∗ 𝑝)
󵄩󵄩󵄩󵄩𝑟 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟 +
󵄩󵄩󵄩󵄩D𝑝
󵄩󵄩󵄩󵄩𝑟 (29)

which shows that the mollification 𝑝 → 𝜛
𝜀
∗ 𝑝 is a contin-

uous operator in 𝐷(D) (equipped with the graph norm)
uniformly bounded with respect to 𝜀. Next we observe
that the subset of 𝐷(D) consisting of compactly supported
functions is dense in 𝐷(D) with the graph norm. Indeed, let
𝑝 ∈ 𝐷(D). Because both 𝑝,D𝑝 ∈ X

𝑟
, the absolute continuity

of the Lebesgue integral implies that for any given 𝛿 > 0 there
exists a compact subsetΩ󸀠 of Λ such that

∫
Λ\Ω
󸀠

(
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨D𝑝
󵄨󵄨󵄨󵄨) 𝑑𝜇 < 𝛿. (30)

For thisΩ󸀠 we choose 𝜓 ∈ 𝐶∞
0
(Λ) satisfying 0 ≤ 𝜓(k) ≤ 1 for

all k ∈ Λ, and 𝜓(k) = 1 for all k ∈ Ω󸀠. Now it is easy to see
that 𝜓𝑝 ∈ 𝐷(D) and has a compact support. Moreover,

󵄩󵄩󵄩󵄩𝜓𝑝 − 𝑝
󵄩󵄩󵄩󵄩𝑟 ≤ 2∫

Λ\Ω
󸀠

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 𝑑𝜇,

󵄩󵄩󵄩󵄩D (𝜓𝑝) −D𝑝
󵄩󵄩󵄩󵄩𝑟 ≤ 2∫

Λ\Ω
󸀠

󵄨󵄨󵄨󵄨D𝑝
󵄨󵄨󵄨󵄨 𝑑𝜇 + 𝐿∫

Λ\Ω
󸀠

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 𝑑𝜇,

(31)

where 𝐿 = sup |D𝜓| can be made independent of Ω󸀠 due to
the fact that Λ is the whole space.

Let 𝑝 ∈ 𝐷(D) be compactly supported. From Example
2.1 in [5] we know that 𝜛

𝜀
∗ 𝑝 is infinitely differentiable

and compactly supported and thus belongs to Y. Equation
(28) yields that 𝜛

𝜀
∗ 𝑝 → 𝑝 as 𝜀 → 0

+ in the graph
norm of𝐷(D). Because we have shown above that compactly
supported functions from 𝐷(D) are dense in 𝐷(D), we see
that (D, 𝐷(D)) is the closure of (D,Y), and, because 𝑇

0
is a

closed extension of (D,Y), we obtainD ⊂ 𝑇
0
.

(iii) Lastly we recognize that 𝐷(𝑇
0
) ⊂ 𝐷(D) so that the

operators 𝑇
0
and D coincide, and (𝐺D(𝑡))𝑡≥0 = (𝑍0(𝑡))𝑡≥0.
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Suppose 𝑝 ∈ 𝐷(𝑇
0
). Then for any fixed 𝜆 > 0 there exists a

unique 𝑔 ∈ X
𝑟
such that 𝑝 = (𝜆𝐼−𝑇

0
)
−1

𝑔. For any𝜓 ∈ 𝐶1
0
(Λ)

we have, by (19),

∫
Λ

D𝑝𝜓𝑑𝜇

= ∫
Λ

𝑝 (k) (𝜔 ⋅ 𝜕𝜓) (k) 𝑑𝜇k

= ∫
Λ

(∫

∞

0

𝑒
−𝜆𝑡

𝑔 (𝜙 (k, 𝑡, 0)) 𝑑𝑡) (𝜔 ⋅ 𝜕𝜓) (k) 𝑑𝜇k

= ∫

∞

0

(∫
Λ

𝑒
−𝜆𝑡

𝑔 (𝜙 (k, 𝑡, 0)) (𝜔 ⋅ 𝜕𝜓) (k) 𝑑𝜇k)𝑑𝑡

= ∫

∞

0

(∫
Λ

𝑒
−𝜆𝑡

𝑔 (y) (𝜔 ⋅ 𝜕𝜓) (𝜙 (y, 0, 𝑡)) (k) 𝑑𝜇y)𝑑𝑡

= ∫
Λ

(∫

∞

0

𝑒
−𝜆𝑡
𝑑

𝑑𝑡
𝜓 (𝜙 (y, 0, 𝑡)) 𝑑𝑡) 𝑔 (y) 𝑑𝜇y

= ∫
Λ

(𝑒
−𝜆𝑡

𝜓(𝜙 (y, 0, 𝑡))󵄨󵄨󵄨󵄨
∞

0
𝑔 (y) 𝑑𝑦

+𝜆∫
Λ

(∫

∞

0

𝑒
−𝜆𝑡

𝜓 (𝜙 (y, 0, 𝑡)) 𝑑𝑡))𝑔 (y) 𝑑𝜇y

= −∫
Λ

𝑔 (y) 𝜓 (y) 𝑑𝜇y

+ 𝜆∫
Λ

(∫

∞

0

𝑒
−𝜆𝑡

𝑔 (𝜙 (k, 0, 𝑡)) 𝑑𝑡)𝜓 (k) 𝑑𝜇k

= −∫
Λ

(𝑔 − 𝜆𝑝)𝜓𝑑𝜇.

(32)

This implies that 𝑝 ∈ 𝐷(D). Hence 𝑇
0
⊂ D, and D𝑝 =

𝑇
0
𝑝.

Remark 3 (conservativeness of the transportmodel). Because
the flow process does not modify the total number of
individuals in the system, let us show that the model (13) is
conservative in the space X

𝑟
; that is, the law (4) is satisfied.

We have proved that the semigroup generated by the operator
D is stochastic; then we have

0 = ∫
Λ

D𝑝 𝑑𝜇, ∀𝑝 ∈ 𝐷 (D) , then

0 = ∫
R3
∫

∞

0

𝑚
𝑟

D𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥, ∀𝑡 ≥ 0, 𝑟 ≥ 1.

(33)

Thus, ∫
R3
∫
∞

0

𝑚D𝑝(𝑡, 𝑥,𝑚)𝑑𝑚𝑑𝑥 = 0, for all 𝑡 ≥ 0 which
leads to

𝑑

𝑑𝑡
N (𝑡) =

𝑑

𝑑𝑡
(∫

R3
∫

∞

0

𝑚𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥)

= ∫
R3
∫

∞

0

𝑚𝜕
𝑡
𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥

= ∫
R3
∫

∞

0

𝑚D𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥

= 0

(34)

and therefore proving the conservativeness of the transport
model in (18).

3. Perturbed Transport-Fragmentation
Problems

We turn now to the transport problem with the loss part
of the fragmentation process. We assume that there are two
constants 0 < 𝜃

1
and 𝜃
2
such that for every 𝑥 ∈ R3,

𝜃
1
𝛼
𝑚
≤ 𝑎 (𝑥,𝑚) ≤ 𝜃

2
𝛼
𝑚
, (35)

with 𝛼
𝑚
∈ R
+
and independent of 𝑥. Then we can consider

the loss operator (𝐴,𝐷(𝐴)) defined in (8).The corresponding
abstract Cauchy problem reads as

𝜕
𝑡
𝑝 (𝑡, k) = D𝑝 (𝑡, k) − 𝐴𝑝 (𝑡, k) = 𝐹𝑝 (𝑡, k) ,

𝑝 (0, k) =
𝑜

𝑝 (k) , k ∈ Λ,
(36)

where

𝐹 = D − 𝐴. (37)

We provide a characterization of the domain𝐷(𝐹).

Lemma 4. Consider𝐷(𝐹) = 𝐷(D) ∩ 𝐷(𝐴) (=D(D)).

Proof. First of all it is obvious to see that 𝐷(D) ∩
𝐷(𝐴) = 𝐷(D) since 𝐷(𝐴) = X

𝑟
. Because D is con

servative, integration of (36) over Λ gives (𝑑/𝑑𝑡)‖𝑝‖
𝑟
=

(𝑑/𝑑𝑡) ∫
R3
∫
∞

0

𝑚
𝑟

𝑝(𝑡, 𝑥,𝑚)𝑑𝑚𝑑𝑥 = −∫
R3
∫
∞

0

𝑎(𝑥,𝑚)𝑚
𝑟

𝑝(𝑥,

𝑚)𝑑𝑚𝑑𝑥. Hence (35) leads to

− ∫
R3
∫

∞

0

𝜃
2
𝛼
𝑚
𝑚
𝑟

𝑝 (𝑥,𝑚) 𝑑𝑚𝑑𝑥

≤ −∫
R3
∫

∞

0

𝑎 (𝑥,𝑚)𝑚
𝑟

𝑝 (𝑥,𝑚) 𝑑𝑚𝑑𝑥

≤ −∫
R3
∫

∞

0

𝜃
1
𝛼
𝑚
𝑚
𝑟

𝑝 (𝑥,𝑚) 𝑑𝑚𝑑𝑥

(38)

for all 𝑝 ∈ (X
𝑟
)
+
, and, using Gronwall’s inequality, we obtain

−𝜃
2
𝛼
𝑚

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟 ≤

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟 ≤ −𝜃1𝛼𝑚

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟.

(39)

Then

𝑒
−𝜃2𝛼𝑚𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑜

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟
≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟 ≤ 𝑒

−𝜃1𝛼𝑚𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑜

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟
. (40)

This inequality for 𝑝 = 𝐺
𝐹
(𝑡)
𝑜

𝑝 yields

𝑒
−𝜃2𝛼𝑚𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑜

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐺
𝐹
(𝑡)
𝑜

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟
≤ 𝑒
−𝜃1𝛼𝑚𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑜

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟
, (41)



6 Mathematical Problems in Engineering

where
𝑜

𝑝∈ (𝐶
∞

0
(Λ))
+
⊆ 𝐷(𝐹)

+
. If we take 0 ≤

𝑜

𝑝∈ X
𝑟
, then we

can alwaysmollify it by construction of approximations to the
identity (mollifiers)𝜛

𝜀
(k) = 𝐶

𝜀
𝜛(k/𝜀) (as in [5, Example 2.1]),

where 𝜛 is a 𝐶∞
0
(Λ) function defined by

𝜛 (k) =
{

{

{

exp( 1

|k|2 − 1
) for |k| < 1,

0 for |k| ≥ 1
(42)

and 𝐶
𝜀
are constants chosen so that ∫

Λ

𝜛
𝜀
(k)𝑑𝑥 = 1.

Using the mollification of
𝑜

𝑝 by taking the convolution
𝑜

𝑝
𝜀
:= ∫
Λ

𝑜

𝑝 (k − y) 𝜛
𝜀
(y) 𝑑𝜇

𝑦
= ∫
Λ

𝑜

𝑝 (y) 𝜛
𝜀
(k − y) 𝑑𝜇

𝑦
,

(43)

we obtain
𝑜

𝑝
𝜀
inX
𝑟
(since

𝑜

𝑝∈ X
𝑟
) and

𝑜

𝑝= lim
𝜀→0
+

𝑜

𝑝
𝜀
in X
𝑟
.

Moreover,
𝑜

𝑝
𝜀
are also nonnegative by (43) since 0 ≤

𝑜

𝑝, and
the family (

𝑜

𝑝
𝜀
)
𝜀
⊆ 𝐶
∞

0
(Λ). This shows that any nonnegative

𝑜

𝑝 taken in X
𝑟
can be approximated by a sequence of

nonnegative functions of 𝐶∞
0
(Λ). Inequality (41) is therefore

valid for any nonnegative
𝑜

𝑝∈ X
𝑟
. Using the fact that any

arbitrary element
𝑜

𝑔 ofX
𝑟
(equipped with the pointwise order

almost everywhere) can be written in the form
𝑜

𝑔=
𝑜

𝑔
+
−
𝑜

𝑔
−
,

where
𝑜

𝑔
+
,
𝑜

𝑔
−
∈ (X
𝑟
)
+
, the positive element approach [18, 19]

or [5, Theorem 2.64], allows us to extend the right inequality
of (41) to allX

𝑟
so as to have

󵄩󵄩󵄩󵄩𝐺𝐹 (𝑡) 𝑝
󵄩󵄩󵄩󵄩𝑟 ≤ 𝑒

−𝜃1𝛼𝑚𝑡
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟.

(44)

Using the semigroup representation of the resolvent [5,
Theorem 3.34], we obtain for 𝜆 > 0

󵄩󵄩󵄩󵄩𝑅 (𝜆, 𝐹) 𝑝
󵄩󵄩󵄩󵄩𝑟 ≤ ∫

∞

0

𝑒
−𝜆𝑡󵄩󵄩󵄩󵄩𝐺𝐹 (𝑡) 𝑝

󵄩󵄩󵄩󵄩𝑟𝑑𝑡

≤ ∫

∞

0

𝑒
−𝜆𝑡

𝑒
−𝜃1𝛼𝑚𝑡

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟𝑑𝑡

≤
1

𝜆 + 𝜃
1
𝛼
𝑚

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟.

(45)

By the right inequality of (35), we obtain that

󵄩󵄩󵄩󵄩𝐴𝑅 (𝜆, 𝐹) 𝑝
󵄩󵄩󵄩󵄩𝑟 ≤

𝜃
2
𝛼
𝑚

𝜆 + 𝜃
1
𝛼
𝑚

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟 ≤

𝜃
2

𝜃
1

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑟. (46)

This relation states that 𝐷(𝐴) ⊇ 𝐷(𝐹) (the domain of 𝐴 is at
least that of 𝐹). Because 𝐹 = D − 𝐴 and 𝐴 is bounded, we
exploit the following relation for resolvent inX

𝑟
:

𝜆𝐼 − 𝐹 = 𝜆𝐼 −D + 𝐴𝑅 (𝜆, 𝐹) (𝜆𝐼 − 𝐹) ,

𝐼 = (𝜆𝐼 −D) 𝑅 (𝜆, 𝐹) + 𝐴𝑅 (𝜆, 𝐹) ,

𝑅 (𝜆,D) = 𝑅 (𝜆, 𝐹) + 𝑅 (𝜆,D) 𝐴𝑅 (𝜆, 𝐹) ,

𝑅 (𝜆, 𝐹) = 𝑅 (𝜆,D) (𝐼 − 𝐴𝑅 (𝜆, 𝐹))

(47)

for every 𝑚 ∈ R
+
. This leads to 𝐷(D) ⊇ 𝐷(𝐹), and therefore

𝐷(𝐹) ⊆ 𝐷(D) ∩ 𝐷(𝐴).
On the other hand, if 𝑝 ∈ 𝐷(D) ∩𝐷(𝐴) then ‖D𝑝‖

𝑟
< ∞

and ‖𝐴𝑝‖
𝑟
< ∞. Therefore
󵄩󵄩󵄩󵄩D𝑝 − 𝐴𝑝

󵄩󵄩󵄩󵄩𝑟 ≤
󵄩󵄩󵄩󵄩D𝑝
󵄩󵄩󵄩󵄩𝑟 +
󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩𝑟 < ∞, (48)

meaning that 𝑝 ∈ 𝐷(𝐹), and thus 𝐷(D) ∩ 𝐷(𝐴) ⊆ 𝐷(𝐹),
which ends the proof.

By the condition (35), the operator 𝐴 is the generator
of a 𝐶

0
-semigroup of contractions, let us say (𝐺

𝐴
(𝑡))
𝑡≥0

. The
following theorem holds.

Theorem 5. Assume that (35) is satisfied; then the opera-
tor (𝐹,𝐷(𝐹)) is the generator of a substochastic semigroup
(𝐺
𝐹
(𝑡))
𝑡≥0

given by

[𝐺
𝐹
(𝑡)𝑝] (k) = [ lim

V→∞
[𝐺D (

𝑡

V
)𝐺
𝐴
(
𝑡

V
)]

V

𝑝] (k) (49)

for 𝑝 ∈ X
𝑟
and 𝑡 > 0, where (𝐺D(𝑡))𝑡≥0 is defined by (21).

Proof. First of all let us prove that 𝐹 is the generator of a
substochastic semigroup (𝐺

𝐹
(𝑡))
𝑡≥0

inX
𝑟
given by

𝐺
𝐹
(𝑡) 𝑝 = lim

V→∞
[𝐺D (

𝑡

V
)𝐺
𝐴
(
𝑡

V
)]

V

𝑝 (50)

for 𝑝 ∈ 𝐷(𝐹).
We need to show that D and 𝐴 satisfy the conditions of

Corollary 5.5 in the book by Pazy [20].
(a) We know by Theorem 2 and assumption (35) that D

and 𝐴 are generators of positive semigroups of contractions;
then

󵄩󵄩󵄩󵄩𝐺D(𝑡)
󵄩󵄩󵄩󵄩𝑟 ≤ 1 = 1𝑒

0𝑡

,

󵄩󵄩󵄩󵄩𝐺𝐴 (𝑡)
󵄩󵄩󵄩󵄩𝑟 ≤ 1 = 1𝑒

0𝑡

∀𝑡 ≥ 0.

(51)

Thus,D, 𝐴 ∈ G(1, 0) and 𝐺D(𝑡) ≥ 0, 𝐺𝐴(𝑡) ≥ 0 for all 𝑡 ≥ 0.
(b) ByHille-YosidaTheorem [5,Theorem 3.5],D is closed

and densely defined inX
𝑟
, and becauseX

𝑟
= 𝐷(𝐴) ⊃ 𝐷(D),

we have𝐷(D) ∩ 𝐷(𝐴) = 𝐷(D) is dense inX
𝑟
.

(c) By the above condition (a), we can write
󵄩󵄩󵄩󵄩󵄩
(𝐺D (𝑡) 𝐺𝐴 (𝑡))

V󵄩󵄩󵄩󵄩󵄩𝑟
≤
󵄩󵄩󵄩󵄩𝐺D (𝑡)

󵄩󵄩󵄩󵄩
V
𝑟

󵄩󵄩󵄩󵄩𝐺𝐴 (𝑡)
󵄩󵄩󵄩󵄩
V
𝑟

≤ 1

= 1𝑒
0V𝑡
, V = 1, 2, 3, . . . .

(52)

(d) By the bounded perturbation theorem [5, Theorem
4.9], D − 𝐴 is the generator of a positive semigroup of
contractions since D generates a positive semigroups of
contractions (Theorem 2), and 𝐴 is bounded (assumption
(35)).

We know that 𝜆𝐼− (D−𝐴) : 𝐷(D) → X
𝑟
, and by Hille-

Yosida Theorem, 𝜆𝐼 − (D − 𝐴) must be invertible for some
𝜆 > 0 and (𝜆𝐼 − (D − 𝐴))−1 ∈ L(X

𝑟
) (the space of bounded

linear operators from X
𝑟
into X

𝑟
). Then the range of 𝜆𝐼 −

(D − 𝐴) = X
𝑟
. Thus 𝜆𝐼 − (D − 𝐴) is densely defined inX

𝑟
.
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All the conditions of Corollary 5.5 in [20] are satisfied by
D and 𝐴; then 𝐹 = D − 𝐴 = D − 𝐴 = 𝐹 is the generator of a
semigroup (𝐺

𝐹
(𝑡))
𝑡≥0

defined by

[𝐺
𝐹
(𝑡) 𝑝] (k)

= [ lim
V→∞

[𝐺D (
𝑡

V
)𝐺
𝐴
(
𝑡

V
)]

V

𝑝] (k) , 𝑝 ∈ X
𝑟
,

(53)

where we have used the fact that D − 𝐴 is closed since it is
the generator of a positive semigroup of contractions (Hille-
Yosida Theorem).

Let us show that (𝐺
𝐹
(𝑡))
𝑡≥0

is substochastic. By (50) and
the above condition (a), we have 𝐺

𝐹
(𝑡) ≥ 0 for all 𝑡 ≥ 0 since

𝐺
𝐹
(𝑡)𝑝 is the limit of a sequence of elements of the positive

cone ofX
𝑟

(X
𝑟
)
+
= {𝑔 ∈ X

𝑟
; 𝑔 ≥ 0} which is closed. (54)

Lastly, by (52) and (50), we have
󵄩󵄩󵄩󵄩𝐺𝐹 (𝑡)

󵄩󵄩󵄩󵄩𝑟 ≤ lim
V→∞

󵄩󵄩󵄩󵄩𝐺D (𝑡)
󵄩󵄩󵄩󵄩
V
𝑟

󵄩󵄩󵄩󵄩𝐺𝐴 (𝑡)
󵄩󵄩󵄩󵄩
V
𝑟

≤ 1

(55)

for all 𝑡 ≥ 0.

Now we take the gain part of the fragmentation process
defined by (9) with the coefficients satisfying the conserva-
tion law (3) and consider the perturbed transport equation

𝜕

𝜕𝑡
𝑝 = D𝑝 − 𝐴𝑝 + 𝐵𝑝,

𝑝
󵄨󵄨󵄨󵄨𝑡=0 =

o
𝑝 .

(56)

Theorem 6. If the assumptions of Theorem 5 hold, then there
is an extension (K, 𝐷(K)) of (D − 𝐴 + 𝐵, 𝐷(D) that
generates the smallest substochastic semigroup onX

𝑟
, denoted

by (𝐺K(𝑡))𝑡≥0.

Proof. This theorem is a direct continuation of Theorem 5
by virtue of the substochastic semigroup theory in Kato’s
Theorem in 𝐿

1
(see [5, Corollary 5.17]). Because 𝐷(𝐵) :=

𝐷(𝐴) (relation (9)), we have 𝐷(𝐵) ⊃ 𝐷(D) ∩ 𝐷(𝐴). Thus,
to apply Kato’s Perturbation Theorem, we just need to show
that, for all 𝑝 ∈ 𝐷(D − 𝐴)

+
= (𝐷(D))

+
,

∫
Λ

(D𝑝 − 𝐴𝑝 + 𝐵𝑝) 𝑑𝜇 ≤ 0. (57)

Since 𝑝 ∈ 𝐷(D)
+
and since ‖𝐴𝑝‖

𝑟
< ∞, ‖𝐵𝑝‖

𝑟
< ∞, then

we can split (57) so as to get its left-hand side equal to

∫
Λ

D𝑝𝑑𝜇

+ ∫
R3
∫

∞

0

𝑚
𝑟

( − 𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)

+∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑑𝑠) 𝑑𝑚𝑑𝑥.

(58)

The first term vanishes by the stochasticity (33) of the
operator D. For the other term, using the relations (11) and
(12) yields

∫
R3
∫

∞

0

𝑚
𝑟

( − 𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)

+∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑑𝑠)𝑑𝑚𝑑𝑥

≤ ∫
R3
∫

∞

0

𝑚
𝑟

(−𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)) 𝑑𝑚𝑑𝑥

+ ∫
R3
∫

∞

0

𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑠
𝑟

𝑑𝑠𝑑𝑥

= 0,

(59)

which proves the theorem.

4. Concluding Remarks

In this paper, we used the theory of strongly continuous
semigroups of operators [20] to analyze the well posedness
of an integrodifferential equation modelling convection-
fragmentation processes. This work generalizes the preced-
ing ones with the inclusion of the spatial transportation
kernel which was not considered before. We proved that
the combined fragmentation-transportation operator is the
infinitesimal generator of a strongly continuous stochastic
semigroup, thereby addressing the problem of existence of
solutions for thismodel. However the full identification of the
generator and characterization of its domain remain an open
problem.
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