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A harvested prey-predatormodel with density-dependentmaturation delay and stage structure for prey is proposed, where selective
harvest effort on predator population is considered. Conditionswhich influence positiveness and boundedness of solutions ofmodel
system are analytically investigated. Criteria for existence of all equilibria and uniqueness of positive equilibrium are also studied.
In order to discuss effects of maturation delay and harvesting on model dynamics, local stability analysis around all equilibria of
the proposed model system is discussed due to variation of maturation delay and harvest effort level. Furthermore, global stability
of positive equilibrium is investigated by utilizing an iterative technique. Finally, numerical simulations are carried out to show
consistency with theoretical analysis.

1. Introduction

In the natural world, many species have a life history that
takes them through two stages, juvenile stage and adult
stage. Individuals in each stage are identical in biological
characteristics, and some vital rates (rates of survival, devel-
opment, and reproduction) of individuals in a population
almost always depend on stage structure. Furthermore, many
complex biological phenomena arising in prey-predator
ecosystem always depend on the past history of system, and
it has been recognized that time delay may have complicated
impact on dynamics of prey-predator ecosystem [1]. In the
past several decades, there has been an increasing interest in
prey-predator model system with stage structure and time
delay (see [2–26] and the references therein).

In the model proposed by Aiello and Freedman [2], stage
structure of single population growth with stage structure
and time delay representing for maturation of population is
considered. Their model predicts a positive steady state as
the global attractor, thereby suggesting that stage structure
does not generate sustained oscillations frequently observed

in single population in the real world. Subsequent work
made by other authors [3, 6, 7, 12–14] suggests that time
delay to adulthood should be state dependent. Generally,
boundedness and persistence of solutions of model system
may be affected by introduction of time delay into prey-
predator system with stage structure [14, 15, 20–22, 24–
26]. Time delay can also cause loss of stability and other
complicated dynamical behavior [27]. Especially, there is
a well-developed theory of stage-structured models which
incorporate time delay into maturity of population [4].

It is well known that harvesting has a strong impact on
dynamic evolution of a population; there has been consid-
erable interest in the modeling of harvesting of biological
resources [1]. In these models, the harvesting effort is con-
sidered to be a dynamic variable; several kinds of harvesting
policies are utilized to study the dynamical behavior of the
model system. In recent years, there has been growing interest
in the study of stage-structured prey-predator system with
harvesting. Several prey-predatormodels with stage structure
and harvest effort on predator have been investigated in [28–
33] and the references therein.
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Recently, Huo et al. [24] investigated dynamical behavior
and stability of the following stage-structured system with
time delay:
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where 𝑥
1
(𝑡), 𝑥
2
(𝑡), and𝑦(𝑡) represent the density of immature

prey population, mature prey population and predator popu-
lation, at time 𝑡, respectively; 𝑟

1
is the intrinsic growth rate of

mature prey population, and 𝑑 is the death rate of immature
prey population. Constant 𝜏 ≥ 0 denotes maturation delay of
immature prey population tomature prey population, and the
term 𝑟
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−𝑑𝜏
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(𝑡−𝜏) represents the immature prey population

who were born at time 𝑡 − 𝜏 and survived at time 𝑡. 𝑏 denotes
the intracompetition rate for mature prey population due to
overcrowding phenomenon with mature prey population. 𝑎

1

is the maximum value of the per capita reduction rate of
mature prey population due to predator population, and 𝑎

2
is

the maximum value of the per capita reduction rate of preda-
tor population due to mature prey population. 𝑘

1
measures

the extent to which the environment provides protection to
mature prey population, and 𝑘

2
measures the extent to which

the environment provides protection to predator population.
𝑟

2
represents the maximal per capita growth rate of predator

population. All the parameters mentioned previously are all
positive constants. Furthermore, global stability of positive
equilibrium of model system (1) is investigated in [26].

It is well known that the length of time for prey population
to maturity is density dependent; that is, maturation time
depends on the total population amount of prey population
within prey predator ecosystem, and prey population takes
less time to reach maturity with depletion of predator popu-
lation [23, 34–36]. Density-dependentmaturity of population
in prey predator ecosystem is discussed in their work,
which reveals that density-dependent effects of the predators’
counterparts to prey defenses and the density dependence
effect of each type of predator offense are analogous to the
corresponding type of prey defense. Dynamical behavior
and stability switch is investigated in [23, 34–36]. However,
harvest effort on population within prey-predator ecosystem
is not considered in [23, 34–36].

By assuming maturity delay of prey population is density
dependent and predator population is harvested; work done
in [24] is extended in this paper, and a harvested prey
predator model with density-dependent maturation delay
and stage structure for prey population is proposed in
the second section of this paper. In the third section of
this paper, positiveness and boundedness of solution of the
proposed model are studied, and the conditions for existence
of equilibria and uniqueness of positive equilibrium are also
investigated. Local stability analysis around all equilibria
is discussed due to variation of maturation delay as well
as harvest effort level. Furthermore, global stability of the
positive equilibrium of the proposed model system is studied

by utilizing an iterative technique. In the fourth section of
this paper, numerical simulations are carried out to show
consistency with theoretical analysis. Finally, this paper ends
with a conclusion.

2. Model Formulation

Based on the previous analysis, the model proposed by Huo
et al. in [24] is extended by incorporating harvest effort on
predator population and assuming that maturation delay of
prey population is density dependent, and the model can be
governed by the following differential equations:
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The initial conditions for model system (2) take the following
form:
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the harvesting effort to predator population, constant 𝑞 is
the catchability coefficient of predator, and the harvesting
term 𝑞𝐸𝑦(𝑡) follows the catch per unit effort hypothesis [1].
Furthermore, 𝑟
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in model system (2)

share the same interpretations mentioned in model system
(1).

In the following section of this paper, model system (2) is
derived under the following hypotheses.

(H1) Prey population is divided into two-stage groups, that
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death rate 𝑑, which represents transformation term
from immature prey to mature prey.

(H2) Density-dependent time delay 𝜏(𝑧(𝑡)) is taken to be
an increasing differentiable bounded function of the
total population (immature prey, mature prey, and
predator population), which satisfies
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(H3) For the continuity of initial conditions, it is required
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where 𝜙(𝑠) is assumed to be continuous function (for
mathematical reason) and nonnegative (for biological
reason).

(H4) In order to exclude the possibility of immature prey
becoming mature prey except by birth, 𝑡 − 𝜏(𝑧(𝑡))
is assumed to be a strictly increasing function of 𝑡.
Otherwise, there are two different times at which the
same individual immature prey turns to be mature
prey twice at the same instant of time, which is absurd
to practical biological interpretations. (For detailed
methodology, see [3].)

3. Qualitative Analysis of Model System

In this section, positiveness and boundedness of solution of
model system (2) are analytically investigated. Criteria for
existence of equilibria and uniqueness of positive equilibrium
are also studied. By using differential dynamical system
theory and stability theory, local stability analysis around all
equilibria of model system is discussed. Furthermore, global
stability of the positive equilibrium of the proposed model
system is studied by utilizing an iterative technique.

3.1. Positiveness and Boundness of Solutions

Theorem 1. Under hypotheses (H1)–(H4), solutions of model
system (2)with given initial conditions are positive for all 𝑡 > 0.
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According to (6) and the initial conditions of model
system (2), it is easy to show that �̇�
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of model system (2), it is easy to show that 𝑦(𝑡) > 0 for 𝑦(0) >
0, 𝑡 > 0.
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since 𝑢(𝜏) > 0 and 𝑢(𝑡) is strictly decreasing, 𝑥
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It follows from the third equation ofmodel system (2) that
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3.2. Existence of Equilibria and Uniqueness of Positive Equilib-
rium. The existence of biologically reasonable equilibria of
model system (2) is investigated in this subsection. Since the
biological interpretation of the positive equilibrium implies
that immature prey, mature prey, and predator population all
exist, uniqueness of positive equilibrium is also studied.
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1
≥ 𝑘

2
, 𝑟
2
> 𝑞𝐸,

and 𝑎
2
𝑟

1
𝑒

−𝑑𝜏1
> 𝑎

1
𝑟

2
, then there exists at least one positive

equilibrium 𝑃

∗.

Proof. Let Γ
1
and Γ
2
be the solution curves of (22) and (23)

for 𝑥
1
≥ 0, 𝑥

2
≥ 0, respectively. The analytical properties of

curve Γ
1
and Γ
2
are as follows.

For Γ
1
: by simple computing, it can be found that (0, 0) ∈

Γ

1
.
According to (H2) and positiveness of all solutions of

model system (2), it is easy to show that lim
𝑥1→+∞

𝜏(𝑥

1
(𝑡) +

𝑔(𝑥

2
)) = 𝜏

1
, and

lim
𝑥1→+∞

𝑥

2
(𝑥

1
) = lim
𝑥1→+∞

𝑑𝑥

1

𝑟

1
(1 − 𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2)
)

= lim
𝑥1→+∞

𝑑𝑥

1

𝑟

1
(1 − 𝑒

−𝑑𝜏1
)

= +∞.

(24)

For Γ
2
: by differentiating 𝑥

2
against 𝑥

1
along Γ

2
, it can be

obtained that
𝑑𝑥

2

𝑑𝑥

1

= − 𝑑𝑟

1
𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2))

× (𝑑𝑟

1
𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2))
𝜏


(𝑥

1
+ 𝑔 (𝑥

2
))

𝑎

2
+ 𝑟

2
− 𝑞𝐸

𝑎

2

+𝑏 +

𝑎

1
(𝑟

2
− 𝑞𝐸) (𝑘

1
− 𝑘

2
)

𝑎

2
(𝑥

2
+ 𝑘

1
)

2
)

−1

.

(25)

It can be shown that (𝑑𝑥
2
/𝑑𝑥

1
) < 0, provided that 𝑘

1
≥

𝑘

2
, 𝑟
2
> 𝑞𝐸, and then Γ

2
is strictly decreasing.

Furthermore, according to 𝑘
1
≥ 𝑘

2
, 𝑟
2
> 𝑞𝐸, and

𝑎

2
𝑟

1
𝑒

−𝑑𝜏1
> 𝑎

1
(𝑟

2
− 𝑞𝐸),

lim
𝑥1→∞

𝑥

2
(𝑥

1
) =

1

𝑏

(𝑟

1
𝑒

−𝑑𝜏1
−

𝑎

1
(𝑟

2
− 𝑞𝐸) (𝑥

2
+ 𝑘

2
)

𝑎

2
(𝑥

2
+ 𝑘

1
)

) > 0.

(26)

Based on the above analysis, Γ
1
and Γ

2
intersect at

some positive values, which proves the existence of positive
equilibrium 𝑃

∗.

Theorem 4 (uniqueness of positive equilibrium). Supposing
that hypotheses (H1)–(H4) hold, if the following inequality
holds

1 − 𝑑𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
)) (𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
))

× (𝑎

1
ℎ


(𝑥

∗

2
) + 𝑑𝑔


(𝑥

∗

2
) 𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
))

× (𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
)) ) + 𝑎

1
𝑑ℎ


(𝑥

∗

2
)

+ 𝑑𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
) 𝑔


(𝑥

∗

2
) (𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
))

× (𝑑 + 𝑏 + 𝑑𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
))) > 0,

(27)

then there exists a unique positive equilibrium.
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Proof. Based on (22) and (23), 𝑥
2
can be defined as the

function of 𝑥
1
:

Γ

1
: 𝑥
2
= 𝑔

1
(𝑥

1
) ,

Γ

2
: 𝑥
2
= 𝑔

2
(𝑥

1
) .

(28)

The positive equilibrium 𝑃

∗ will be unique, provided that
𝑔



1
(𝑥

1
) > 𝑔



2
(𝑥

1
) for every such 𝑃

∗ otherwise reverse
inequality holds.

By differentiating (22) with respect to 𝑥

1
, it can be

obtained that

𝑔



1
(𝑥

1
) =

𝑑 + 𝑟

1
𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2))
(1 − 𝑑𝜏


(𝑥

1
+ 𝑔 (𝑥

2
)))

𝑟

1
(1 + 𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2))
𝑑𝜏


(𝑥

1
+ 𝑔 (𝑥

2
)) 𝑔


(𝑥

2
))

.

(29)

By differentiating (23) with respect to 𝑥

1
, it can be

obtained that

𝑔



2
(𝑥

1
)

= −

𝑏 + 𝑑𝑟

1
𝜏


(𝑥

1
+ 𝑔 (𝑥

2
)) 𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2))

𝑎

1
ℎ


(𝑥

2
) + 𝑑𝑟

1
𝑔


(𝑥

2
) 𝜏


(𝑥

1
+ 𝑔 (𝑥

2
)) 𝑒

−𝑑𝜏(𝑥1+𝑔(𝑥2))
.

(30)

On the other hand, some expressions about positive
equilibrium𝑃

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
) can be obtained based on (22) and

(23),

𝑟

1
𝑥

∗

2
− 𝑑𝑥

∗

1
= 𝑟

1
𝑥

∗

2
𝑒

−𝑑𝜏(𝑥
∗

1
+𝑔(𝑥
∗

2
))
,

𝑟

1
𝑒

−𝑑𝜏(𝑥
∗

1
+𝑔(𝑥
∗

2
))
= 𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
) .

(31)

According to (31), 𝑔
1
(𝑥

∗

1
) > 𝑔



1
(𝑥

∗

2
) is equivalent to the

following inequality:

1 − 𝑑𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
)) (𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
))

× (𝑎

1
ℎ


(𝑥

∗

2
) + 𝑑𝑔


(𝑥

∗

2
) 𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
))

× (𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
)) ) + 𝑎

1
𝑑ℎ


(𝑥

∗

2
)

+ 𝑑𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
) 𝑔


(𝑥

∗

2
)

× (𝑏𝑥

∗

2
+ 𝑎

1
ℎ (𝑥

∗

2
)) (𝑑 + 𝑏 + 𝑑𝜏


(𝑥

∗

1
+ 𝑔 (𝑥

∗

2
))) > 0.

(32)

This completes the proof.

3.3. Local Stability Analysis around Equilibria. Local stability
of model system (2) around all equilibria of model system (2)
is investigated. Furthermore, stability switch due to variation
ofmaturity delay and harvest effort level is also studied in this
subsection.

The characteristic equation of model system (2) about
some equilibrium ̃

𝑃 = (𝑥

1
, 𝑥

2
, 𝑦) takes the following form:















































𝜆 + (𝑑 −

̃

𝐴) 𝑒

−𝑑𝜏(�̃�)
𝑟

1
(1 + 𝑒

−(𝜆+𝑑)𝜏(�̃�)
) −

̃

𝐴𝑒

−𝑑𝜏(�̃�)
−

̃

𝐴𝑒

−𝑑𝜏(�̃�)

̃

𝐴𝑒

−𝑑𝜏(�̃�)
𝜆 + 2𝑏𝑥 +

𝑎

1
𝑘

1
𝑦

(𝑥

2
+ 𝑘

1
)

2
+

̃

𝐴𝑒

−𝑑𝜏(�̃�)
+ 𝑟

1
𝑒

−(𝜆+𝑑)𝜏(�̃�)
̃

𝐴𝑒

−𝑑𝜏(�̃�)
+

𝑎

1
𝑥

2

𝑘

1
+ 𝑥

2

0 −

𝑎

2
𝑦

2

(𝑘

2
+ 𝑥

2
)

2
𝜆 − 𝑟

2
+ 𝑞𝐸 +

2𝑎

2
𝑦

𝑘

2
+ 𝑥

2















































= 0, (33)

where ̃𝐴 = 𝑑𝑟
1
𝑥

2
𝜏


(�̃�).

Theorem 5. Local stability analysis of model system (2)
around 𝑃

0
and 𝑃

1
is as follows:

(a) if 𝑟
2
< 𝑞𝐸, then model system is locally stable around

𝑃

0
, and 𝑃

1
is a saddle point which is unstable in the 𝑦-

direction and stable in the 𝑥
1
-𝑥
2
plane;

(b) if 𝑟
2
> 𝑞𝐸, then model system is locally stable around

𝑃

1
, and 𝑃

0
is a saddle point which is unstable in the 𝑦-

direction and stable in the 𝑥
1
-𝑥
2
plane.

Proof. For 𝑃
0
(0, 0, 0), (33) reduces to

(𝜆 + 𝑑𝑒

−𝑑𝜏(0)
) (𝜆 + 𝑟

1
𝑒

−(𝜆+𝑑)𝜏(0)
) (𝜆 − (𝑟

2
− 𝑞𝐸)) = 0. (34)

By solving (34), it can be found that there are two negative
eigenvalues and only one positive eigenvalue, provided 𝑟

2
>

𝑞𝐸, which implies that 𝑃
0
is a saddle point which is unstable

in the 𝑦-direction and stable in the 𝑥
1
-𝑥
2
plane. On the other

hand, there are three negative eigenvalues, provided that 𝑟
2
<

𝑞𝐸, which implies that 𝑃
0
is a stable point.

For 𝑃
1
(0, 0, (𝑘

2
(𝑟

2
− 𝑞𝐸)/𝑎

2
)), (33) reduces to

(𝜆 + 𝑑𝑒

−𝑑𝜏(𝑦)
) (𝜆 + 𝑟

1
𝑒

−(𝜆+𝑑)𝜏(𝑦)
+

𝑎

1
𝑦

𝑘

1

) (𝜆 + (𝑟

2
− 𝑞𝐸)) = 0,

(35)

where 𝑦 = 𝑘
2
(𝑟

2
− 𝑞𝐸)/𝑎

2
. It follows from (35) that there are

two negative eigenvalues and only one positive eigenvalue,
provided 𝑟

2
< 𝑞𝐸, which implies that 𝑃

1
is a saddle

point which is unstable in the 𝑦-direction and stable in the
𝑥

1
-𝑥
2
plane. On the other hand, there are three negative
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eigenvalues, provided that 𝑟
2
> 𝑞𝐸, which implies that 𝑃

1
is a

stable point.
In order to discuss the local stability of model system (2)

around the positive equilibrium 𝑃

∗
(𝑥

∗

1
, 𝑥

∗

2
, 𝑦

∗
), (33) reduces

to

















































𝜆 + 𝑑𝐵

∗
− 𝐴

∗
𝑟

1
(1 + 𝐵

∗
𝑒

−𝜆𝜏(𝑧
∗
)
) − 𝐴

∗
−𝐴

∗

𝐴

∗
𝜆 + 𝐴

∗
+ 𝐵

∗
𝑒

−𝜆𝜏(𝑧
∗
)
+ 2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
𝐴

∗
+

𝑎

1
𝑥

∗

2

𝑥

∗

2
+ 𝑘

1

0 −

𝑎

2
𝑦

∗2

(𝑥

∗

2
+ 𝑘

2
)

2
𝜆 − 𝑟

2
+ 𝑞𝐸 +

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

















































= 0, (36)

where 𝐴∗ = 𝑑(𝑟

1
𝑥

∗

2
− 𝑑𝑥

∗

1
)𝜏


(𝑧

∗
), 𝐵∗ = (𝑟

1
𝑥

∗

2
− 𝑑𝑥

∗

1
)/𝑟

1
𝑥

∗

2

and 𝑧∗ = 𝑥∗
1
+ 𝑥

∗

2
+ 𝑦

∗.
It can be computed that

𝑀(𝜆) + 𝑁 (𝜆) 𝑒

−𝜆𝜏(𝑧
∗
)
= 0,

(37)

where𝑀(𝜆) = 𝜆3 + 𝑚
1
𝜆

2
+ 𝑚

2
𝜆 + 𝑚

3
and 𝑁(𝜆) = 𝑛

1
𝜆

2
+

𝑛

2
𝜆 + 𝑛

3
,

𝑚

1
= 𝑑𝐵

∗
+ 2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
− 𝑟

2
+ 𝑞𝐸 +

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

,

𝑚

2
= (

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸)(𝐴

∗
+ 2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
)

− 𝐴

∗
(𝑟

1
− 𝐴

∗
) ,

𝑚

3
=

𝑎

2
𝑦

∗2
𝐴

∗2

(𝑥

∗

2
+ 𝑘

2
)

2
+ 𝑑𝐵

∗
(𝐴

∗
+ 2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
)

× (

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸)

− 𝐴

∗
(𝑟

1
+ 2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
)

× (

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸) ,

𝑛

1
= 𝐵

∗
,

𝑛

2
= 𝐵

∗
(

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸 − 𝑟

1
𝐴

∗
) ,

𝑛

3
= 𝐵

∗
(

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸) (𝑑𝐵

∗
− 𝐴

∗
− 𝑟

1
𝐴

∗
) .

(38)

In the following part, dynamical behavior of model
system (2) around the positive equilibrium𝑃

∗ is investigated.
Furthermore, local stability analysis is discussed due to the
variation of maturation delay and harvest effort level. By
taking 𝜏(𝑧∗) as a bifurcation parameter, conditions for local
stability switch are discussed with the increase of 𝜏(𝑧∗) from
zero.

Case 1 (𝜏(𝑧∗) = 0). In the case of 𝜏(𝑧∗) = 0, it derives
that 𝜏(𝑧∗) remains as a constant (zero or a positive constant)
for all time 𝑡 > 0 based on (H2). In the following part,
𝜏(𝑧

∗
) is denoted as 𝜏∗ for simplifying. Furthermore, it can be

computed that 𝐴∗ = 0, and 𝑚
𝑖
, 𝑛

𝑖
(𝑖 = 1, 2, 3) in (37) can be

rewritten as follows:

�̂�

1
= 𝑑𝐵

∗
+ 2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
− 𝑟

2
+ 𝑞𝐸 +

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

,

�̂�

2
= (

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸)(2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
) ,

�̂�

3
= 𝑑𝐵

∗
(2𝑏𝑥

∗

2
+

𝑎

1
𝑘

1
𝑦

∗

(𝑥

∗

2
+ 𝑘

1
)

2
)(

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸) ,

𝑛

1
= 𝐵

∗
,

𝑛

2
= 𝐵

∗
(

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸) ,

𝑛

3
= 𝑑𝐵

∗2
(

2𝑎

2
𝑦

∗

𝑥

∗

2
+ 𝑘

2

− 𝑟

2
+ 𝑞𝐸) .

(39)

Theorem 6. Supposing that hypotheses (H1)–(H4) hold, if 𝑟
2
−

𝑞𝐸 > 0, then model system (2) is stable around the positive
equilibrium 𝑃

∗ in the case of 𝜏∗ = 0.

Proof. When 𝜏∗ = 0, (37) can be rewritten as follows:

𝜆

3
+ (�̂�

1
+ 𝑛

1
) 𝜆

2
+ (�̂�

2
+ 𝑛

2
) 𝜆 + �̂�

3
+ 𝑛

3
= 0. (40)

Based on the above analysis, it can be concluded that the
roots of (40) have negative real parts by using the Routh-
Hurwitz criteria [1]. Consequently, 𝑃∗ is locally stable in the
case of 𝜏∗ = 0.

When 𝜏∗ > 0, let 𝜆 = 𝑖𝜔 be a root of (37), where 𝜔 is
positive. Substitute 𝜆 = 𝑖𝜔 into (37) and separate the real and
imaginary parts, and then two transcendental equations can
be obtained as follows:

𝜔

3
− �̂�

2
𝜔 = (𝑛

1
𝜔

2
− 𝑛

3
) sin (𝜔𝜏∗) + 𝑛

2
𝜔 cos (𝜔𝜏∗) ,

�̂�

1
𝜔

2
− �̂�

3
= 𝑛

2
𝜔 sin (𝜔𝜏∗) − (𝑛

1
𝜔

2
− 𝑛

3
) cos (𝜔𝜏∗) .

(41)
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By squaring and adding (41), it can be obtained that

𝜔

6
+ 𝐵

1
𝜔

4
+ 𝐵

2
𝜔

2
+ 𝐵

3
= 0, (42)

where 𝐵
1
= �̂�

2

1
− 2�̂�

2
− 𝑛

2

1
, 𝐵
2
= �̂�

2

2
− 2�̂�

1
�̂�

3
+ 2𝑛

1
𝑛

3
− 𝑛

2

2
,

𝐵

3
= �̂�

2

3
−𝑛

2

3
, and �̂�

𝑖
, 𝑛
𝑖
(𝑖 = 1, 2, 3) have been defined in (40).

According to the values of 𝐵
𝑖
(𝑖 = 1, 2, 3) and the Routh-

Hurwitz criteria [1], a simple assumption of the existence of a
positive root for (42) is 𝐵

3
< 0.

If 𝐵
3
< 0 holds, then (42) has a positive root 𝜔

0
, and

(37) has a pair of purely imaginary roots of the form ±𝑖𝜔

0
.

Consequently, it can be obtained by eliminating sin(𝜔𝜏∗)
from (41):

cos (𝜔𝜏∗)

=

(𝑛

2
− �̂�

1
𝑛

1
) 𝜔

4
+ (�̂�

1
𝑛

3
+ �̂�

3
𝑛

1
− �̂�

2
𝑛

2
) 𝜔

2
− �̂�

3
𝑛

3

(𝑛

2
𝜔

2
)

2

+ (𝑛

3
− 𝑛

1
𝜔

2
)

2
,

(43)

The 𝜏
𝑘
corresponding to 𝜔

0
is as follows:

𝜏

𝑘
=

1

𝜔

0

arccos [ ((𝑛
2
− �̂�

1
𝑛

1
) 𝜔

4

+ (�̂�

1
𝑛

3
+ �̂�

3
𝑛

1
− �̂�

2
𝑛

2
) 𝜔

2
− �̂�

3
𝑛

3
)

×((𝑛

2
𝜔

2
)

2

+ (𝑛

3
− 𝑛

1
𝜔

2
)

2

)

−1

] +

2𝑘𝜋

𝜔

0

,

(44)

𝑘 = 0, 1, 2, . . .. By virtue of Butler’s lemma [37], it can be
concluded that the positive equilibrium 𝑃

∗ remains locally
stable for 𝜏∗ < 𝜏

0
, as 𝑘 = 0.

Case 2 (𝜏(𝑧∗) > 0). In the case of 𝜏(𝑧∗) > 0, local stability
of model system (2) around the positive equilibrium 𝑃

∗ can
change only if there exists at least one root of (37) such that
Re 𝜆 = 0.

Let 𝜆 = 𝑖] be one such root, where ] is positive. Substitute
𝜆 = 𝑖] into (37) and separate the real and imaginary parts, and
then two transcendental equations can be obtained as follows:

]
3
− 𝑚

2
] = (𝑛

1
]
2
− 𝑛

3
) sin (]𝜏 (𝑧∗))

+ 𝑛

2
] cos (]𝜏 (𝑧∗)) ,

𝑚

1
]
2
− 𝑚

3
= 𝑛

2
] sin (]𝜏 (𝑧∗))

− (𝑛

1
]
2
− 𝑛

3
) cos (]𝜏 (𝑧∗)) .

(45)

By squaring and adding (45), it can be obtained that

]
6
+ 𝐶

1
]
4
+ 𝐶

2
]
2
+ 𝐶

3
= 0, (46)

where 𝐶
1
= 𝑚

2

1
− 2𝑚

2
− 𝑛

2

1
,𝐶
2
= 𝑚

2

2
− 2𝑚

1
𝑚

3
+ 2𝑛

1
𝑛

3
− 𝑛

2

2
,

𝐶

3
= 𝑚

2

3
−𝑛

2

3
, and𝑚

𝑖
, 𝑛
𝑖
(𝑖 = 1, 2, 3) have been defined in (37).

According to the values of 𝐶
𝑖
(𝑖 = 1, 2, 3) and the Routh-

Hurwitz criteria [1], a simple assumption of the existence of a
positive root for (42) is 𝐶

3
< 0, which derives that

𝜏


(𝑧

∗
)

> (𝑎

1
𝑘

1
𝑟

1
(𝑟

2
− 𝑞𝐸) 𝑥

∗

2
(𝑥

∗

2
+ 𝑘

2
)

+ 𝑎

2
(𝑥

∗

2
+ 𝑘

1
)

2

(𝑟

1
𝑥

∗

2
(2𝑏𝑥

∗

2
− 1) + 𝑑𝑥

∗

1
))

× (𝑟

1
𝑥

∗

2
[𝑎

1
𝑘

1
𝑟

1
(𝑟

2
− 𝑞𝐸) 𝑥

∗

2
(𝑥

∗

2
+ 𝑘

2
)

+ 𝑎

2
(𝑥

∗

2
+ 𝑘

1
)

2

× (𝑑𝑥

∗

1
(𝑑 + 2) + 𝑟

1
𝑥

∗

2
(2𝑏𝑥

∗

2
− 𝑑 − 1))])

−1

.

(47)

If the above inequality holds, then model system (2) is
unstable around the positive equilibrium 𝑃

∗ in the case of
𝜏


(𝑧

∗
) > 0.

3.4. Global Stability Analysis of Positive Equilibrium. In this
section, global stability of the positive equilibrium 𝑃

∗ is
discussed by using an iterative technique in the case of
𝜏


(𝑧

∗
) = 0.

Lemma 7 (see [29]). Consider the following equation:

�̇� = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥

2
(𝑡) , (48)

where 𝑎, 𝑏, 𝑐, and 𝜏 are positive constants, and 𝑥(𝑡) > 0 for
𝑡 ∈ [−𝜏, 0]; it follows that

(i) If 𝑎 > 𝑏, then lim
𝑡→+∞

𝑥(𝑡) = (𝑎 − 𝑏)/𝑐;
(ii) If 𝑎 < 𝑏, then lim

𝑡→+∞
𝑥(𝑡) = 0.

Theorem 8. Supposing that hypotheses (H1)–(H4) and 𝑟
2
−

𝑞𝐸 > 0 hold, if the following inequalities hold

𝑏𝑘

2
+ 𝑟

1
𝑒

−𝑑𝜏
∗

< 𝑎

2
𝑏𝑦

∗
,

𝑎

2
𝑘

1
𝑟

1
𝑒

−𝑑𝜏
∗

> 𝑎

1
(𝑟

2
− 𝑞𝐸) (𝑅

1
+ 𝑘

2
) ,

(49)

then the positive equilibrium 𝑃

∗ is globally asymptotically
stable in the case of 𝜏(𝑧∗) = 0.

Proof. In the case of 𝜏(𝑧∗) = 0, it derives that 𝜏(𝑧∗) remains
as a constant (zero or a positive constant) for all time 𝑡 > 0
based on (H2). In the following part, 𝜏(𝑧∗) is denoted as 𝜏∗
for simplifying. Let

𝑈

1
= lim
𝑡→+∞

sup𝑥
2
(𝑡) , 𝑉

1
= lim
𝑡→+∞

inf 𝑥
2
(𝑡) ,

𝑈

2
= lim
𝑡→+∞

sup𝑦 (𝑡) , 𝑉

2
= lim
𝑡→+∞

inf 𝑦 (𝑡) .
(50)

In the following, we will claim that 𝑈
1
= 𝑉

1
= 𝑥

∗

2
, 𝑈
2
=

𝑉

2
= 𝑦

∗.
It follows from Theorem 2 that 𝑥

2
(𝑡) ≤ 𝑅

1
(𝑅
1
has been

defined inTheorem 2). From model system (2),

̇𝑦 (𝑡) ≤ (𝑟

2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎

2
𝑦

2
(𝑡)

𝑅

1
+ 𝑘

2

.
(51)
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By standard comparison argument, it derives that

𝑈

2
≤

(𝑟

2
− 𝑞𝐸) (𝑅

1
+ 𝑘

2
)

𝑎

2

:= 𝐽

𝑦

1
, (52)

and then for sufficiently small 𝜖 > 0, there exists a 𝑇
11
> 0

such that if 𝑡 > 𝑇
11
, 𝑦(𝑡) ≤ 𝐽𝑦

1
+𝜖. Based onTheorem 1, 𝑥

2
(𝑡)+

𝑘

1
> 𝑘

1
, it can be obtained that for 𝑡 > 𝑇

11
+ 𝜏

∗,

�̇�

2
(𝑡) ≥ 𝑟

1
𝑒

−𝑑𝜏
∗

𝑥

2
(𝑡 − 𝜏

∗
) − 𝑏𝑥

2

2
(𝑡) −

𝑎

1
(𝐽

𝑦

1
+ 𝜖) 𝑥

2
(𝑡)

𝑥

2
(𝑡) + 𝑘

1

> 𝑟

1
𝑒

−𝑑𝜏
∗

𝑥

2
(𝑡 − 𝜏

∗
) − 𝑏𝑥

2

2
(𝑡) −

𝑎

1
(𝐽

𝑦

1
+ 𝜖) 𝑥

2
(𝑡)

𝑘

1

.

(53)

Consider the following auxiliary equation:

V̇ (𝑡) = 𝑟
1
𝑒

−𝑑𝜏
∗

V (𝑡 − 𝜏
∗
) − 𝑏V

2
(𝑡) −

𝑎

1
(𝐽

𝑦

1
+ 𝜖) V (𝑡)

𝑘

1

.
(54)

Under the condition 𝑎
2
𝑘

1
𝑟

1
𝑒

−𝑑𝜏
∗

> 𝑎

1
(𝑟

2
− 𝑞𝐸)(𝑅

1
+ 𝑘

2
),

it follows from Lemma 7 that

lim
𝑡→+∞

V (𝑡) =
𝑘

1
𝑟

1
𝑒

−𝑑𝜏
∗

− 𝑎

1
(𝐽

𝑦

1
+ 𝜖)

𝑏𝑘

1

:= 𝐼

𝑥

1
.

(55)

Hence, 𝑉
1
≥ 𝐼

𝑥

1
. For sufficiently small 𝜖 > 0, there exits

𝑇

12
≥ 𝑇

11
+ 𝜏

∗ such that if 𝑡 > 𝑇
22
, then 𝑥

2
(𝑡) ≥ 𝐼

𝑥

1
− 𝜖.

We derive from the model system (2) that for 𝑡 > 𝑇
12
,

̇𝑦 (𝑡) ≥ (𝑟

2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎

2
𝑦

2
(𝑡)

𝑘

2
+ 𝐼

𝑥

1
− 𝜖

. (56)

A standard comparison argument shows that

lim
𝑡→+∞

𝑦 (𝑡) =

(𝑟

2
− 𝑞𝐸) (𝑘

2
+ 𝐼

𝑥

1
− 𝜖)

𝑎

2

:= 𝐼

𝑦

1
. (57)

Hence, for sufficiently small 𝜖 > 0, there is a 𝑇
21
≥ 𝑇

12

satisfying if 𝑡 > 𝑇

21
, then 𝑦(𝑡) ≥ 𝐼

𝑦

1
− 𝜖. Consequently, for

𝑡 > 𝑇

21
+ 𝜏

∗,

�̇�

2
(𝑡) ≤ 𝑟

1
𝑒

−𝑑𝜏
∗

𝑥

2
(𝑡 − 𝜏

∗
) − 𝑏𝑥

2

2
(𝑡) −

𝑎

1
(𝐼

𝑦

1
− 𝜖) 𝑥

2
(𝑡)

𝑅

1
+ 𝑘

1

.

(58)

Consider the following auxiliary equation:

V̇ (𝑡) = 𝑟
1
𝑒

−𝑑𝜏
∗

V (𝑡 − 𝜏
∗
) − 𝑏V

2
(𝑡) −

𝑎

1
(𝐼

𝑦

1
− 𝜖) V (𝑡)

𝑅

1
+ 𝑘

1

.
(59)

It follows from Lemma 7 that

lim
𝑡→+∞

V (𝑡) =
(𝑟

1
𝑒

−𝑑𝜏
∗

− 𝑏) (𝑅

1
+ 𝑘

1
)

𝑎

1
(𝐼

𝑦

1
− 𝜖)

:= 𝐽

𝑥

1
.

(60)

Hence,𝑈
1
≤ 𝐽

𝑥

1
. For sufficiently small 𝜖 > 0, there exists a

𝑇

22
≥ 𝑇

21
+ 𝜏

∗ satisfying that if 𝑡 > 𝑇
22
, then 𝑥

2
(𝑡) ≤ 𝐽

𝑥

1
+ 𝜖.

For 𝑡 > 𝑇
22
, it gives that

̇𝑦 (𝑡) ≤ (𝑟

2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎

2
𝑦

2
(𝑡)

𝑘

2
+ 𝐽

𝑥

1
+ 𝜖

. (61)

By standard comparison argument, it derives that

lim
𝑡→+∞

𝑦 (𝑡) =

(𝑟

2
− 𝑞𝐸) (𝐽

𝑥

1
+ 𝑘

2
+ 𝜖)

𝑎

2

:= 𝐽

𝑦

2
. (62)

Hence, for sufficiently small 𝜖 > 0, there exists 𝑇
31
≥ 𝑇

22

satisfying that if 𝑡 > 𝑇
31
, 𝑦(𝑡) ≤ 𝐽𝑦

2
+ 𝜖, the for 𝑡 > 𝑇

31
+ 𝜏

∗

�̇�

2
(𝑡) ≥ 𝑟

1
𝑒

−𝑑𝜏
∗

𝑥

2
(𝑡 − 𝜏

∗
) − 𝑏𝑥

2

2
(𝑡) −

𝑎

1
(𝐽

𝑦

2
+ 𝜖) 𝑥

2
(𝑡)

𝑘

1

.

(63)

Consider the following auxiliary equation:

V̇ (𝑡) = 𝑟
1
𝑒

−𝑑𝜏
∗

V (𝑡 − 𝜏
∗
) − 𝑏V

2
(𝑡) −

𝑎

1
(𝐽

𝑦

2
+ 𝜖) V (𝑡)

𝑘

1

.
(64)

By using Lemma 7, it can be obtained that

lim
𝑡→+∞

V (𝑡) =
𝑘

1
𝑟

1
𝑒

−𝑑𝜏
∗

− 𝑎

1
(𝐽

𝑦

2
+ 𝜖)

𝑏𝑘

1

:= 𝐼

𝑥

2
.

(65)

Since it is true for any sufficiently small 𝜖 > 0, 𝑉
1
≥ 𝐼

𝑥

2
.

Therefore, there exists 𝑇
32
≥ 𝑇

31
+𝜏

∗ such that if 𝑡 > 𝑇
32
, then

𝑥

2
(𝑡) ≥ 𝐼

𝑥

2
− 𝜖.

It follows from model system (2) that for 𝑡 > 𝑇
32
,

̇𝑦 (𝑡) ≥ (𝑟

2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎

2
𝑦

2
(𝑡)

𝐼

𝑥

2
− 𝜖 + 𝑘

2

. (66)

By using standard comparison argument, it derives that

lim
𝑡→+∞

𝑦 (𝑡) =

(𝑟

2
− 𝑞𝐸) (𝐼

𝑥

2
− 𝜖 + 𝑘

2
)

𝑎

2

:= 𝐼

𝑦

2
. (67)

Since this is true for any sufficiently small 𝜖 > 0, 𝑉
2
≥ 𝐼

𝑦

2
.

Consequently, there exists𝑇
41
≥ 𝑇

32
satisfying if 𝑡 > 𝑇

41
, then

𝑦(𝑡) ≥ 𝐼

𝑦

2
− 𝜖.

It follows from model system (2) that for 𝑡 > 𝑇
41
+ 𝜏

∗,

�̇�

2
(𝑡) ≤ 𝑟

1
𝑒

−𝑑𝜏
∗

𝑥

2
(𝑡 − 𝜏

∗
) − 𝑏𝑥

2

2
(𝑡) −

𝑎

1
(𝐼

𝑦

2
− 𝜖) 𝑥

2
(𝑡)

𝑅

1
+ 𝑘

1

.

(68)

Consider the following auxiliary equation,

V̇ (𝑡) ≤ 𝑟
1
𝑒

−𝑑𝜏
∗

V (𝑡 − 𝜏
∗
) − 𝑏V

2
(𝑡) −

𝑎

1
(𝐼

𝑦

2
− 𝜖) V (𝑡)

𝑅

1
+ 𝑘

1

.
(69)

By using Lemma 7, it derives that

lim
𝑡→+∞

𝑥

2
(𝑡) =

𝑟

1
𝑒

−𝑑𝜏
∗

(𝑅

1
+ 𝑘

1
) − 𝑎

1
(𝐼

𝑦

2
− 𝜖)

𝑏 (𝑅

1
+ 𝑘

1
)

:= 𝐽

𝑥

2
.

(70)
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Continuing the above process, four sequences {𝐼𝑥
𝑛
}, {𝐼𝑦
𝑛
},

{𝐽

𝑥

𝑛
}, {𝐽𝑦
𝑛
}, 𝑛 = 1, 2, . . ., are obtained which take the following

form

𝐽

𝑥

𝑛
=

𝑟

1
𝑒

−𝑑𝜏
∗

(𝑅

1
+ 𝑘

1
) + 𝑎

1
𝜖 − 𝑎

1
𝐼

𝑦

𝑛

𝑏 (𝑅

1
+ 𝑘

1
)

,

𝐽

𝑦

𝑛
=

(𝜖 + 𝑘

2
) (𝑟

2
− q𝐸) + (𝑟

2
− 𝑞𝐸) 𝐽

𝑥

𝑛−1

𝑎

2

,

𝐼

𝑥

𝑛
=

𝑘

1
𝑟

1
𝑒

−𝑑𝜏
∗

− 𝑎

1
𝜖 − 𝑎

1
𝐽

𝑦

𝑛

𝑏𝑘

1

,

𝐼

𝑦

𝑛
=

(𝑟

2
− 𝑞𝐸) (𝑘

2
− 𝜖) + (𝑟

2
− 𝑞𝐸) 𝐼

𝑥

𝑛

𝑎

2

.

(71)

It is easy to show that

𝐼

𝑥

𝑛
≤ 𝑉

1
≤ 𝑈

1
≤ 𝐽

𝑥

𝑛
, 𝐼

𝑦

𝑛
≤ 𝑉

2
≤ 𝑈

2
≤ 𝐽

𝑦

𝑛
. (72)

By virtue of (71), it derives that

𝐽

𝑦
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(𝑟
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𝑏

+
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2
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𝑏 (𝑅

1
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1
(𝑟

2
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2
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1
(𝑟

1
𝑒
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∗
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2
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1
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1
)−𝑎
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𝐽

𝑦

𝑛−1
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𝑎

2

2
𝑏
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𝑘
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1
+ 𝑘

1
)

.

(73)

Furthermore,

𝐽

𝑦

𝑛
− 𝐽

𝑦

𝑛−1

=

(𝑟

2
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2
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∗

]

𝑎

2
𝑏
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𝑎

1
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2
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1
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1
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1
(𝑅
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1
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𝑦
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(74)

If the following inequalities hold

𝑏𝑘

2
+ 𝑟

1
𝑒

−𝑑𝜏
∗

< 𝑎

2
𝑏𝑦

∗
,

𝑎

2
𝑘

1
𝑟

1
𝑒
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∗

> 𝑎

1
(𝑟

2
− 𝑞𝐸) (𝑅

1
+ 𝑘

2
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(75)

then 𝐽𝑦
𝑛
− 𝐽

𝑦

𝑛−1
≤ 0, which implies that {𝐽𝑦

𝑛
| 𝐽

𝑦

𝑛
≥ 𝑦

∗
, 𝑛 =

1, 2, . . .} is monotonically decreasing. Hence, it can be shown
that limitation of sequence {𝐽𝑦

𝑛
} exists. Taking 𝑛 → +∞, it

follows from (73) that

lim
𝑛→+∞

𝐽

𝑦

𝑛
= 𝑦

∗
. (76)

By using (71) and (76), it can be shown that

lim
𝑛→+∞

𝐽

𝑥

𝑛
= 𝑥

∗

2
, lim
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𝑛
= 𝑦

∗
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𝑛→+∞
𝐼

𝑥

𝑛
= 𝑥

∗

2
.

(77)

According to the definition of𝑈
1
,𝑈
2
,𝑉
1
, and𝑉

2
, it derives

that

𝑈

1
= 𝑉

1
= 𝑥

∗

2
, 𝑈

2
= 𝑉

2
= 𝑦

∗
. (78)

Hence,

lim
𝑡→+∞

𝑥

2
(𝑡) = 𝑥

∗

2
, lim

𝑡→+∞

𝑦 (𝑡) = 𝑦

∗
. (79)

Based on (5), it derives that

𝑥

1
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑟

1
𝑒

−𝑑(𝑡−𝑠)
𝜙 (𝑠) 𝑑𝑠.

(80)

By using L’Hospital’s rule, it derives that

lim
𝑡→+∞

𝑥

1
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1
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𝑟

1

𝑑
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) 𝑥

∗

2
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(81)

According to (20), it is easy to show that

lim
𝑡→+∞

𝑥

1
(𝑡) = lim
𝑡→+∞

𝑟

1

𝑑

(1 − 𝑒

−𝑑𝜏
) 𝑥

∗

2
= 𝑥

∗

1
. (82)

This completes the proof.

4. Numerical Simulation

With the help of MATLAB, numerical simulations are pro-
vided to understand the theoretical results which have been
established in the previous sections of this paper. In order to
facilitate the numerical simulation, it is assumed that 𝜏(𝑧(𝑡))
takes the following form [23]:

𝜏 (𝑧 (𝑡)) = 𝜏

0
+ 𝜏

𝑚
− 𝜏

𝑚
𝑒

−𝑧(𝑡)
,

(83)

where 𝜏
𝑚

∈ (𝜏

0
, 𝜏

1
) satisfying 𝜏

0
+ 𝜏

𝑚
= 𝜏

1
. Based on

Theorem 1, it follows from simple computation that

lim
𝑡→0

𝜏 (𝑧 (𝑡)) = 𝜏

0
, lim

𝑡→+∞

𝜏 (𝑧 (𝑡)) = 𝜏

1
, (84)

which implies that (H2) holds.
Values of parameters are taken from [24] which are used

in Example 1 of [24] and set in appropriate units. 𝑟
1
= 12,

𝑑 = 0.2, 𝑏 = 1.2, 𝑎
1
= 0.5, 𝑎

2
= 2, 𝑘

1
= 2, 𝑘

2
= 1,

𝑟

2
= 2, 𝑞 = 0.25, and 𝐸 = 4. According to the given values of

parameters, it follows fromTheorems 3 and 4 that there exists
a unique positive equilibrium 𝑃

∗
(141.5454, 5.6252, 3.3126).

Furthermore, it can be verified that 𝑃∗ is globally attractive
based on Theorem 8. Responses of model system (2) are
indicated in Figure 1, and the phase portrait of model system
(2) with different initial values is plotted in Figure 2.
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Figure 1: Dynamical responses of model system (2).

5. Conclusion

In this paper, a harvested prey predator model is proposed
to investigate the effects of density-dependent maturation
delay and harvest effort on the dynamics. Conditions which
influence positiveness and boundedness of solutions ofmodel
system are obtained in Theorems 1 and 2, respectively.
Existence of all equilibria of model system and uniqueness
of the positive equilibrium are studied in Theorems 3 and
4, respectively. Biological interpretations of the positive
equilibrium mean immature prey, mature prey, predator
and harvest effort on predator population all exist in the
harvested ecosystem. Consequently, we mainly concentrate
on dynamical analysis around positive equilibrium in this
paper. Local stability analysis in Theorem 6 reveals that local
stability of the positive equilibrium loses due to variation
of maturation delay and harvest effort level. Furthermore,
global stability of the positive equilibrium is discussed by
utilizing an iterative technique inTheorem 8,which is utilized
to investigate the coexistence and interaction mechanism of
harvested prey-predator ecosystem.

Compared with the work done in [24] and the related
work in [26], maturation delay for prey population in this
paper relates to the density of all population within the
harvested ecosystem, which accurately reflects the practical
phenomena in the real world [23, 34–36]. Furthermore, it
should be noted that dynamics of prey predator model with
density-dependent delay for predator population is investi-
gated in [23], while dynamics of harvest effort on population
within ecosystem is not considered. Compared with the
work done in [23], harvest effort on predator population is
introduced, and the effect of harvesting on model dynamics
is also investigated in this paper. With the rapid development

𝑥1(𝑡)
𝑥2(𝑡)

𝑦
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)

50

40
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20
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0
40

30
20
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Figure 2: Phase portrait of model system (2) with different initial
values.

of commercial harvesting on prey predator ecosystem in the
real world, the introduction of harvest effort and related
qualitative analysis makes the work done in this paper have
some new and positive feature.
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