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Abstract. 
We present an online object tracking algorithm based on feature grouping and two-dimensional principal component analysis (2DPCA). Firstly, we introduce regularization into the 2DPCA reconstruction and develop an iterative algorithm to represent an object by 2DPCA bases. Secondly, the object templates are grouped into a more discriminative image and a less discriminative image by computing the variance of the pixels in multiple frames. Then, the projection matrix is learned according to the more discriminative image and the less discriminative image, and the samples are projected. The object tracking results are obtained using Bayesian maximum a posteriori probability estimation. Finally, we employ a template update strategy which combines incremental subspace learning and the error matrix to reduce tracking drift. Compared with other popular methods, our method reduces the computational complexity and is very robust to abnormal changes. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm achieves more favorable performance than several state-of-the-art methods.


1. Introduction
Online object tracking is a fundamental problem in many computer vision applications such as surveillance, driver assistance systems, and human-computer interactions [1–4]. Although researchers have made great progresses in this area, object tracking remains a challenging problem due to the difficulty arising from the appearance variability of an object. Intrinsic and extrinsic changes inevitably cause large appearance variation. Due to the nature of the tracking problem, an effective appearance model is of prime importance for the success of a tracking algorithm [5–8].
In recent years, as a popular dimensionality reduction and feature extraction technique, linear subspace learning has been successfully used in robust visual tracking. Supervised discriminative methods for classification and regression have also been exploited to solve visual tracking problems. For example, Avidan developed a tracking algorithm that employs the support vector machine (SVM) classifier within an optic flow framework [9]. Along similar lines, Williams et al. developed a method in which an SVM-based regressor was used for tracking [10]. As a result of training the regressor on in-plane image motion, this method is not effective in tracking objects with out-of-plane movements. In [11], the author combines the sparse coding and Kalman filtering together and chooses the color histogram and gradient histogram as features to track the object. The template updating strategy of the algorithm is to replace a random template of the original template library with the last tracking result. This updating strategy can easily introduce tracking errors when abnormal changes happen to the object, which would result in failure of tracking. A method by casting object tracking as a sparse approximation problem in a particle filter framework is proposed in [12]. The author solves the problem of object occlusion through the introduction of trivial template which, however, extends the number of templates greatly and increases the computational complexity. In that case, the practical value of algorithm is greatly reduced.
Motivated by the abovementioned discussions, we propose an online object tracking algorithm based on feature grouping and 2DPCA. Firstly, we introduce regularization into the 2DPCA reconstruction and develop an iterative algorithm to represent an object by 2DPCA bases. Secondly, the object templates are grouped into a more discriminative image and a less discriminative image by computing the variance of the pixels in multiple frames. Then, the projection matrix is learned according to the more discriminative image and the less discriminative image, and the samples are projected using the projection matrix. The object tracking results are obtained using Bayesian maximum a posteriori probability (MAP) estimation (Figures 1, 2, and 3). Finally, to further reduce tracking drift, we employ a template update strategy which combines incremental subspace learning and the error matrix. This strategy adapts the template to the appearance change of the target and reduces the influence of the occluded target template as well. The experimental results show that our proposed method has strong robustness to abnormal changes.
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Figure 1: Tracking results of test video “Lemming.”
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Figure 2: Tracking results of test video “Car4.”

















(a)















(b)















(c)















(d)















(e)















(f)
Figure 3: Tracking results of test video “Singer1.”




2. Robust Online Object Tracking Based on Feature Grouping and 2DPCA
2.1. The Theory of 2DPCA
Principal component analysis (PCA) is a well-established linear dimension-reduction technique, which has been widely used in many areas (such as face recognition [13]). It finds the projection directions along which the reconstruction error to the original data is minimum and projects the original data into a lower dimensional space spanned by those directions corresponding to the top eigenvalues. Recent studies demonstrate that two-dimensional principal component analysis (2DPCA) could achieve performance comparable to PCA with less computational cost.
Given a series of image matrices 
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. We note that the underlying assumption of (6) is that the error term is Gaussian distributed with small variances. This assumption is not able to deal with partial occlusion as the error term cannot be modeled with small variances when occlusion occurs. In this paper, we propose an object tracking algorithm by using 2DPCA basis matrices and an additional MLE error matrix 
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2.2. Feature Grouping
In object tracking problem, 
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After decomposing, each template can be written as 
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3. Bayesian Map Estimation
We can regard object tracking as a hidden state variables’ Bayesian MAP estimation problem in the hidden Markov model; that is, with a set of observed samples 
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3.1. State Transition Model
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We assume that the state transition model follows the Gaussian distribution; that is,
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3.2. Observation Likelihood Model
We use object’s reconstruction error to build observation likelihood model; that is,
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4. Experimental Results and Analysis
In order to show the robustness of the object tracking algorithm based on projection discussed in this paper, we choose several sets of public test videos taken under different environments to test the performance of our algorithm (Figures 4, 5, and 6). Given the limited space, in this section we only list three of them to show the tracking results and error curves. Different abnormal changes have happened to the moving objects in chosen test videos such as occlusion, rotation, illumination variation, or scale variation (Table 1).
Table 1: The description of test videos.
	

	Name of test videos	Number of frames	Video description
	

	Lemming	1336	Out-of-plane rotation, scale change, occlusion, and  background cluster
	

	Car4	659	Illumination variation and scale variation
	

	Singer1	351	Illumination variation and  scale change
	














	




	
	
	




	
	
	
	




	
	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	






	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
		
		
	


	
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
	








Figure 4: Quantitative evaluation in terms of center location error for test video “Lemming.”













	
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	




	
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	



	
		
	
		
	
		
	
		
	
		
	
		
	
		


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
			
		
	


	
		
			
			
			
		
	


	
		
			
			
			
			
		
	


	
		
			
			
			
			
			
			
			
			
			
			
		
	








Figure 5: Quantitative evaluation in terms of center location error for test video “Car4.”












	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	




	
	




	
	




	
	




	
	
	




	
	
	



	
		
	
		
	
		
	
		
	
		
	
		
	
		


	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	


	
		
		
	


	
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
	








Figure 6: Quantitative evaluation in terms of center location error for test video “Singer1.”


The implementation of the algorithm is based on Windows operating system. The configuration of the computer is AMD Athlon (TM) X2 Dual Core QL-62 2.00 GHz, 1.74 GB memory. In order to evaluate the performance of the algorithm, we choose six currently most representative and classic tracking algorithms to do the comparison. The six classic algorithms are L1 Tracker [8], IVT Tracker [14], PN Tracker [15], VTD Tracker [16], MIL Tracker [17], and Frag Tracker [18].
The average processing speeds of our method for different test videos are listed in Table 2. The statistical data is obtained using Opencv2.2. Table 2 shows that the proposed algorithm can meet the real-time performance.
Table 2: The average processing speed of our method. 
	

	Name of test videos	The average processing speed (Frame/S)
	

	Lemming	32.57
	Car4	35.13
	Singer1	29.98
	



5. Conclusions
This paper presents a robust tracking algorithm via feature grouping and 2DPCA. In this work, we represent the tracked object by using 2DPCA bases and a feature grouping. With the proposed model, we can reduce the effect of abnormal pixels on tracking algorithms. We obtained the tracking result using Bayesian maximum a posteriori probability estimation framework and designed a stable and robust tracker. Then, we explicitly take partial occlusion and misalignment into account for appearance model update and object tracking. Experiments on challenging video clips show that our tracking algorithm performs better than several state-of-the-art algorithms. Our future work will be the generalization of our representation model into other related fields.
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