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Austempered ductile iron has emerged as a notable material in several engineering fields, including marine applications.The initial
austenite carbon content after austenization transformbut before austempering process for generating bainitematrix proved critical
in controlling the resulted microstructure and thus mechanical properties. In this paper, support vector regression is employed
in order to establish a relationship between the initial carbon concentration in the austenite with austenization temperature and
alloy contents, thereby exercising improved control in the mechanical properties of the austempered ductile irons. Particularly, the
paper emphasizes a methodology tailored to deal with a limited amount of available data with intrinsically contracted and skewed
distribution. The collected information from a variety of data sources presents another challenge of highly uncertain variance. The
authors present a hybrid model consisting of a procedure of a histogram equalizer and a procedure of a support-vector-machine
(SVM-) based regression to gain amore robust relationship to respond to the challenges.The results show greatly improved accuracy
of the proposed model in comparison to two former established methodologies.The sum squared error of the present model is less
than one fifth of that of the two previous models.

1. Introduction

Austempered ductile iron (ADI) is a specialty heat-treated
material that takes advantage of the near-net shape technol-
ogy and low-cost manufacturability of ductile iron castings
to make a high-strength, low-cost, and excellent abrasion-
resistant material. ADI has become an established alternative
in many applications that were previously the exclusive
domain of steel castings, forgings, weldments, powdered
metals, and aluminum forgings and castings [1–6]. This
material has been also proven to perform very well under
different wear mechanisms such as rolling contact fatigue,
adhesion, and abrasion [7, 8]. Considering the low-cost,
design flexibility, flexible machinability, high strength-to-
weight ratio and good toughness, wear resistance, and fatigue
strength of ADI, its usage now is extended into marine
application with increasing interest in the study of corrosion
and coating of ADI [5, 9–12].

ADI is obtained by heat treating process of ductile
irons to have bainite as matrix, which consists of strong

bainitic ferrite platelets and tough high-carbon retained
austenite, along with spheroidal graphite nodules [1–3]. The
typical microstructure of ductile irons, shown in Figure 1(a),
includes spheroidal graphite nodules andmatrix surrounding
them. The bainitic matrix of an austempered ductile iron [8]
is illustrated in Figure 1(b). A significant amount of retained
austenite is presented as the shape of films and blocks in the
matrix.

The heat treatment for developing bainitematrix includes
two steps. First, ductile irons are heated to austenization
temperature (𝑇

𝑟
) around 1550–1750∘F to change the original

matrix into austenite and then quenched down to the bainite
formation temperature range (450–750∘F) for one to three
hours when bainitic ferrite grows isothermally at the expense
of austenite before cooling down to ambient temperature [1–
3, 13, 14]. The austenization reverses the matrix structure
to high temperature austenite phase and in the meantime
determines the initial carbon concentration in austenite (𝐶0

𝛾
)

before austempering process, since the graphite modules
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Figure 1: Typical SEM microstructure of a ductile iron includes (ferritic) matrix surrounding spheroidal graphite nodules (a) and an
austempered ductile iron showing detailed bainitic morphology, in which distinct ferrite platelets are clearly observed [8].

in ductile irons are both a sink and source for carbon
atoms. During the isothermal formation of bainite, termed
as austempering process, bainitic ferrite forms in a displacive
manner at the expense of austenite and partitions exces-
sive carbon into surrounding austenite, which is gradually
enriched during the process. The transformation process
stops when the carbon content of austenite reaches a certain
level which is impossible for the transformation to proceed
further thermodynamically, before all austenite is consumed
[14–16].

2. Role of Austenization Temperature

The mechanical properties of ADI obtained from a given
ductile iron are closely related to the microstructure, which
can be controlled bymanipulating austenization and austem-
pering temperatures [1–5]. The initial carbon content in
austenite (𝐶0

𝛾
), which is dictated by austenization temper-

ature (𝑇
𝑟
), has two significant consequences for the final

microstructure of ADI. Firstly, 𝐶0
𝛾
affects the choice of

austempering temperature since the temperature range for
bainite formation is a strong function of carbon and, to a
lesser extent, other alloy elements [13, 14, 17]. Furthermore,
the austempering temperature is the most important aspect
for controlling ADI’s mechanical properties since the nature
of the bainitic ferrite formed at different temperatures is
variable. Additionally, at a given austempering temperature,
higher 𝐶0

𝛾
will result in a lower volume fraction of bainite

which can be formed during the austempering process [18,
19]. Less bainite formation would lead to more retained
austenite in the final microstructure as well as less carbon
enrichment in retained austenite, resulting in more blocky
shape of retained austenite, which is mechanically unstable
and thus detrimental to mechanical properties [14].

There are two established empirical formulas for estimat-
ing𝐶0
𝛾
. First one involves only austenization temperature and

silicon content [3] as follows:

𝐶
0

𝛾
=

𝑇
𝛾

420
− 0.17 (𝑤𝑡%Si) − 0.95, (1)

where 𝑇
𝑟
is in ∘C, and 𝑤𝑡%Si denotes the weight percentage

of the silicon content. The other one includes other common
alloy contents [20] as follows:

𝐶
0

𝛾
= 1.61 × 10

−6

𝑇
2

𝛾
+ 3.35 × 10

−4

𝑇
𝛾

+ 0.006 (𝑤𝑡%Mn) − 0.11 (𝑤𝑡%Si)

− 0.07 (𝑤𝑡%Ni) + 0.014 (𝑤𝑡%Cu)

− 0.3 (𝑤𝑡%Mo) − 0.435,

(2)

where 𝑤𝑡%Mn, 𝑤𝑡%Si, 𝑤𝑡%Ni, 𝑤𝑡%Cu, and 𝑤𝑡%Mo denote
the weight percentages of manganese, silicon, nickel, copper,
andmolybdenum contents, respectively. It has been indicated
that both formulas can only achieve limited accuracy com-
pared to experimental results [5]. The unsatisfactory results
of the models are not unexpected due to not only the rarity
of available data but also their unspecified variance resulted
from the different instruments and measuring methods
employed in the respective sources of generating the data.
It is clear, nonetheless, that the formulas employing merely
linear multivariate regression are incapable of producing
an accurate model. Moreover, an examination of the data
points shows that the distributions of the corresponding
features are seriously contracted and skewed. To gain a more
reliable accuracy, an inversed lognormal histogram equalizer
and a support-vector-machine-(SVM-) based regression are
introduced to manipulate the data points. The histogram
equalizer, as a preprocessor, is used to reduce the irregularity
and enhance the contrast in the distribution of the data
points. After equalizing the attribute contrast, an SVM-
based regression is employed to fit the input with highly
uncertain variance for a noise-tolerable relationship between
the austenization temperature, 𝑇

𝑟
, and the alloy content with

the initial carbon concentration, 𝐶0
𝛾
. To introduce the model,

the procedure of an inverse lognormal histogram equalizer
for manipulating input data is outlined first, followed by the
procedure of an SVM-based regression model. Finally, the
establishedmodel and its prediction results are presented and
compared with the previous models.
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Figure 2: The soft margin 𝜀-insensitive loss function (a) corresponds to a linear support vector regression (b).

3. Regression Modeling

3.1. Histogram Equalization Preprocessor. In this study, the
histogram equalizer is employed in order to derive a bal-
anced contrast of the regression input attributes. Histogram
equalizer is often utilized to increase the global contrast
of two-dimensional digital images. Through a mapping
operation, the corresponding intensities of an image can be
distributed expansively on the corresponding histogram, and
thus the discrimination of the details could increase. The
characteristics of the enhanced expansiveness are therefore
conducive to the applications in the areas such as X-ray,
thermogram, and face detection images [21, 22]. The present
study adopted the two-dimensional mapping to be one-
dimensional case to influence the input attributes separately
which are chemical compositions and 𝑇

𝑟
. By taking the input

attributes inspection in advance, the attributes show more
or less imbalanced tendency in their distributed histogram.
Due to a general assertion that skewed data distributions
in nature favor a lognormal distribution [23], a lognormal
distribution is asserted for fitting the attributes. An ideal
histogram equalizer is designated to generate a uniform
distributed histogram after the equalization. An inversed
lognormal histogram equalizer, mapping the attributes from
lognormal to uniform distribution, is, hence, employed to
deal with the attributes’ imbalanced tendency.

The lognormal distribution definition is as follows:

𝑇 (𝜌) =
1

𝜌√2𝜋𝜎
2

𝜌

exp
−(ln 𝜌 − 𝜇

𝜌
)
2

2𝜎2
𝜌

, (3)

where 𝜇
𝜌
and 𝜎

2

𝜌
are the natural logarithms of average

and variance of corresponding 𝜃, respectively. The inversed
lognormal histogram equalizer can be given as

𝜌 = 𝑇
−1

(𝜃) . (4)

The mapping is a conversion from lognormal distributed 𝜃
to uniform distributed 𝜌 by the inversed function 𝑇. The
uniform distributed 𝜌 is seeking wider and more balanced
global contrast which is advantageous to the generation of the
fitted function.

To compose a set of input features which contribute
equivalently in the subsequent regression, the attributes 𝜌
should furthermore be normalized as follows:

𝑥
𝑖
=

𝜌
𝑖
− 𝜌
𝑖min

𝜌
𝑖max − 𝜌𝑖min

, 𝑖 = 1, . . . , 6. (5)

3.2. Support Vector Regression. The SVM-based regression,
known to deal with the generalized model of complex
uncertain relationships, has been gaining popularity and
has shown much improved results [24–26], albeit only few
experimental data points, also called observations here, are
available. The present study is aimed to employ the support
vector regression (SVR) to obtain a more accurate rela-
tionship model between the initial carbon concentration in
austenite with austenization temperature and alloy contents.
Advantageous of the structural risk minimization [27, 28],
the SVM-based method for regression [29–32], similar to
that for classification [33, 34], simultaneouslyminimizes both
the model complexity and empirical errors, and in turn
creates a predictor with a wide margin. In classification, the
wide margin represents a high generalization capability for
separating unlabeled samples. On the other hand, the wide
margin in regression represents a smooth approximation
function in which variance from noises will be rejected as
much as possible. In contrast to traditional statistical or
ANN regression model which derives the approximation
function by minimizing the training error between observed
and corresponding predicted responses, the SVR attempts
to minimize a generalization error which combines the
training error and a regularization term to control the model
complexity.The generalization errormainly rejects the highly
variant noises and achieves a rigid regression.

The SVR is intrinsically a kernel-basedmethod [35].With
a given learning set 𝑆 = {(x

1
, 𝑦
1
), . . . , (x

𝑖
, 𝑦
𝑖
), . . . , (x

𝑙
, 𝑦
𝑙
)},

an approximated function 𝑦 = f (x) can be established for
further prediction. In S, x

𝑖
denotes the d-dimensional input

vector, x
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑑
]
T, x
𝑖
∈ R𝑑, and 𝑦

𝑖
denotes the

corresponding target value of input x
𝑖
, 𝑦
𝑖
∈ R. By using the 𝜀-

insensitive loss function (Figure 2(a)) to regularize the degree
of rigidness, the optimized 𝑓 can include all input x

𝑖
within

the boundary of ±𝜀 deviation while keeping the bound-
ary (a tube in space) as straight as possible (Figure 2(b)).
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The essentially regularized rigidness is beneficial to SVR in
finding an optimized generalization for the regression. By
introducing the kernel trick [34, 35], the regression function
can be described as 𝑓(x) = 𝜅(w, x) + 𝑏, where w denotes
a weight vector, w = [𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑑
]
T, w ∈ R𝑑, b denotes

the bias term, and 𝜅(⋅, ⋅) denotes a kernel function. Here, the
kernel function is adopted to deal with the nonlinearity of
the regression. Putting the elementary features together, the
fitting of SVR can then be formally expressed as a primal
convex optimization problem as follows:

min
w,𝜉,𝜉

1

2
‖w‖2 + 𝜆

𝑙

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
𝑖
) , (6)

subject to

𝑦
𝑖
− 𝜅 (w, x

𝑖
) − 𝑏 ≤ 𝜀 + 𝜉

𝑖
,

𝜅 (w, x
𝑖
) + 𝑏 − 𝑦

𝑖
≤ 𝜀 + 𝜉

𝑖
,

𝜉
𝑖
, 𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

(7)

where 𝜆 denotes the regularization factor, and slack variables
𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑙
]
T and 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑙
]
T
are introduced for

allowing errors to copewith some infeasible constraints in the
optimization and form a soft margin. Parameter 𝜀 associated
with the 𝜀-insensitive loss function, 𝜀(𝜉) = max(|𝜉| −
𝜀, 0), controls error tolerance of the regression. The loss
function defines the 𝜀-tube which carries out the rigidness
of the approximated function. So, the parameter 𝜀 affects the
smoothness of the induced regression and the number of
support vectors as well. On the other hand, the parameter
𝜆 controls the tradeoff between keeping the straightness of
subsequent 𝑓 and limiting the deviations to be less than ±𝜀.
Let 𝛼 = [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑙
]
T and 𝛼 = [𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑙
]
T be the

Lagrangemultiplier vectors for the first two sets of constraints
in (7), and take Lagrange of the primal problem of (6)-(7).
The Wolfe dual [36] can be obtained by differentiating the
Lagrange with respect to w, 𝑏 as follows:

max
𝛼,𝛼

−
1

2

𝑙

∑

𝑖,𝑗=1

(𝛼
𝑖
− 𝛼
𝑖
) (𝛼
𝑗
− 𝛼
𝑗
) 𝜅 (x
𝑖
, x
𝑗
)

− 𝜀

𝑙

∑

𝑖=1

(𝛼
𝑖
+ 𝛼
𝑖
) +

𝑙

∑

𝑖=1

𝑦
𝑖
(𝛼
𝑖
− 𝛼
𝑖
) ,

(8)

subject to

𝑙

∑

𝑖=1

(𝛼
𝑖
− 𝛼
𝑖
) = 0, 𝛼

𝑖
, 𝛼
𝑖
∈ [0, 𝜆] , ∀𝑖. (9)

The functions in (8) and (9) become a quadratic optimization
problem.The optimized 𝛼∗ and 𝛼∗ can therefore be obtained
after the optimization procedure. To take advantage of the
sparseness of support vectors [32, 35], only those x

𝑖
’s with

nonzero 𝛼
∗

𝑖
’s, called support vectors (SVs), are taken into

account to form the consequent𝑓.With the SV, weight vector
w can be computed by w = ∑x𝑖∈SV(𝛼

∗

𝑖
− 𝛼
∗

𝑖
)x
𝑖
, and therefore

𝑓 (x) = ∑

x𝑖∈SV
(𝛼
∗

𝑖
− 𝛼
∗

𝑖
) 𝜅 (x
𝑖
, x) + 𝑏. (10)

Several kernel functions have been introduced for SVR,
including linear, polynomial, and Gaussian kernel [32, 35].
A straightforward way of selecting kernel function is to
select the one which can reflect the natural tendency of the
distributed data. In the study, a Gaussian kernel

𝜅 (x
𝑖
, x
𝑗
) = 𝑒
−‖x𝑖−x𝑗‖2/2𝜎2 , (11)

where 𝜎 denotes the width parameter of its corresponding
basis function and was employed to adapt the nonlinearity
of the present problem.

3.3. Flowchart of Proposed Model. Following the steps men-
tioned earlier, a flowchart for the whole proposed model
is illustrated in Figure 3. Two steps, “data preparation” and
“function approximation,” are enclosed mainly in the model.
With the gathered input raw data, the model can generate an
approximated function f (x) for estimating 𝐶0

𝛾
automatically.

4. Results and Discussions

Forty-two experimental data points of𝐶0
𝛾
were collected from

the literature [2, 37–44] for the study. The data points con-
taining six original attributes, including 𝜃

1
(𝑇
𝛾
), 𝜃
2
(𝑤𝑡%Si),

𝜃
3
(𝑤𝑡%Mn), 𝜃

4
(𝑤𝑡%Mo), 𝜃

5
(𝑤𝑡%Ni), and 𝜃

6
(𝑤𝑡%Cu), were

recorded to establish the relationship 𝐶
0

𝛾
= f (𝜃

1
–𝜃
6
) for

prediction.The correspondingmetrics ofmean, variance, and
skewness of the original attributes were determined, as listed
in Table 1. The variance and skewness found are surprisingly
undesirable, given the fact that these data points are collected
from different sources, in which different instruments and
measuring methods were employed.

To enhance the discriminative information contained in
the attributes and to ensure their satisfactory global contrast,
the inversed lognormal histogram equalizer was applied,
mapping original attributes 𝜃

𝑖
to equalized attributes 𝜌

𝑖
.

Figure 4 shows the normalized histograms of the attributes
before and after the equalization. Corresponding metrics of
the equalized attributes compared to those of the original
attributes are also included in Table 1. This table illus-
trates that the skewness of the attributes, except for 𝑇

𝑟
,

are significantly reduced. With their values close to zero,
the remapped attributes are less skewed and more evenly
distributed in Figure 4.Moreover, the histogram examination
of the attributes’ global contrast is followed by reviewing the
panels in Figure 4. Compared with the equalized attributes
𝜌
1
, 𝜌
2
, and 𝜌

3
, the original attributes 𝜃

1
, 𝜃
2
, and 𝜃

3
are more

widely spread in the global contrast. The unexpected spread
may be due to the overequalization. To fulfill the objective
of the study, a combination of the original and the equalized
attributes with wider spread contrast was selected to make up
the SVR input. Consequently, three original attributes 𝜃

1
, 𝜃
2
,
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Table 1: Corresponding metrics of the attributes before and after the inversed lognormal histogram equalization.

𝜃 before equalization 𝜌 after equalization (normalized)
Mean Variance Skewness Mean Variance Skewness

𝑇
𝑟

907.00 2285.70 1.38 0.14 0.07 2.79
wt% Si 2.56 0.08 2.20 0.28 0.17 1.15
wt% Mn 0.31 0.04 1.16 0.41 0.22 0.42
wt% Mo 0.16 0.06 1.21 0.35 0.11 0.71
wt% Ni 0.29 0.28 1.78 0.46 0.03 0.72
wt% Cu 0.18 0.18 2.87 0.71 0.09 −0.50

and 𝜃
3
, together with three equalized attributes 𝜌

4
, 𝜌
5
, and 𝜌

6
,

were chosen for further regression.
The attributes, consisting of the equalized 𝜌

4
–𝜌
6
and those

original sets 𝜌
1
= 𝜃
1
, 𝜌
2
= 𝜃
2
, and 𝜌

3
= 𝜃
3
, were then

normalized into the range [0, 1] for consistent contribution
to the learning process and form the input vector x =
[𝑥
1
, 𝑥
2
, . . . , 𝑥

6
]
T.

There are three adjustable parameters 𝜎, 𝜀, and 𝜆 during
the SVR learning phase. To calibrate the parameters for an
optimized model, the method of cross-validation (CV) has
been undertaken. Following the cross-validation, the dataset
was randomly partitioned into three groups, including 21
data points for training set, 11 data points for validation
set, and 10 data points for test set. By the independence of
the training and validation datasets, the cross-validation was
taken through to pursuit the lowest generalization error and
obtain the corresponding optimized parameters, namely, 𝜎∗,
𝜀
∗, and 𝜆∗. The model parameterized by 𝜎∗, 𝜀∗, and 𝜆∗ is the
most generalizedmodel for the prediction of𝐶0

𝛾
. As presented

in the previous section, the generalized model is resistant to
the input noises. To select the most generalized model, the
sum squared error and mean squared error

SSE =
𝑙set

∑

𝑖=1

(𝑦
𝑖
− 𝑦
𝑖
)
2

, MSE = 1

𝑙set

𝑙set

∑

𝑖=1

(𝑦
𝑖
− 𝑦
𝑖
)
2 (12)

are adopted to evaluate the errors in the cross-validation,
where 𝑙set denotes the set-length of the chosen set, and 𝑦

𝑖

and 𝑦
𝑖
denote observed and corresponding predicted output

responses, respectively.
Since there are three parameters for tuning, adaptively

searching the whole parameter-space is inefficient and may
converge in a slower rate. In this study, a grid-search method
incorporated with priority steps was adopted to speed up the
searching for the optimal solution. The width parameter, 𝜎,
for the basis function determines the nonlinear transforma-
tion of the input data. In general, the larger the width is, the
more linearity the induced model will be. The parameter 𝜆
is a regularization factor for controlling the tradeoff between
the training error and complexity of the induced model. A
larger 𝜆 produces more penalties on the training error and
induces a higher complexity for the model [35]. These two
parameters, 𝜎 and 𝜆, are dominant parameters in SVmachine

Feature inversed
lognormal histogram

equalization by (4)

Start Raw data gathering

Feature selection by
significant contribution

Support vector
regression training

Dataset ready for
SVR

Yes

No

Data preparation

Function approximation

Feature normalization
by (5)

Initial hyperparameters
(𝜆, 𝜎, 𝜀)

Is (𝜆, 𝜎, 𝜀) =
(𝜆∗, 𝜎∗, 𝜀∗)?

Cross-validation

𝑓(x)

Figure 3: Flowchart of the proposed model.
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Figure 4: Histograms of attributes before (𝜃
1
–𝜃
6
) and after (𝜌

1
–𝜌
6
) the histogram equalization. For better comparison, all the attributes are

normalized for chartings.
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Figure 5: The sum squared errors (SSEs) in cross-validation according to different (a) 𝜆, (b) 𝜎, and (c) 𝜀 settings.

and are designated to be determined first in the study. The
ranges for 𝜎 of [5–25] and 𝜆 of [103–107]were selected for the
grid-searching of (𝜆, 𝜎) after some preliminary tests.With the
𝜎
∗ and 𝜆∗ being determined, the cross-validation then seeks

the optimal 𝜀∗ to achieve the most generalized model. In this
study, a relative small value, ranging between [10−3–10−1], was
specified for seeking 𝜀∗.

Figure 5 shows the cross-validated SSEs corresponding
to the changes of 𝜎, 𝜆, and 𝜀. From the panels, 𝜆∗, 𝜎∗,
and 𝜀

∗ were chosen as 107, 20, and 5 × 10−3, respec-
tively, with the minimal SSE of 4.55 × 10−2. With these
optimized parameters, the SVR model was then taken
to certify the prediction capability by the standalone test
dataset.
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Figure 6: Experimental 𝐶0
𝛾
data are plotted against those calculated

𝐶
0

𝛾
obtained by the present SVR model, regression function (1), and

function (2).

Table 2: The mean squared errors (MSEs) of different models.

Training set Validation set Test set
SVMmodel 3.91 × 10

−4

4.13 × 10
−3

5.52 × 10
−3

Regression function (1) 1.13 × 10
−2

0.98 × 10
−2

1.47 × 10
−2

Regression function (2) 1.42 × 10
−2

2.05 × 10
−2

3.07 × 10
−2

As indicated by the unit-slope graphs in Figure 6, which
illustrates the discrepancies between predicted and exper-
imental data, the SVR model established with the chosen
parameters shows much improved accuracy compared with
the two previous models shown in (1) and (2). The MSEs of
the threemodels, not only with the validation dataset but also
with the test dataset, are also detailed in Table 2. For example,
the error of the test dataset for the present SVRmodel is only
about one third to one fifth of the two previous models.

The present model illustrates a more accurate predic-
tion of the initial carbon concentration in austenite after
austenization but before austempering for heat treating duc-
tile iron into ADI. With more accurate control of initial
austenite carbon concentration, the austempering tempera-
ture can be appropriately selected to produce desired ADI
microstructure after austempering and ultimately to meet
target mechanical properties.

5. Conclusion

In the presented paper, support vectormachine for regression
was used to establish a relationship between the initial

carbon concentration of austempered ductile irons after
austenization (𝐶0

𝛾
) with 𝑇

𝑟
(austenization temperature) and

alloy contents in austempering processes.The results indicate
that SVM regression greatly improved the accuracy of 𝐶0

𝛾

prediction in comparison to two established equations using
linear regression. Overall accuracy (sum squared error) of the
present method is five and eight times of those of the two
previousmodels, respectively. A better control of𝐶0

𝛾
has been

proven to be critical in achieving desired microstructures
and mechanical properties for ADI, which has been applied,
among numerous fields, for many marine applications.

The present study also demonstrates the possibility of
employing a similar procedure to deal with contracted and
skewed observations with highly uncertain variance. SVR,
characterized by highly noise resistant as well as flexible in
compromising between accuracy and complexity, is one of
the suitable algorithms to deal with observations collected
from multiple sources, in which instruments and measure-
ments vary wildly.
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