
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 372957, 8 pages
http://dx.doi.org/10.1155/2013/372957

Research Article
Robust Fault Tolerant Control for a Class of Time-Delay
Systems with Multiple Disturbances

Songyin Cao1,2 and Jianzhong Qiao2

1 Department of Automation, College of Information Engineering, Yangzhou University, Yangzhou 225127, China
2National Key Laboratory on Aircraft Control Technology, School of Instrumentation Science and Opto-Electronics Engineering,
Beihang University, Beijing 100191, China

Correspondence should be addressed to Songyin Cao; sycao@yzu.edu.cn

Received 11 April 2013; Accepted 25 May 2013

Academic Editor: Yang Yi

Copyright © 2013 S. Cao and J. Qiao. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A robust fault tolerant control (FTC) approach is addressed for a class of nonlinear systems with time delay, actuator faults,
and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and
the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled
disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC),
fault accommodation, and a mixed 𝐻

2
/𝐻
∞

controller is constructed to reconfigure the considered systems with disturbance
rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the
proposed approach.

1. Introduction

To reduce the influence of model uncertainties and system
disturbances, there are several control approaches focusing
on nonlinear systems with unknown disturbances (see the
survey paper [1] and references therein). The methodologies
can be mainly classified into disturbance attenuation meth-
ods (such as 𝐻

∞
and 𝐻

2
control) and disturbance rejec-

tion approaches (such as output regulation theory, distur-
bance observer based control). The disturbance attenuation
approaches have conservativeness for bounded stochastic
disturbance. The disturbance rejection methods are estab-
lished based on model-matching conditions. It has been
shown that multiple disturbances exist in most practical
systems. The idea of disturbance observer based control
(DOBC) is to construct an observer to estimate and com-
pensate some external disturbances [2]. A composite control
scheme combining DOBC and PD (proportional derivative)
control for flexible spacecraft attitude control was proposed
in the presence of model uncertainty, elastic vibration,
and external disturbances [3]. For nonlinear systems with
multiple disturbances, it has been seen that the 𝐻

∞
and

variable structure control have been integrated with DOBC
in [4, 5]. In [6], a composite DOBC and adaptive control
approach were proposed for a class of nonlinear systems
with multiple disturbances. By constructing a disturbance
compensation gain vector in the composite control law,
a nonlinear robust DOBC was proposed to attenuate the
mismatched disturbances and the influence of parameter
variations from output channels [7].

In order to increase the reliability and safety of practical
engineering, the issues of fault diagnosis and fault tolerant
control (FTC) have become an attractive topic and have
been paid much attention in recent years (see [8–13] and
references therein). It is difficult to accommodate faults if the
disturbances and faults exist simultaneously in the controlled
systems. In [14], an optimal fault tolerant control approach
was proposed for the nonlinear systems, where generalized
𝐻
∞

optimization was applied to estimate the fault and
attenuate the disturbances. In [15], a robust observer was
proposed to simultaneously estimate system states, faults, and
their finite time derivatives and attenuate disturbances; then
an FTC approach was designed based on their estimations.
For systems with modeled disturbance, a fault diagnosis
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approach based on disturbance observer was firstly proposed
in [16] with disturbance rejection performance. For the
nonlinear system with multiple disturbances, [17] addressed
a fault tolerant control approach with disturbance rejection
and attenuation performances. It is well known that time
delay frequently occurs in many practical systems, such as
manufacturing systems, telecommunication, and economic
systems. Therefore, the problem of fault accommodation
for time-delay systems has been a hot topic in the control
field. Many important results have been reported in the
literature (see [18–21] and references therein). In [18], an
adaptive fuzzy fault accommodation control approach was
proposed for nonlinear time-delay system. In [19], a fault
accommodationwas addressed for time-varying delay system
using adaptive fault diagnosis observer. [20] dealt with fault
tolerant guaranteed cost controller design problem for linear
time-delay system against actuator faults.

In this paper, FTC problem is discussed for a class of
time-delay systems with actuator fault and multiple distur-
bances. The first part of multiple disturbances is modeled
disturbance formulated by an exogenous system and the
second one is normbounded uncertain variable. A composite
observer is designed to estimate the modeled disturbance
and time-varying fault. Then, an FTC scheme is addressed
with disturbance rejection and attenuation performance by
combining fault accommodation and DOBC with a robust
𝐻
2
/𝐻
∞

controller.

2. Model Description

In this paper, we consider the following nonlinear system
with time-varying faults, time-delay, and multiple distur-
bances simultaneously:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+ 𝐽 [𝑢 (𝑡) + 𝐹 (𝑡)] + 𝐽
1
𝑑
1
(𝑡) + 𝐽

2
𝑑
2
(𝑡)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is system state, 𝑢(𝑡) is control input,

and 𝑦(𝑡) ∈ 𝑅
𝑚 represents output variable. 𝐹(𝑡) is time-

varying actuator fault to be diagnosed.𝐴,𝐴
𝑑
, 𝐶, 𝐺, 𝐽, 𝐽

1
, and

𝐽
2
represent coefficient matrices of the system with suitable

dimensions. 𝜏 is a known constant delay. The modeled
external disturbance 𝑑

1
(𝑡) is supposed to be generated by a

linear exogenous system described by

𝜔̇ (𝑡) = 𝑊𝜔 (𝑡) + 𝐽
3
𝛿 (𝑡) ,

𝑑
1
(𝑡) = 𝑉𝜔 (𝑡) ,

(2)

where 𝜔(𝑡) is state variable, 𝑊 ∈ 𝑅
𝑝×𝑝

, and 𝑉 and 𝐽
3
are

known parameter matrices of the exogenous system. 𝛿(𝑡) is
additional disturbance which results from perturbations and
uncertainties in the exogenous system.Thedisturbances𝑑

2
(𝑡)

and 𝛿(𝑡) are supposed to have the bounded𝐻
2
norm.

For a known matrix 𝑈
1
, 𝑔(𝑥(𝑡)) is a known nonlinear

vector function that is supposed to satisfy 𝑔(0) = 0 and the
following norm condition:

󵄩󵄩󵄩󵄩𝑔 (𝑥
1
(𝑡)) − 𝑔 (𝑥

2
(𝑡))

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑈1 (𝑥1 (𝑡) − 𝑥

2
(𝑡))

󵄩󵄩󵄩󵄩 (3)

for any 𝑥
1
(𝑡) and 𝑥

2
(𝑡).

The following assumptions are required so that the
considered problem can be well-posed in this paper.

Assumption 1. (𝐴, 𝐽) is controllable; (𝑊, 𝐽
1
𝑉) is observable.

Assumption 2. rank(𝐽, 𝐽
1
) = rank(𝐽).

Remark 1. In practical engineering, the exogenous model
(2) can represent many kinds of disturbances including
harmonic disturbance signal caused by vibration, unknown
constant load in themotor, inertial sensor drift represented by
first-order Gaussian Markov process, and so on. Compared
with the previous works [17, 19, 20], both the time-delay
and multiple disturbances are simultaneously considered in
this paper. Furthermore, the modeled disturbance 𝑑

1
(𝑡) and

control input are assumed in different channels, while in [17]
are in the same channel.

3. Robust Fault Tolerant Controller Design

3.1. Disturbance Observer. In order to reject the mod-
eled external disturbance, disturbance observer should be
designed in this subsection. In this paper, we only consider
the case of available states. The disturbance observer is
formulated as

𝜔̂ (𝑡) = 𝜉 (𝑡) − 𝐿𝑥 (𝑡) ,

𝑑
1
(𝑡) = 𝑉𝜔̂ (𝑡) ,

(4)

where 𝜉(𝑡) is auxiliary variable generated by

𝜉̇ (𝑡) = (𝑊 + 𝐿𝐽
1
𝑉) [𝜉 (𝑡) − 𝐿𝑥 (𝑡)] + 𝐿

× [𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+𝐽𝑢 (𝑡) + 𝐽𝑢
𝑓𝑐

(𝑡)]

(5)

𝜔̂(𝑡) is estimation of 𝜔(𝑡), 𝑑
1
(𝑡) is estimation of modeled

disturbance 𝑑
1
(𝑡), matrix 𝐿 is the disturbance observer gain

to be determined later, and 𝑢
𝑓𝑐
(𝑡) = 𝐹(𝑡) is compensation

term to be designed in fault diagnosis observer, where 𝐹(𝑡) is
denoted as an estimation of fault 𝐹(𝑡).

By defining 𝑒
𝜔
(𝑡) = 𝜔(𝑡) − 𝜔̂(𝑡) and 𝑒

𝐹
(𝑡) = 𝐹(𝑡) − 𝐹(𝑡),

estimation error system can be obtained from (1), (2), (4), and
(5) to show the following:

̇𝑒
𝜔
(𝑡) = (𝑊 + 𝐿𝐽

1
𝑉) 𝑒
𝜔
(𝑡) + 𝐿𝐽𝑒

𝐹
(𝑡) + 𝐿𝐽

2
𝑑
2
(𝑡) + 𝐽

3
𝛿 (𝑡) .

(6)

In the following subsection, we will construct a fault
diagnosis observer with disturbance estimation so that the
modeled disturbance can be rejected and fault can be diag-
nosed.
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3.2. Fault Diagnosis Observer. The following fault diagnosis
observer is constructed to diagnose the time-varying actuator
fault:

𝐹 (𝑡) = 𝜂 (𝑡) − 𝐾𝑥 (𝑡) ,

𝜂̇ (𝑡) = 𝐾𝐽 [𝜂 (𝑡) − 𝐾𝑥 (𝑡)]

+ 𝐾 [𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+𝐺𝑔 (𝑥 (𝑡)) + 𝐽𝑢 (𝑡) + 𝐽
1
𝑢
𝑑𝑐

(𝑡)] ,

(7)

where 𝐹(𝑡) is estimation of 𝐹(𝑡). The disturbance observer
based control term 𝑢

𝑑𝑐
(𝑡) = 𝑑

1
(𝑡) is applied to reject

modeled disturbance𝑑
1
(𝑡) by its estimation fromdisturbance

observer. 𝐾 is the fault diagnosis observer gain to be deter-
mined later.

The fault estimation error system yields

̇𝑒
𝐹
(𝑡) = 𝐹̇ (𝑡) −

̇̂
𝐹 (t)

= 𝐹̇ (𝑡) + 𝐾𝐽𝑒
𝐹
(𝑡) + 𝐾𝐽

1
𝑉𝑒
𝜔
(𝑡) + 𝐾𝐽

2
𝑑
2
(𝑡) .

(8)

In the next subsection, a composite fault tolerant con-
troller should be determined for reconfiguring the systems
with disturbance rejection and attenuation performance.

3.3. Composite Fault Tolerant Controller. In this section, the
object is to construct a control approach to guarantee that
the system (1) is stable in the presence (or absence) of faults
and multiple disturbances simultaneously for the considered
time-delay system. The structure of composite fault tolerant
controller is formulated as

𝑢 (𝑡) = 𝑢
𝑠𝑐
(𝑡) − 𝑢

𝑓𝑐
(𝑡) − 𝐽

∗
𝐽
1
𝑢
𝑑𝑐

(𝑡) , (9)

where 𝑢
𝑓𝑐
(𝑡) = 𝐹(𝑡), 𝑢

𝑑𝑐
(𝑡) = 𝑑

1
(𝑡), and 𝑢

𝑠𝑐
(𝑡) = 𝑆𝑥(𝑡), 𝑆

is the state feedback controller gain to be determined later.
Substituting (9) into (1), it can be seen that

𝑥̇ (𝑡) = (𝐴 + 𝐽𝑆) 𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+ 𝐽𝑒
𝐹
(𝑡) + 𝐽

1
𝑑
1
(𝑡) − 𝐽𝐽

∗
𝐽
1
𝑑
1
(𝑡) + 𝐽

2
𝑑
2
(𝑡) .

(10)

From Assumption 2, it can be seen that the vector space
spanned by the columns of 𝐽

1
is a subset of the space spanned

by the column vectors of 𝐽 [19]; that is, span (𝐽
1
) ⊂ span (𝐽),

which is equivalent to the existence of 𝐽, such that

𝐽
1
− 𝐽𝐽
∗
𝐽
1
= 0. (11)

Then, it can be concluded that

𝑥̇ (𝑡) = (𝐴 + 𝐽𝑆) 𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+ 𝐽𝑒
𝐹
(𝑡) + 𝐽

1
𝑉𝑒
𝜔
(𝑡) + 𝐽

2
𝑑
2
(𝑡) .

(12)

Combing estimation error equations (6) and (8) with (12)
yields

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡)) + 𝐽𝑑 (𝑡) ,

𝑧
2
(𝑡) = 𝐶

2
𝑥 (𝑡) + 𝐶

𝑑2
𝑥 (𝑡 − 𝜏) ,

𝑧
∞

(𝑡) = 𝐶
∞
𝑥 (𝑡) + 𝐶

𝑑∞
𝑥 (𝑡 − 𝜏) + 𝐷𝑑 (𝑡) ,

(13)

where

𝑥 (𝑡) = [

[

𝑥 (𝑡)

𝑒
𝜔
(𝑡)

𝑒
𝐹
(𝑡)

]

]

, 𝐴 = [

[

𝐴 + 𝐽𝑆 𝐽
1
𝑉 𝐽

0 𝑊 + 𝐿𝐽
1
𝑉 𝐿𝐽

0 𝐾𝐽
1
𝑉 𝐾𝐽

]

]

,

𝐺 = [

[

𝐺

0

0

]

]

,

𝐴
𝑑
= [

[

𝐴
𝑑

0 0

0 0 0

0 0 0

]

]

, 𝐽 = [

[

𝐽
2

0 0

𝐿𝐽
2

𝐽
3

0

𝐾𝐽
2

0 𝐼

]

]

,

𝑑 (𝑡) = [

[

𝑑
2
(𝑡)

𝛿 (𝑡)

𝐹̇ (𝑡)

]

]

,

𝑔 (𝑥 (𝑡)) = 𝑔 (𝑥 (𝑡))

(14)

𝑧
2
(𝑡) is𝐻

2
reference output,

𝑧
2
(𝑡) = 𝐶

21
𝑥 (𝑡) + 𝐶

22
[𝑒
𝑇

𝜔
(𝑡) 𝑒
𝑇

𝐹
(𝑡)]
𝑇

+ 𝐶
𝑑2
𝑥 (𝑡 − 𝜏) (15)

𝑧
∞
(𝑡) is𝐻

∞
reference output,

𝑧
∞

(𝑡) = 𝐶
∞1

𝑥 (𝑡) + 𝐶
∞2

[𝑒
𝑇

𝜔
(𝑡) 𝑒
𝑇

𝐹
(𝑡)]
𝑇

+ 𝐶
𝑑∞

𝑥 (𝑡 − 𝜏) + 𝐷𝑑 (𝑡) ,

(16)

where 𝐶
21
, 𝐶
22
, 𝐶
𝑑2
, 𝐶
∞1

, 𝐶
∞2

, 𝐶
𝑑∞

, and 𝐷 are the
selected weighting matrices.

Definition 2. For constants 𝛾
1
> 0, 𝛾

2
> 0, and 𝛾

3
> 0, the

𝐻
∞

performance is denoted as follows:

𝐽
∞

=
󵄩󵄩󵄩󵄩𝑧∞ (𝑡)

󵄩󵄩󵄩󵄩

2

− 𝛾
2

1

󵄩󵄩󵄩󵄩𝑑2 (𝑡)
󵄩󵄩󵄩󵄩

2

− 𝛾
2

2
‖𝛿 (𝑡)‖

2

− 𝛾
2

3

󵄩󵄩󵄩󵄩󵄩
𝐹̇ (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

− 𝛿 (𝑃
1
, 𝑄) ,

(17)

where

𝛿 (𝑃
1
, 𝑄) = 𝜙

𝑇
(0) 𝑃
1
𝜙 (0) + ∫

0

−𝑑

𝜙
𝑇
(𝜏) 𝑄𝜙 (𝜏) 𝑑𝜏. (18)

Definition 3. The𝐻
2
performance measure for (13) is defined

as 𝐽
2
= ‖𝑧
2
(𝑡)‖
2.
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Remark 4. Compared with [17], 𝐻
2
/𝐻
∞

mixed multiobjec-
tive optimization technique is used for the composite system
(13). In the proposed approach, the modeled disturbance and
fault are rejected by their estimations, while𝐻

∞
performance

is adopted to attenuate norm bounded uncertain distur-
bances and 𝐻

2
performance index is applied to optimize

estimation error.
At this stage, the objective is to find𝐾, 𝐿, and 𝑆 such that

system (13) is stable. The following result provides a design
method based on convex optimization technology [22].

Theorem 5. If for the parameter 𝜆 > 0, 𝑟
𝑖
(𝑖 = 1, . . . , 4),

matrices 𝐶
21
, 𝐶
22
, 𝐶
𝑑2
, 𝐶
∞1

, 𝐶
∞2

, 𝐶
𝑑∞

, and𝐷, there exist
matrices 𝑃

0
> 0, 𝑃

2
> 0, 𝑄

0
> 0, 𝑅

0
, and𝑅

2
and constants

𝛾
1

> 0, 𝛾
2

> 0, and 𝛾
3

> 0, if the following LMI-based
optimization problem holds:

min{𝑟
1
𝛾
1
+ 𝑟
2
𝛾
2
+ 𝑟
3
𝛾
3
+ 𝑟
4
𝜙
𝑇
(0) 𝑃
−1

0
𝜙 (0)} (19)

subject to

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
1

𝐴
𝑑
𝑄
0

𝐺 𝑉 Ξ
15

𝑃
0
𝑈
𝑇

1
𝑃
0
𝐶
𝑇

∞1
𝑃
0
𝐶
𝑇

21
𝑃
0

∗ −𝑄
0

0 0 0 0 𝐶
𝑇

𝑑∞
𝐶
𝑇

𝑑2
0

∗ ∗ −
1

𝜆
𝐼 0 0 0 0 0 0

∗ ∗ ∗ Ξ
4

Ξ
45

0 𝐶
𝑇

∞2
𝐶
𝑇

22
0

∗ ∗ ∗ ∗ Ξ
5

0 𝐷
𝑇

0 0

∗ ∗ ∗ ∗ ∗ −𝜆𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(20)

where

Ξ
1
= sym (𝐴𝑃

0
+ 𝐽𝑅
0
) , Ξ

15
= [𝐽2 0 0] ,

Ξ
4
= sym (𝑃

2
𝑊 + 𝑅

2
𝑉) ,

Ξ
45

= [𝑅
2
𝐽
2

𝑃
2
𝐽
3

𝑃
2
𝐽
1
] ,

Ξ
5
= [

[

−𝛾
2

1
𝐼 0 0

0 −𝛾
2

2
𝐼 0

0 0 −𝛾
2

3
𝐼

]

]

,

𝑊 = [
𝑊 0

0 0
] , 𝑉 = [𝐽1𝑉 𝐽] ,

𝐽
1
= [

0

𝐼
] , 𝐽

3
= [

𝐽
3

0
] , 𝐶 = [𝐶1 𝐶

2] ,

(21)

then with gains 𝑆 = 𝑅
0
𝑃
−1

0
and 𝐿 = [

𝐿

𝐾
] = 𝑃

−1

2
𝑅
2
, error

system (13) is stable and satisfies 𝐽
∞

< 0 and 𝐽
2

≤ 𝛿(𝑃
1
, 𝑄).

The symmetric terms in a symmetric matrix are denoted by ∗.
The symbol sym() represents sym(Θ) := Θ + Θ

𝑇.

Proof. Consider the following Lyapunov function:

Π (𝑡) = 𝑥
𝑇
(𝑡) 𝑃
1
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝜏) 𝑄𝑥 (𝜏) 𝑑𝜏 + 𝑒

𝑇
(𝑡) 𝑃
2
𝑒 (𝑡)

+ 𝜆∫

𝑡

0

[‖𝑈𝑥 (𝜏)‖
2
−
󵄩󵄩󵄩󵄩𝑔 (𝜏)

󵄩󵄩󵄩󵄩

2

] 𝑑𝜏.

(22)

It is verified that Π(𝑡) ≥ 0 holds for all arguments. Along
with the trajectories of (13), it can be shown that

Π̇ (𝑡) = 2𝑥
𝑇
(𝑡) 𝑃
1
𝑥̇ (𝑡) + 𝑥

𝑇
(𝑡) 𝑄𝑥 (𝑡) − 𝑥(𝑡 − 𝜏)

𝑇
𝑄𝑥 (𝑡 − 𝜏)

+ 2𝑒
𝑇
(𝑡) 𝑃
2
̇𝑒 (𝑡) + 𝜆 [‖𝑈𝑥 (𝑡)‖

2
−
󵄩󵄩󵄩󵄩𝑔 (𝑥 (𝑡))

󵄩󵄩󵄩󵄩

2

]

= 2𝑥
𝑇
(𝑡) 𝑃
1
[(𝐴 + 𝐽𝑆) 𝑥 (𝑡) + 𝐴

𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+𝐽
1
𝑉𝑒
𝜔
(𝑡) + 𝐽𝑒

𝐹
(𝑡) + 𝐽

2
𝑑
2
(𝑡)]

+ 𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡) − 𝑥(𝑡 − 𝜏)

𝑇
𝑄𝑥 (𝑡 − 𝜏)

+ 𝜆𝑥
𝑇
(𝑡) 𝑈
𝑇
𝑈𝑥 (𝑡) − 𝜆

󵄩󵄩󵄩󵄩𝑔 (𝑥 (𝑡))
󵄩󵄩󵄩󵄩

2

+ 2𝑒
𝑇
(𝑡)

× 𝑃
2
[(𝑊 + 𝐿𝑉) 𝑒 (𝑡) + 𝐿𝐽

2
𝑑
2
(𝑡) + 𝐽

3
𝛿 (𝑡) + 𝐽

1
𝐹̇ (𝑡)] .

(23)

In the absence of 𝑑(𝑡) (i.e., 𝑑(𝑡) = 0), it can be seen that

𝑉̇ (𝑡) = 𝑠
𝑇
(𝑡) [Φ − 𝜁𝜁

𝑇
] 𝑠 (𝑡) , (24)

where
𝑠
𝑇
(𝑡) = [𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − 𝜏) 𝑔

𝑇
(𝑥 (𝑡)) 𝑒

𝑇
(𝑡)] ,

𝜁
𝑇
= [𝐶21 𝐶

𝑑2
0 𝐶
22] ,

Φ =

[
[
[
[
[

[

Φ
11

𝑃
1
𝐴
𝑑
+ 𝐶
𝑇

21
𝐶
𝑑2

𝑃
1
𝐺 𝑃
1
𝑉 + 𝐶

𝑇

21
𝐶
22

∗ −𝑄 + 𝐶
𝑇

𝑑2
𝐶
𝑑2

0 0

∗ ∗ −𝜆𝐼 0

∗ ∗ ∗ Φ
44

]
]
]
]
]

]

,
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Φ
11

= sym (𝑃
1
(𝐴 + 𝐽𝑆)) + 𝜆𝑈

𝑇
𝑈 + 𝑄 + 𝐶

𝑇

21
𝐶
21
,

Φ
44

= sym (𝑃
2
(𝑊 + 𝐿𝑉)) + 𝐶

𝑇

22
𝐶
22
.

(25)
From (20), it can be seen that

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
1
+ 𝑃
0
𝑄
−1

0
𝑃
0
+

1

𝜆
𝑃
0
𝑈
𝑇

0
𝑈
0
𝑃
0

𝑄
0
𝐴
𝑑

𝐺 𝑉 Ξ
15

𝑃
0
𝐶
𝑇

∞1
𝑃
0
𝐶
𝑇

21

∗ −𝑄
0

0 0 0 𝐶
𝑇

𝑑∞
𝐶
𝑇

𝑑2

∗ ∗ −
1

𝜆
𝐼 0 0 0 0

∗ ∗ ∗ Ξ
4

Ξ
45

𝐶
𝑇

∞2
𝐶
𝑇

22

∗ ∗ ∗ ∗ Ξ
5

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (26)

From the first, second, third, fourth, and seventh columns
and rows of the leftmatrix in inequality (26) it can be verified
that

Φ
0
=

[
[
[
[
[
[
[
[

[

Ξ
1
+ 𝑃
0
𝑄
−1

0
𝑃
0
+

1

𝜆
𝑃
0
𝑈
𝑇

0
𝑈
0
𝑃
0

𝑄
0
𝐴
𝑑

𝐺 𝑉 𝑃
0
𝐶
𝑇

21

∗ −𝑄
0

0 0 𝐶
𝑇

𝑑2

∗ ∗ −
1

𝜆
𝐼 0 0

∗ ∗ ∗ Ξ
4

𝐶
𝑇

22

∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]

]

< 0.

(27)

Defining 𝑃
0

= 𝑃
−1

1
, 𝑄
−1

= 𝑄
0
, premultiplied and

postmultiplied simultaneously by diag {𝑃−1
0

, 𝑄
−1

0
, 𝐼, 𝐼, 𝐼}, it

can be seen by using Schur complement formula thatΦ
0
< 0

leads to Φ < 0. When Φ < 0 holds, we have

𝑉̇ (𝑡) < −𝑠
𝑇
(𝑡) 𝜁𝜁
𝑇
𝑠 (𝑡) = −𝑧

𝑇

2
𝑧
2
≤ 0. (28)

It follows that (13) is asymptotically stable in the absence
of the exogenous input 𝑑(𝑡). Next, we consider the perfor-
mances to be optimized for (13). Consider two auxiliary
functions as follows:

𝐽
0
= 𝑧
𝑇

2
(𝑡) 𝑧
2
(𝑡) + 𝑉̇ (𝑡) ,

𝐽
1
= 𝑧
𝑇

∞
(𝑡) 𝑧
∞

(𝑡) − 𝛾
2

1
𝑑
2
(𝑡)
𝑇
𝑑
2
(𝑡) − 𝛾

2

2
𝛿(𝑡)
𝑇
𝛿 (𝑡)

− 𝛾
2

3
𝐹̇(𝑡)
𝑇
𝐹̇ (𝑡) + 𝑉̇ (𝑡) .

(29)

Following the definition of the 𝐻
2
performance, we only

consider the case in the absence of 𝑑(𝑡). It can be verified that
𝐽
0
≤ 𝑠
𝑇
(𝑡)Φ𝑠(𝑡).

In the presence of 𝑑(𝑡), it can be seen that 𝐽
1
= 𝑞
𝑇
(𝑡)Ψ𝑞(𝑡),

where

𝑞
𝑇
(𝑡) = [𝑥

𝑇
(𝑡) 𝑥
𝑇
(𝑡 − 𝜏) 𝑔

𝑇
(𝑥 (𝑡)) 𝑒

𝑇
(𝑡) 𝑑
𝑇

(𝑡)] ,

Ψ =

[
[
[
[
[
[

[

Ψ
11

𝑃
1
𝐴
𝑑

𝑃
1
𝐺 𝑃
1
𝑉 Ψ
15

∗ −𝑄 0 0 0

∗ ∗ −
1

𝜆
𝐼 0 0

∗ ∗ ∗ Ψ
44

Ψ
45

∗ ∗ ∗ ∗ Ξ
5

]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑇

∞1

𝐶
𝑇

𝑑∞

0

𝐶
𝑇

∞2

0

]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑇

∞1

𝐶
𝑇

𝑑∞

0

𝐶
𝑇

∞2

0

]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

,

(30)

where

Ψ
11

= sym (𝑃
1
𝐴 + 𝑃

1
𝐽𝑆) +

1

𝜆
𝑈
𝑇
𝑈 + 𝑄,

Ψ
15

= [𝑃1𝐽2 0 0] ,

Ψ
44

= sym (𝑃
2
𝑊 + 𝑃

2
𝐿𝑉) ,

Ψ
45

= [𝑃
2
𝐿𝐽
2

𝑃
2
𝐽
3

𝑃
2
𝐽
1
] .

(31)

Denote

Ψ
0
= Ψ + [𝐶21 𝐶

𝑑2
0 𝐶
22

0]
𝑇

[𝐶21 𝐶
𝑑2

0 𝐶
22

0] .

(32)

It can be seen by using Schur complement formula that
(20) leads to Ψ

0
< 0, and then Ψ < 0 holds. It can be verified

that both 𝐽
0
< 0 and 𝐽

1
< 0 hold. This completes the proof.
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4. Simulation Examples

In this section, we consider the longitudinal dynamics of A4D
aircraft at a flight condition of 15000 ft altitude and 0.9 Mach
given in [2]. The longitudinal dynamics can be denoted as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐺𝑔 (𝑥 (𝑡)) + 𝐽 (𝑢 (𝑡) + 𝐹 (𝑡))

+ 𝐽
1
𝑑
1
(𝑡) + 𝐽

2
𝑑
2
(𝑡) ,

(33)

where 𝑥(𝑡) are measurable by using sensors technique. The
coefficient matrices of aircraft model are given by

𝐴 =

[
[
[

[

−0.0605 32.37 0 32.2

−0.00014 −1.475 1 0

−0.0111 −34.72 −2.793 0

0 0 1 0

]
]
]

]

,

𝐽 =

[
[
[

[

0

−0.1064

−33.8

0

]
]
]

]

, 𝐽
1
=

[
[
[

[

0

−0.0532

−16.9000

0

]
]
]

]

, 𝐽
2
=

[
[
[

[

0.1

0

−3

0.1

]
]
]

]

.

(34)

It is supposed that

𝐺 = [0 0 50 0]
𝑇

, 𝑔 (𝑥 (𝑡)) = sin (2𝜋5𝑡) 𝑥
2
(𝑡) . (35)

then, the matrix 𝑈 can be selected as 𝑈 = diag {0, 1, 0, 0}
and the norm condition (3) can be satisfied. 𝐴

𝑑
= 0.5 ×

𝐴, 𝜏 = 2. Periodic disturbance 𝑑
1
(𝑡) caused by rotating aerial

propeller is assumed to be anunknownharmonic disturbance
described by (2) with

𝑊 = [
0 5

−5 0
] , 𝐸 = [25 0] , 𝐻

3
= [

0.1

0.1
] , (36)

𝛿(𝑡) is the additional disturbance signal resulting from the
perturbations and uncertainties in the exogenous system (2)
and satisfies 2-norm boundedness. In simulation, we select
𝛿(𝑡) as the random signal with upper 2-norm bound 1. Wind
gust and system noises 𝑑

2
(𝑡) can also be considered as the

random signal with upper 2-norm bounded.
The initial values of the states are supposed to be 𝑥

𝑇
(0) =

[2 − 2 3 2]. For the reference output, it is denoted that

𝐶
∞1

= [1 1 1 1] , 𝐶
∞2

= [1 1 1] ,

𝐶
𝑑∞

= [0.1 0.1 0.1 0.1] ,

𝐶
21

= [0.1 0.1 0.1 0.1] , 𝐶
22

= [0.1 0.1 0.1] ,

𝐶
𝑑2

= [0.01 0.01 0.01 0.01] .

(37)

For 𝜆 = 1, 𝛾
1
= 1, 𝛾

2
= 1, and 𝛾

3
= 1, it can be solved via

LMI related to (20) that the gain of fault diagnosis observer
(7) is

𝐾 = [20.9299 10.0231 1.3553 20.9682] , (38)

the gain of disturbance observer (4) is

𝐿 = [
−0.2584 −0.5402 −0.0142 −0.2610

2.3246 0.7523 0.1526 2.3269
] , (39)
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Figure 1: Disturbances estimation error in disturbance observer.
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Figure 2: Bias fault, its estimation, and error.

and the gain of state feedback controller is

𝑆 = [89.6396 471.0670 74.2419 465.7941] . (40)

When the disturbance observer is constructed based on
(4) and (5), the estimation error of exogenous disturbances
is shown in Figure 1. The actuator bias fault is supposed to
occur at 15th second as 𝐹 = 4. The estimation and its
error of fault with system disturbances are demonstrated
in Figure 2, where the solid line represents the real fault
signal, the dash-dotted line is its estimation, and the dash line
denotes its estimation error. In Figure 3, the state response
signals of the control system are illustrated. It can be seen
that the proposed fault tolerant controller has a good control
ability for configuring fault and rejecting and attenuating
disturbances simultaneously. In Figure 4, the ramp fault is
assumed to occur at 15th second with slope 0.1. From



Mathematical Problems in Engineering 7

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

St
at

e v
ar

ia
bl

es

0 5 10 15 20 25 30 35 40
Time (s)

Figure 3: The responses of state variable.

 

Fault estimation
Real value
Estimation error

0 5 10 15 20 25 30 35 40
Time (s)

0

1

1.5

2

2.5

−1

−0.5

0.5

Figure 4: Ramp fault, its estimation, and error.

Figure 4, it is shown that the time-varying fault can also be
well estimated.

5. Conclusion

In this paper, a robust antidisturbance fault tolerant control
problem is investigated for nonlinear time delay systems
with faults andmultiple disturbances.There are the following
features of the proposed algorithm compared with the previ-
ous results. First, the multiple disturbances and state time-
delay are considered simultaneously in this paper. Second,
an FTC scheme is addressed with disturbance rejection and
attenuation performance by combining fault accommodation
and DOBC with a mixed 𝐻

2
/𝐻
∞

controller, with which the
fault can be accommodated and the disturbances can be
rejected and attenuated simultaneously. Finally, simulation

for a flight control system is given to show the efficiency of
the proposed approach.
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