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Based on dissipation theory, a novel robust control is proposed for the lower-triangular nonlinear systems, which include strict-
feedback systems and high-order lower-triangular systems. Some important concepts in dissipation theory are integrated into the
recursive design, which are used to dominate the uncertain disturbance and construct the robust controller. The gotten controller
renders the closed-loop system finite-gain 𝐿

2
stable in the presence of disturbance and asymptotically stable in the absence of

disturbance. Especially, the controller has its advantage in regulating large disturbance. Finally, one example and one application
are given to show the effectiveness of the design method. Moreover, by comparing with another robust controller, the characteristic
of the proposed controller is illustrated in the simulations.

1. Introduction

Over the last decade, the lower-triangular systems are
researched widely in the field of nonlinear systems [1–4].
This class of systems is not only important theoretically, but
a lot of practical systems can conform to or be transformed
into its form, such as the power generators [5], aircraft
control system [6], and mobile robots [7]. It is well known
that backstepping design [8, 9] is proposed to design the
strict-feedback systems, which hold the simplest triangular
structure. For different types of triangular systems, the
condition for existence of control laws is investigated in [10,
11], and the explicit constructions of controllers are provided
in [12, 13]. Then, a power integrator technique is given to
design the high-order lower-triangular systems, which are
neither feedback linearizable nor affine in the control input
[4, 14]. Moreover, the robust control problem of lower-
triangular systems has attracted a lot of attention [15–18] for
overcoming the hurdle of disturbance, which possibly comes
from model simplification, external disturbance, or other
unknown factors.

In this paper, based on dissipation theory, a novel design
method is proposed to solve the robust control problem
of lower-triangular nonlinear systems in the presence of
uncertain disturbance. This approach constructs the storage

function anddesigns the controller recursively, which ensures
that the closed-loop system satisfies the dissipation inequality
having 𝐿

2
-gain performance. The technique is firstly used

in the strict-feedback system. Then, it is extended to the
high-order lower-triangular system. Finally, one example of
lower-triangular system and one application of synchronous
generator system are given to illustrate the effectiveness of the
robust control.

For the lower-triangular system with uncertain distur-
bance, this work uses the frame of dissipation property theory
to solve the problem of disturbance rejection. First of all,
the appropriate function of supply rate is chosen, which
is used to gather the disturbance inputs in the recursive
design. Next, the storage function and robust controller
are constructed recursively to guarantee that the result
at each step satisfies the dissipation property. During the
design, by using feedback domination technique [4, 14], the
disturbed parts are dominated by the functions of system
states and disturbances. Then, the function of disturbances
is regarded as the input of supply rate, which satisfies the
dissipation inequality ensuring finite-gain 𝐿

2
stability. The

effect of this method can be summarized as two aspects.
Firstly, the restriction of uncertain disturbance is relaxed, and
the only assumption of uncertain disturbance is bounded.
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So, no information about disturbance is required in the gotten
control law, which means that certain controller can regulate
uncertain disturbance. Secondly, compared with some previ-
ous robust controllers only applicable for small disturbances,
the proposed robust controller is effective for all cases of
bounded disturbance, especially for large disturbance.

The structure of this paper is as follows: Section 2
describes the problem and offers key lemma; Section 3 gives
the robust controller design for strict-feedback systems;
Section 4 extends the design method to high-order lower-
triangular systems; Section 5 provides an example and appli-
cation to illustrate the effectiveness of design approach. The
conclusion is contained in Section 6.

2. Problem Formulation and Key Lemma

In this paper, we focus on the problem of constructing robust
controller for the lower-triangular system, which is described
by the following differential equations:
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where for 𝑖 = 1, 2, . . . , 𝑛, the state𝑋
𝑖
= (𝑥
1
, . . . , 𝑥

𝑖
)
𝑇
∈ R𝑖, the

input 𝑢 ∈ R, the output 𝑦 ∈ R, the uncertain disturbance
vector 𝜔 = [𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇, 𝜔
𝑖
(𝑡) is unknown nonlinear

function, which denotes external disturbance with unknown
bound, 𝑓

𝑖
: R𝑖 󳨃→ R is a smooth function, and 𝑓

𝑖
(0) = 0.

About the system (1), one hypothesis is given as follows.

Assumption 1. 𝑝
𝑖
≥ 1 (𝑖 = 1, 2, . . . , 𝑛) is odd integer, and 𝑝

1
is

maximum of them.
Compared with the corresponding assumption in [4, 14],

Assumption 1 relaxes the condition of 𝑝
𝑖
. Next, the main

definitions of dissipation theory are given as follows.

Definition 2 (see [1]). The general systems are described in
the following form:

𝑥̇ (𝑡) = 𝑓 (𝑥, 𝑢
0
)

𝑦
0
(𝑡) = ℎ (𝑥, 𝑢

0
) ,

(2)

where the state 𝑥 ∈ R𝑛, the input 𝑢
0
∈ R𝑝, and the output

𝑦
0
∈ R𝑞. Let the function 𝑠(𝑢

0
, 𝑦
0
) : R𝑝 × R𝑞 󳨃→ R if there

exists 𝑉(𝑥) ≥ 0, 𝑉 : R𝑛 󳨃→ R+, such that

𝑉 (𝑥 (𝜏)) ≤ 𝑉 (𝑥 (0)) + ∫
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𝑠 (𝑢
0
, 𝑦
0
) 𝑑𝑡; (3)

for any𝑥(0) and 𝜏, the system (3) is dissipative about 𝑠(𝑢
0
, 𝑦
0
).

And 𝑠(𝑢
0
, 𝑦
0
) is the supply rate, and 𝑉(𝑥) is the storage

function.

Remark 3. The supply rate 𝑠(𝑢
0
, 𝑦
0
) in Definition 2 is se-

lectable. And there are some optional functions. The most
commonly used are two options: one is 𝑠(𝑢

0
, 𝑦
0
) = 𝑢

𝑇

0
𝑦
0
,

and the other is 𝑠(𝑢
0
, 𝑦
0
) = Υ

2
‖𝑢
0
‖
2
− ‖𝑦
0
‖
2, Υ > 0. In this

paper, when the uncertain disturbance 𝜔 = [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇

is regarded as the input of the system (3), the latter is chosen
as the supply rate. And if the closed-loop system is dissipative,
we have

𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (0)) ≤ ∫

𝜏

0

(Υ
2
‖𝜔‖
2
−
󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩

2

) 𝑑𝑡. (4)

That is, the gain of the system is not more than Υ for the
uncertain disturbance.

Definition 4 (see [1]). A mapping𝐻 : 𝐿𝑚
𝑒
→ 𝐿
𝑞

𝑒
is finite-gain

𝐿 stable if there exist nonnegative constants Υ
𝐿
and 𝛽

𝐿
, such

that
󵄩󵄩󵄩󵄩(𝐻V)

𝜏
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𝐿

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝐿
+ 𝛽
𝐿
, (5)

for V ∈ 𝐿𝑚
𝑒
and 𝜏 ∈ [0,∞).

Young’s inequality is an important tool used in the
recursive design, and Lemma 6 is one direct consequence of
Young’s inequality.

Lemma 5 (Young’s inequality). For any two vectors 𝑥 and 𝑦,
the following holds

𝑥
𝑇
𝑦 ≤

𝜀
𝑝

𝑝
‖𝑥‖
𝑝
+
1

𝑞𝜀𝑞
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𝑞

, (6)

where 𝜀 > 0 and the constants 𝑝 > 1 and 𝑞 > 1 satisfy (𝑝 −
1)(𝑞 − 1) = 1.

Lemma 6 (see [19]). For real numbers 𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑚 ≥
1, the following inequality holds:

𝑎 ≤ 𝑏 + (
𝑎

𝑚
)

𝑚

(
𝑚 − 1

𝑏
)

𝑚−1

. (7)

3. Robust Controller Design of
Strict-Feedback Systems

The strict-feedback system is described by the following
equations
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) + 𝑢 + 𝜔

𝑛
(𝑡)

𝑦 = 𝑥
1
.

(8)

Based on the dissipation theory, the novel robust con-
troller design is proposed step by step. For 𝑖 = 1, 2, . . . , 𝑛,
firstly set the design parameter 𝐶

𝑖
> 0.
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Step 1. Let 𝑧
1
= 𝑥
1
. The storage function is constructed

as 𝑉
1
= 𝑧
2

1
/2, whose derivative is

𝑉̇
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1
. (9)

For the above equation, according to the technique
of adding one power integrator [4, 14], by using Young’s
inequality (6) with 𝑝 = 𝑞 = 2 and 𝜀 = √𝑛/𝛾, the term 𝑧
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1
, where the disturbance

attenuation coefficient 𝛾 > 0. Taking it into formula (9) yields
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Design the smooth virtual control as
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Taking controller (11) into formula (10) results in
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By using Young’s inequality, we have
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In this step, the smooth virtual controller is taken as
follows:
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Under the action of the above controller, formula (15) is
turned into
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Step n. Let 𝑧
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𝑛
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𝑛
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is designed as
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Now, the derivative of the storage function is

𝑉̇
𝑛
≤ −

𝑛

∑

𝑖=1

𝐶
𝑖
𝑧
2

𝑖
+
𝛾
2

2

𝑛

∑

𝑗=1

𝜔
2

𝑗
−
𝑧
2

1

2
. (19)

From system (8), it is known that the uncertain distur-
bance vector 𝜔 = [𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇 and the output 𝑦 = 𝑥

1
=

𝑧
1
. So, we have
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Based on dissipation theory, the robust controller (18)
makes the closed-loop system dissipative with the uncertain
disturbance, and the supply rate 𝑠(𝜔, 𝑦) = 𝛾2‖𝜔‖2

2
− ‖𝑦‖

2

2
.

Furthermore, the finite-gain 𝐿
2
stability of the closed-loop

system is concluded in the following theorem.
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Theorem 7. Consider the strict-feedback system with distur-
bance (8). There exists the smooth robust controller (18), such
that the closed-loop system is finite-gain 𝐿

2
stable and the

𝐿
2
gain is no more than 𝛾. Moreover, when the disturbance

input 𝜔 = [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇
= 0, the closed-loop system is

asymptotically stable.

Proof. From (20), we have 𝑉̇ = 𝑉̇
𝑛
≤ (1/2)(𝛾

2
‖𝜔‖
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2
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2
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Integrating it yields the following inequality:
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Taking the square roots and using the inequality
√𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏 for nonnegative numbers 𝑎 and 𝑏, one
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Therefore, based on Definition 4, It is known that the
system is finite-gain 𝐿

2
stable and the gain from disturbance

input to system output is no more than 𝛾.
Moreover, when 𝜔 = 0, from (20) we have
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and the storage function𝑉 = (1/2)∑𝑛
𝑖=1
𝑧
2

𝑖
is positive definite.

According to the invariance principle [1], we need to find 𝑆 =
{𝑋
𝑛
∈ R𝑛 | 𝑉̇ = 0}. Note that

𝑉̇ = 0 󳨐⇒ 𝑦 = 0 󳨐⇒ 𝑥
1
= 0. (25)

Hence, 𝑆 = {𝑋
𝑛
∈ R𝑛 | 𝑥

1
= 0}. Let 𝑋

𝑛
(𝑡) be a solution

that belongs identically to 𝑆. From the system (8), we can
deduce that

𝑥
1
≡ 0 󳨐⇒ 𝑥̇

1
≡ 0 󳨐⇒ 𝑥

2
≡ 0 󳨐⇒ 𝑥̇

2
≡ 0 󳨐⇒ ⋅ ⋅ ⋅ 󳨐⇒ 𝑥

𝑛
≡ 0.

(26)

Therefore, the only solution that can stay identically in 𝑆
is the trivial solution𝑋

𝑛
(𝑡) ≡ 0. Thus, the closed-loop system

is asymptotically stable in the case of 𝜔 = 0.

Remark 8. About the proposed method, there are the follow-
ing opinions.

(1) This method integrates the idea of dissipation prop-
erty into the recursive design. In the frame of dis-
sipation theory, by using the feedback domination
technology, the unknown disturbance is decoupled
from the known state and gathered together to satisfy
the dissipation inequality, which leads to the result of
disturbance rejection and finite-gain 𝐿

2
stability.

(2) In the previous research of lower-triangular system
(1), some assumption is needed for the uncertain dis-
turbance, such as boundary condition and functional
constraint. In this paper, the assumption is relaxed to
be bounded, which can ensure that the closed-loop
system is finite-gain 𝐿

2
stable. On the other hand,

just for there is no constraint about the uncertain
disturbance, the result is only finite-gain 𝐿

2
stable.

(3) It is interesting to note that the external disturbance
𝜔
𝑖
can be generalized to more general uncertainties

Δ
𝑖
(𝑋
𝑖
, 𝑡), which satisfies the condition |Δ

𝑖
(𝑋
𝑖
, 𝑡)| ≤

𝜔
𝑖
(𝑡)𝜙
𝑖
(𝑋
𝑖
), with 𝜙

𝑖
(𝑋
𝑖
) being a known smooth func-

tion and 𝜔
𝑖
(𝑡) being the unknown bound. The pro-

posed method is still applicable for the more general
case.

4. Robust Controller Design of
Lower-Triangular Systems

The robust control law of lower-triangular systems (1) is
designed in this section. Similarly, for 𝑖 = 1, 2, . . . , 𝑛, the
design parameter 𝐶

𝑖
> 0.

Step 1. Let 𝑧
1
= 𝑥
1
. Due to Assumption 1, the storage func-

tion is constructed as 𝑉
1
= 𝑧
𝑝
1
−𝑝
1
+2

1
/(𝑝
1
−𝑝
1
+2) = 𝑧

2

1
/2, and

its derivative is

𝑉̇
1
= 𝑧
1
𝑧̇
1
= 𝑧
1
(𝑓
1
(𝑥
1
) + 𝑥
𝑝
1

2
) + 𝑧
1
𝜔
1
. (27)

Similar to the design of strict-feedback systems, one
obtains:

𝑉̇
1
≤ 𝑧
1
[𝑥
𝑝
1

2
+ 𝑓
1
(𝑥
1
) + (

1

2
+
𝑛

2𝛾2
)𝑧
1
] +

𝛾
2

2𝑛
𝜔
2

1
−
𝑧
2

1

2
.

(28)

Owing to (7), for any positive real number𝜎 > 0, let 𝑏 = 𝜎,
𝑎 = |𝑧

1
[𝑓
1
+ ((1/2) + (𝑛/2𝛾

2
))𝑧
1
]|, and𝑚 = 𝑝

1
+ 1. We have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
1
[𝑓
1
+ (
1

2
+
𝑛

2𝛾2
)𝑧
1
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜎 + 𝑧
𝑝
1
+1

1
𝜌
1
(𝑧
1
) , (29)

where 𝜌
1
(𝑧
1
) = (1/(𝑝

1
+ 1))[𝑝

1
/(𝑝
1
+ 1)𝜎]

𝑝
1(𝑓
1
+ 𝑧
1
/2 +

𝑛𝑧
1
/2𝛾
2
)
𝑝
1
+1

≥ 0.
Substituting (29) into (28) yields

𝑉̇
1
≤ 𝑧
1
𝑥
𝑝
1

2
+ 𝑧
𝑝
1
+1

1
𝜌
1
(𝑧
1
) +
𝛾
2

2𝑛
𝜔
2

1
−
𝑧
2

1

2
+ 𝜎. (30)

Paying attention to Assumption 1, we design the smooth
virtual control as

𝛼
2
= −𝑧
1
(𝐶
1
+ 1 + 𝜌

1
(𝑧
1
))
1/𝑝
1

. (31)

Taking the controller (31) into (30) results in

𝑉̇
1
≤ − (𝐶

1
+ 1) 𝑧

𝑝
1
+1

1
+ 𝑧
1
(𝑥
𝑝
1

2
− 𝛼
𝑝
1

2
) +
𝛾
2

2𝑛
𝜔
2

1
−
𝑧
2

1

2
+ 𝜎.

(32)
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Step k. Through 𝑘 − 1 steps, a group of virtual controllers
are 𝑧
1
= 𝑥
1
, 𝑧
2
= 𝑥
2
− 𝛼
2
, . . . , 𝑧

𝑘−1
= 𝑥
𝑘−1
− 𝛼
𝑘−1

, and the
storage function is𝑉

𝑘−1
= ∑
𝑘−1

𝑖=1
(𝑧
𝑝
1
−𝑝
𝑖
+2

𝑖
/(𝑝
1
−𝑝
𝑖
+2)), whose

derivative is

𝑉̇
𝑘−1
≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝
1
+1

𝑖
− 𝑧
𝑝
1
+1

𝑘−1
+ 𝑧
𝑝
1
−𝑝
𝑘−1
+1

𝑘−1
(𝑥
𝑝
𝑘−1

𝑘
− 𝛼
𝑝
𝑘−1

𝑘
)

+
𝛾
2

2

𝑘−1

∑

𝑗=1

𝑘 − 𝑗

𝑛 + 1 − 𝑗
𝜔
2

𝑗
−
𝑧
2

1

2
+ (𝑘 − 1) 𝜎.

(33)

Let 𝑧
𝑘
= 𝑥
𝑘
− 𝛼
𝑘
, and consider the storage function 𝑉

𝑘
=

𝑉
𝑘−1
+ 𝑧
𝑝
1
−𝑝
𝑘
+2

𝑘
/(𝑝
1
− 𝑝
𝑘
+ 2); its derivative is obtained as

𝑉̇
𝑘
= 𝑉̇
𝑘−1
+ 𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘
𝑧̇
𝑘

≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝
1
+1

𝑖
− 𝑧
𝑝
1
+1

𝑘−1
+ 𝑧
𝑝
1
−𝑝
𝑘−1
+1

𝑘−1
(𝑥
𝑝
𝑘−1

𝑘
− 𝛼
𝑝
𝑘−1

𝑘
)

+
𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗
𝜔
2

𝑗
−
𝑧
2

1

2
+ (𝑘 − 1) 𝜎

+ 𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘
[𝑥
𝑝
𝑘

𝑘+1
+ 𝑓
𝑘
(𝑋
𝑘
) +
𝑛 + 1 − 𝑘

2𝛾2
𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘

+
𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘

2𝛾2

𝑘−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(
𝜕𝛼
𝑘

𝜕𝑥
𝑚

)

2

−

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
+ 𝑥
𝑝
𝑚

𝑚+1
)] .

(34)

Due to Young’s inequality, there exists the smooth func-
tion 𝜌

𝑘
(𝑧
1
, . . . , 𝑧

𝑘
), such that

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑝
1
−𝑝
𝑘−1
+1

𝑘−1
(𝑥
𝑝
𝑘−1

𝑘
− 𝛼
𝑝
𝑘−1

𝑘
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑧
𝑝
1
+1

𝑘−1
+ 𝑧
𝑝
1
+1

𝑘
𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) ,

(35)

where

𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
)

=
𝑝
𝑘−1

𝑝
1
+ 1
(2
𝑝
𝑘−1
−2
𝑝
𝑘−1
)
(𝑝
1
+1)/𝑝

𝑘−1

× [
2 (𝑝
1
− 𝑝
𝑘−1
+ 1)

𝑝
1
+ 1

]

(𝑝
1
−𝑝
𝑘−1
+1)/𝑝

𝑘−1

+
1

𝑝
1
+ 1
[ (1 + 2

𝑝
𝑘−1
−2
) 𝑝
𝑘−1

× (𝐶
𝑘−1
+ 1 + 𝜌

𝑘−1
)
(𝑝
𝑘−1
−1)/𝑝

𝑘−1

]

𝑝
1
+1

× (
2𝑝
1

𝑝
1
+ 1
)

𝑝
1

,

(36)

and the construction of 𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) can refer to [19].

Then, we define a smooth function as follows:

𝐷
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) = 𝑓
𝑘
(𝑋
𝑘
) +
𝑛 + 1 − 𝑘

2𝛾2
𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘

+
𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘

2𝛾2

𝑘−1

∑

𝑚=1

(𝑛 + 1 − 𝑚)(
𝜕𝛼
𝑘

𝜕𝑥
𝑚

)

2

−

𝑘−1

∑

𝑚=1

𝜕𝛼
𝑘

𝜕𝑥
𝑚

(𝑓
𝑚
+ 𝑥
𝑝
𝑚

𝑚+1
) .

(37)

Similar to Step 1, we obtain
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘
𝐷
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜎 + 𝑧

𝑝
1
+1

𝑘
𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) . (38)

Taking (35) and (38) into (34) yields

𝑉̇
𝑘
≤ −

𝑘−1

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝
1
+1

𝑖
+ 𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘
𝑥
𝑝
𝑘

𝑘+1
+ 𝑧
𝑝
1
+1

𝑘
(𝜌
𝑘
(⋅) + 𝜌

𝑘
(⋅))

+
𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗
𝜔
2

𝑗
−
𝑧
2

1

2
+ 𝑘𝜎.

(39)

Design the following virtual control law

𝛼
𝑘+1
= −𝑧
𝑘
(𝐶
𝑘
+ 1 + 𝜌

𝑘
(𝑧
1
, . . . , 𝑧

𝑘
) + 𝜌
𝑘
(𝑧
1
, . . . , 𝑧

𝑘
))
1/𝑝
𝑘

,

(40)

which renders

𝑉̇
𝑘
≤ −

𝑘

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝
1
+1

𝑖
− 𝑧
𝑝
1
+1

𝑘
+ 𝑧
𝑝
1
−𝑝
𝑘
+1

𝑘
(𝑥
𝑝
𝑘

𝑘+1
− 𝛼
𝑝
𝑘

𝑘+1
)

+
𝛾
2

2

𝑘

∑

𝑗=1

𝑘 + 1 − 𝑗

𝑛 + 1 − 𝑗
𝜔
2

𝑗
−
𝑧
2

1

2
+ 𝑘𝜎.

(41)

Step n. In the end, for the storage function, 𝑉 = 𝑉
𝑛
=

∑
𝑛

𝑖=1
(𝑧
𝑝
1
−𝑝
𝑖
+2

𝑖
/(𝑝
1
− 𝑝
𝑖
+ 2)), where 𝑧

𝑛
= 𝑥
𝑛
− 𝛼
𝑛
. There exists

the smooth controller

𝑢 (𝑧
1
, . . . , 𝑧

𝑛
) = −𝑧

𝑛
(𝐶
𝑛
+ 𝜌
𝑛
(𝑧
1
, . . . , 𝑧

𝑛
)

+ 𝜌
𝑛
(𝑧
1
, . . . , 𝑧

𝑛
))
1/𝑝
𝑛

,

(42)

such that

𝑉̇
𝑛
≤ −

𝑛

∑

𝑖=1

𝐶
𝑖
𝑧
𝑝
1
+1

𝑖
+
𝛾
2

2

𝑛

∑

𝑗=1

𝜔
2

𝑗
−
𝑧
2

1

2
+ 𝑛𝜎. (43)

Similar to Section 3, we finish this sectionwith the follow-
ing theorem.

Theorem9. Consider the lower-triangular systemwith distur-
bance (1). There exists the smooth robust controller (42), such
that the closed-loop system is finite-gain 𝐿

2
stable and the 𝐿

2

gain is no more than 𝛾.

Proof. The proof of this theorem is similar to Theorem 7,
which is omitted.
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5. Example and Application

Example 1. Consider the stabilization problem of a lower-
triangular system as follows:

𝑥̇
1
= 𝑥
2

1
+ 𝑥
3

2
+ 𝜔
1

𝑥̇
2
= 𝑥
1
𝑥
2

2
+ 𝑥
2
𝑒
𝑥
2 + 𝑢
3
+ 𝜔
2

𝑦 = 𝑥
1
,

(44)

where 𝜔
1
and 𝜔

2
are bounded unknown disturbance.

Firstly, let 𝑧
1
= 𝑥
1
, and construct the storage func-

tion 𝑉
1
= 𝑧
2

1
/2. According to the design steps, the virtual

control is obtained as

𝛼
2
= −𝑧
1
(𝐶
1
+ 1 + 𝜌

1
(𝑧
1
))
1/3

, (45)

where 𝜌
1
(𝑧
1
) = (27/256𝜎

3
)(𝑥
2

1
+ 𝑥
1
/2 + 𝑥

1
/𝛾
2
)
4, and the

positive parameters 𝜎 and 𝛾 can be adjusted according to the
requirements.

Secondly, let 𝑧
2
= 𝑥
2
− 𝛼
2
and 𝑉

2
= 𝑉
1
+ 𝑧
2

2
/2. Based on

the design process, the robust controller is taken as

𝑢 = −𝑧
2
(𝐶
2
+ 𝜌
2
(𝑧
1
, 𝑧
2
) + 𝜌
2
(𝑧
1
, 𝑧
2
))
1/3

, (46)

where

𝜌
2
(𝑧
1
, 𝑧
2
) =
1

4
(
3

4𝜎
)

3

[𝑥
1
𝑥
2

2
+ 𝑥
2
𝑒
𝑥
2 +
𝑧
2

𝛾2
(
𝜕𝛼
2

𝜕𝑥
1

)

2

−
𝜕𝛼
2

𝜕𝑥
1

(𝑥
2

1
+ 𝑥
2
) ]

4

𝜌
2
(𝑧
1
, 𝑧
2
) =
9

2

3
√3 +

27

32
[9(𝐶
1
+ 1 + 𝜌

1
(𝑧
1
))
2/3

]

4

.

(47)

According toTheorem 9, it is known that the solutions of
the system are globally bounded and the closed-loop system
is finite-gain 𝐿

2
stable.

In the simulation, the system parameters are given as
follows: 𝐶

1
= 1, 𝐶

2
= 1, 𝜎 = 2, and 𝛾 = 2. When the

disturbances are 𝜔
1
= 5, 𝜔

2
= 4 sin 𝑡, the state curves are

shown as Figure 1, and the control law is in Figure 2. From
them, we know that the closed-loop system is finite-gain 𝐿

2

stable and the gain is no more than 𝛾 = 2.

Example 2. Consider one machine connected to an infinite
bus system which is shown in Figure 3. The dynamic model
of synchronous generator can be described as follows:

̇𝛿 = 𝜔 − 𝜔
0

𝜔̇ = −
𝐷

𝐻
(𝜔 − 𝜔

0
) +
𝜔
0

𝐻
(𝑃
𝑚
− 𝑃
𝑒
) + 𝜔
1

𝑃̇
𝑚
= −

𝑃
𝑚

𝑇
𝐻∑

+
𝑃
𝑚0

𝑇
𝐻∑

+
𝐶

𝑇
𝐻∑

𝜇 + 𝜔
2
,

(48)

where

𝑃
𝑒
=

𝐸
󸀠

𝑞
𝑉
𝑠

𝑋
󸀠

𝑑∑

sin 𝛿 +
𝑉
2

𝑠

2
(

𝑋
󸀠

𝑑∑
− 𝑋
𝑞∑

𝑋
󸀠

𝑑∑
𝑋
𝑞∑

) sin 2𝛿, (49)

0 2 4 6 8 10
Time (s)

−3

−2

−1

0

1

2

3

St
at

es
 o

f c
lo

se
d-

lo
op

 sy
ste

m

x1
x2

Figure 1: State response curves.
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Figure 2: Curve of control law.

𝛿 is the power angle; 𝛿
0
is the operating point of power angle;

𝜔 is the relative speed; 𝜔
0
is the synchronous machine speed;

𝑃
𝑚
is the mechanical input power; 𝑃

𝑚0
is the operating point

of mechanical input power; 𝑃
𝑒
is the electromagnetic power;

𝜇 is the steam-valving controller; the uncertain disturbances
𝜔
1
and 𝜔

2
are bounded.

Let (𝛿
0
, 𝜔
0
, 𝑃
𝑚0
) be the operating point, and define state

variables by 𝑥
1
= 𝛿 − 𝛿

0
, 𝑥
2
= 𝜔 − 𝜔

0
, and 𝑥

3
= 𝑃
𝑚
− 𝑃
𝑚0
;

then, system (48) and (49) is represented by

𝑥̇
1
= 𝑥
2

𝑥̇
2
= −
𝐷

𝐻
𝑥
2
−
𝜔
0

𝐻
Δ𝑃
𝑒
+
𝜔
0

𝐻
𝑥
3
+ 𝜔
1

𝑥̇
3
= −

1

𝑇
𝐻∑

𝑥
3
+
𝐶

𝑇
𝐻∑

𝜇 + 𝜔
2
,

(50)
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Figure 3: One-machine to infinite-bus circuit.

where

Δ𝑃
𝑒
=

𝐸
󸀠

𝑞
𝑉
𝑠

𝑋
󸀠

𝑑∑

[sin (𝛿
0
+ 𝑥
1
) − sin 𝛿

0
]

+
𝑉
2

𝑠

2
(

𝑋
󸀠

𝑑∑
− 𝑋
𝑞∑

𝑋
󸀠

𝑑∑
𝑋
𝑞∑

) [sin 2 (𝛿
0
+ 𝑥
1
) − sin 2𝛿

0
] .

(51)

From the model (50) and (51), we know that this is a
strict-feedback system. According to the design process in
Section 3, the robust controller is obtained as follows:

𝜇 = 𝑇
𝐻∑
{−𝐶
3
𝑧
3
+
𝑥
3

𝑇
𝐻∑

− 𝑧
2
−
𝑧
2

2𝛾2

× [1 + 3(
𝜕𝛼
3

𝜕𝑥
1

)

2

+ 2(
𝜕𝛼
3

𝜕𝑥
2

)

2

]

+
𝜕𝛼
3

𝜕𝑥
1

𝑥
2
+
𝜕𝛼
3

𝜕𝑥
2

(−
𝐷

𝐻
𝑥
2
−
𝜔
0

𝐻
Δ𝑃
𝑒
+ 𝑥
3
)} ,

(52)

where 𝑧
1
= 𝑥
1
, 𝑧
2
= 𝑥
2
− 𝛼
2
, 𝑧
3
= 𝑥
3
− 𝛼
3
, 𝛼
2
= −(𝐶

1
+ 1/2 +

3/2𝛾
2
)𝑧
1
,

𝛼
3
=
𝐻

𝜔
0

[−𝐶
2
𝑧
2
+
𝐷

𝐻
𝑥
2
+
𝜔
0

𝐻
Δ𝑃
𝑒
− 𝑧
1
−
3𝑧
2

2𝛾2
(
𝜕𝛼
2

𝜕𝑥
1

)

2

−
𝑧
2

𝛾2
+
𝜕𝛼
2

𝜕𝑥
1

𝑥
2
] .

(53)

In order to verify the viability and effectiveness of the
control law (52), the computer simulation is performed with
the following parameters: 𝐷 = 8, 𝐻 = 2, 𝐶 = 1, 𝑉

𝑠
= 1,

𝑇
𝐻∑
= 0.35, and 𝑃

𝑚0
= 0.87455 (see Figures 4, 5, 6, and 7).

In the presence of external disturbances 𝜔
1
= 10 and

𝜔
2
= 15 cos 𝑡, the state responses and control law are shown

in Figures 4 and 5, respectively. In the absence of disturbance,
the simulation results are given in Figures 6 and 7. It is
obvious that the proposed controller is effective for bounded
disturbance and the closed-loop system can achieve finite-
gain 𝐿

2
stable. And, with the reduction of disturbance, the

𝐿
2
gain decreases. At last, when the disturbance vanishes,

the closed-loop system is asymptotically stable as shown in
Figure 6.

Moreover, in order to demonstrate the superiority of
the proposed controller, we compare it with another robust
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Figure 4: State curves with disturbances.

controller designed based on Hamiltonian function method
[20].

Firstly, Hamilton energy function is constructed as

𝐻 =

𝐸
󸀠

𝑞
𝑉
𝑠

𝑋
󸀠

𝑑∑

(1 − cos 𝛿) +
𝑉
2

𝑠

2
(

𝑋
𝑞∑
− 𝑋
󸀠

𝑑∑

𝑋
󸀠

𝑑∑
𝑋
𝑞∑

) cos2𝛿

+ 𝐻
(Δ𝜔)
2

2𝜔
0

+
1

2
(𝑃
𝑚
− 𝑃
𝑚0
)
2

+ 𝑃
𝑚0
(𝜋 − 𝛿) .

(54)

Then, the model (48) in Hamilton form is rewritten into

[

[

̇𝛿

Δ𝜔̇

𝑃̇
𝑚

]

]

=

[
[
[
[
[
[
[
[

[

0
𝜔
0

𝐻
0

−
𝜔
0

𝐻
−
𝐷𝜔
0

𝐻2

𝜔
0

𝐻

0 0 −
1

𝑇
𝐻∑

]
]
]
]
]
]
]
]

]

∇𝐻 +

[
[
[

[

0

0

𝐶

𝑇
𝐻∑

]
]
]

]

𝜇+ [

[

0

𝜔
1

𝜔
2

]

]

.

(55)

Based on Hamiltonian function method, the robust con-
troller is designed as

𝜇 = 𝜇
0
− Γ𝐺
𝑇
∇𝐻 = −

𝑇
𝐻∑

𝐶
Δ𝜔 − Γ

𝐶

𝑇
𝐻∑

(𝑃
𝑚
− 𝑃
𝑚0
) , (56)

where 𝜇
0
= −(𝑇

𝐻∑
/𝐶)Δ𝜔 is pre-feedback control and Γ ∈ R

is design parameter.
Next, twomethods are compared by the simulations. Fig-

ures 8, 10, and 12 are the controlled results with Hamiltonian
function method; Figures 9, 11, and 13 are the controlled
results with dissipation theory method.

In the absence of disturbance, from Figures 8 and 9, it
is known that both of them are effective for the generator
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Figure 5: Control law with disturbances.
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Figure 6: State curves without disturbances.
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Figure 7: Control law without disturbances.
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Figure 8: Response curves of Hamiltonian function method with-
out disturbances.
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Figure 9: Response curves of dissipation theory method without
disturbances.

system. From the dynamic process, it is seen that overshoot-
ing of Hamiltonian function method is less than that of
dissipation theory method, and settling time of Hamiltonian
function method is longer than that of dissipation. Then, in
the presence of small disturbances with 𝜔

1
= 1, 𝜔

2
= 1,

the simulation results are shown in Figures 10 and 11. It is
shown that both of closed-loop systems are stable and the
robust controller is effective. Next, with the enlargement of
disturbances (𝜔

1
= 10, 𝜔

2
= 10), the response curves are

shown in Figures 12 and 13, where the controlled system
of Hamiltonian function method is unstable and the power
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Figure 10: Response curves of Hamiltonian function method with
small disturbances.
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Figure 11: Response curves of dissipation theorymethod with small
disturbances.

angle is out of control, while that of dissipation theory
method is still stable, and the closed-loop system is 𝐿

2
stable.

In summary, based on Hamiltonian function method,
the design process is concise, and the gotten controller (56)
is simple, which is effective for the generator system in
the presence of no disturbance or small disturbance. By
using dissipation theory method, the construction of robust
controller is relatively complex. However, it can guarantee
that the closed-loop system is 𝐿

2
stable in all cases involving

no disturbance, small disturbance, or large disturbance.
Therefore, the proposed robust controller is more effective
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Figure 12: Response curves of Hamiltonian function method with
large disturbances.
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Figure 13: Response curves of dissipation theory method with large
disturbances.

for the systemwith uncertain disturbance, especially for large
disturbance.

6. Conclusions

In lower-triangular nonlinear systems, strict-feedback sys-
tems and high-order lower-triangular systems are two classes
of main mathematical models. In this paper, the dissipation-
based nonlinear controller is proposed to solve the robust
control problem of these two systems. Uncertain disturbance
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is dominated by the supply rate, and the stability analysis is
based on the storage function. The design method integrates
the energy supply, energy storage, and energy dissipation
into the recursive construction of robust controller. The
simulations illustrate that the gotten controller is effective
and has the advantage in regulating large disturbance. In the
future research, the dissipation-based idea can be expanded
to the robust controller design for more nonlinear systems.
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