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Data packet dropout is a special kind of time delay problem. In this paper, predictive controllers for networked control systems
(NCSs) with dual-network are designed by model predictive control method. The contributions are as follows. (1) The predictive
control problem of the dual-network is considered. (2)The predictive performance of the dual-network is evaluated. (3) Compared
to the popular networked control systems, the optimal controller of the newNCSs with data packets dropout is designed, which can
minimize infinite performance index at each sampling time and guarantee the closed-loop system stability. Finally, the simulation
results show the feasibility and effectiveness of the controllers designed.

1. Introduction

With the rapid development of computer networks technol-
ogy, the control system based onNCSs has become one of the
hot research tasks in the current international control field.
As stability analysis of NCSs subjected to packet dropping
has received much attention in [1–3], various approaches
for the delay issue in NCSs have been presented in [4–8],
and so on. Compared to the traditional control systems, the
main advantages of NCSs are lower cost, simpler installation,
and higher reliability [9–11]. Because of these attractive
advantages, typical application of these systems ranges from a
wide field, such as automotive [12], mobile [13], and advanced
aircraft [14]. However, the introduction of communication
networks in the control loops makes the analysis and design
of NCSs complex. For example, network-induced delays
and data packet dropout problem may be inevitable during
transmitting communication.

Data packet dropout is a special kind of time delay prob-
lems. Data packet dropout which is a kind of uncertainty
that may happen due to node failures or network congestion
is a common problem in networked systems. This loss will
deteriorate the performance and may even cause the system
to be unstable. Recently, the effect of data packet dropout
on the stability and performance of NCSs has received great

attention. In [15], the stability of a linear networked control
system in the presence of dropped packets was studied. A
stability analysis of model-based NCSs can be found in [2,
16–19], where an additional model was used for estimating
the plant state between transmission times and generating a
control signal. In [20], though turning themodel ofNCSs into
an asynchronous dynamic system, hybrid system technology
has been used to handle the system with time delay and data
dropouts. A stability condition was obtained for the Try-
Once-Discard networked protocol in [3]. In [21], Hadjicostis
and Touri analyzed the performance when lost data were
replaced by zeros. In [22, 23], Ling and Lemmon posed
the problem of optimal compensator design for the case
when data loss was independent and identically distributed.
Reference [24] addresses the random time delays and packet
losses issues of NCSs within the framework of jump linear
systems with mode-dependent time delays. Jump linear
systemswithMarkov chains [25, 26] alsowere used to analyze
the effect of dropouts on system stability and performance. In
[27], a delay-dependent stability condition was presented for
discrete-time jump time delay system where the time delay
was dependent on the system mode. In [28], the problem
of stability analysis and controller design has been proposed
based on a new model with packet dropouts.

Model predictive control (MPC) can now be found in a
wide variety of application areas including chemicals, food
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processing, and so on. MPC is also an effective method to
incorporate the input and output constraints into online
optimization, which increases the possibility of its application
in the synthesis and analysis of NCSs [29]. In [30], the MPC
strategy for multivariable plants was presented. Wu et al. [31]
introduced MPC into NCSs with time delay and designed an
optimal control rule. In [4], the networked predictive control
with modified MPC was proposed.

In this paper, the contributions are as follows. (1)The pre-
dictive control problemof the dual-network is considered. (2)
The predictive performance of the dual-network is evaluated.
(3) Compared to the popular networked control systems, the
optimal controller of the newNCSswith data packets dropout
is designed, which can minimize infinite performance index
at each sampling time and guarantee the closed-loop system
stability.

The remainder of this paper is organized as follows. The
problem descriptions and model of NCSs with packet drop-
outs are given in Section 2. The optimization method of
the new closed-loop systems is proposed in Section 3. The
stability analysis is given in Section 4. A numerical example
and an industrial example show the effectiveness of the pro-
posed method in Section 5, and some conclusions are given
in Section 6.

2. Problem Descriptions and Modeling of
NCSs with Packet Dropouts

Consider that NCSs model which is shown in Figure 1, sen-
sors, controllers, and actuators are connected by networks,
and we suppose that the communication link between pri-
mary sensor and controller (𝑆

1
/𝐶
1
) is ideal. Based on such

a structure, the problem of packet dropouts in network
transmission mainly exists in the actuator and secondary
sensor and controller (𝑆

2
/𝐶
2
and 𝐶

2
/𝐴).

In Figure 1, 𝑆
𝑖
(𝑖 = 1, 2), 𝐶

𝑖
(𝑖 = 1, 2), and 𝑃

𝑖
(𝑖 =

1, 2) denote the sensor, controller, and plant of primary and
secondary, respectively, and 𝐴 is actuator. 𝑢

1
(𝑘) and 𝑢

2
(𝑘)

are outputs of primary and secondary controllers at sampling
time 𝑘. 𝑢

2
(𝑘) is input of actuator at sampling time 𝑘, 𝑑𝐶2𝐴

𝑘

is the quantity of packet dropouts between sampling current
time 𝑘 and the latest communicate time successfully (𝑘−𝑑𝐶2𝐴

𝑘
)

on 𝐶
2
/𝐴 side, and 𝑑

𝑆
2
𝐶
2

𝑘
is the quantity of packet dropouts

at current time 𝑘 and the latest communicate successfully
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) on 𝑆

2
/𝐶
2
side. The quantity of packet dropouts on

𝑆
2
/𝐶
2
and 𝐶

2
/𝐴 sides is assumed to satisfy

𝑑
𝑚

≤ 𝑑
𝑆
2
𝐶
2

𝑘
≤ 𝑑
𝑀
, 𝜏

𝑚
≤ 𝑑
𝐶
2
𝐴

𝑘
≤ 𝜏
𝑀
, (1)

where 𝑑
𝑚
, 𝑑
𝑀
, 𝜏
𝑚
, and 𝜏

𝑀
are constant positive scalars rep-

resenting the minimum and maximum quantities of packet
dropouts on 𝑆

2
/𝐶
2
and 𝐶

2
/𝐴 sides, respectively, where 𝑑𝑆2𝐶2

𝑘

and 𝑑
𝐶
2
𝐴

𝑘
are two independent Markov chains. Without loss

of generality, define

0 ≤ 𝑑
𝑆
2
𝐶
2

𝑘
≤ 𝑑
𝑀
, 0 ≤ 𝑑

𝐶
2
𝐴

𝑘
≤ 𝜏
𝑀
. (2)

Suppose that under the condition 𝑑
𝑆
2
𝐶
2

𝑘
= 𝑖, the probability

that the state of packet dropouts at time 𝑘 + 1 is 𝑗 (𝑑𝑆2𝐶2
𝑘+1

= 𝑗)
is

Pr {𝑑𝑆2𝐶2
𝑘+1

= 𝑗 | 𝑑
𝑆
2
𝐶
2

𝑘
= 𝑖} = 𝜋

𝑖𝑗
∀𝑖, 𝑗 ∈ 𝜒1, (3)

where 𝜒1 = {0, 1, 2, . . . , 𝑑
𝑀
}. That is also to say that the

transition probability of 𝑑𝑆2𝐶2
𝑘

jumping frommode 𝑖 to 𝑗 is (3),
and the transition probability of 𝑑𝐶2𝐴

𝑘
jumping from mode 𝑟

to 𝑠 is

Pr {𝑑𝐶2𝐴
𝑘+1

= 𝑠 | 𝑑
𝐶
2
𝐴

𝑘
= 𝑟} = 𝜆

𝑟𝑠
∀𝑟, 𝑠 ∈ 𝜒2, (4)

where 𝜒2 = {0, 1, 2, . . . , 𝜏
𝑀
}, 𝜋
𝑖𝑗

≥ 0, ∑
𝑑
𝑀

𝑗=0
𝜋
𝑖𝑗

= 1,
∑
𝑑
𝑀

𝑗=0,𝑗 ̸= 𝑖
𝜋
𝑖𝑗
= 1 − 𝜋

𝑖𝑖
, and 𝜆

𝑟𝑠
≥ 0, ∑𝜏𝑀

𝑠=0
𝜆
𝑟𝑠

= 1.
For analysis convenience and without loss of generality,

we suppose that Markov chains jump no more than one
step. Thus, Markov chain transferring probability matrix is
satisfied [28]. Consider

𝜋
𝑖𝑗
= 0, if 𝑗 ̸= 𝑖 + 1, 𝑗 ̸= 0,

𝜆
𝑟𝑠

= 0, if 𝑠 ̸= 𝑟 + 1, 𝑠 ̸= 0.

(5)

And the two equations are used to produce the definition
of data packet dropout. 𝑖 denotes the quantity of the packet
dropouts at time 𝑘 − 1. 𝑗 denotes the quantity of packet
dropouts at time 𝑘. The system’s conditional probability of
data packets dropout is equal to zero when the difference of
the quantity of packet dropouts between time 𝑘 and 𝑘 − 1 is
not equal to 1 or there is no dropout at time 𝑘.

Some assumptions of NCSs are introduced as follows.

(1) The sensors, controllers, and actuators are clock-
driven.

(2) The buffers are big enough to hold all the data arrived,
and rule of the buffer is last-in-first-out.

(3) Transmission link of primary control loop is ideal
and data packet dropouts only happen in secondary
control loop.

(4) The transition of NCSs is single-packet transmission
and no timing sequence disordered.

The linear time-invariant discrete-time models of pri-
mary and secondary plants in Figure 1 are described as fol-
lows:

𝑃
1
: {

𝑥
1
(𝑘 + 1) = Φ

1
𝑥
1
(𝑘) + Γ

1
𝑦
2
(𝑘) ,

𝑦
1
(𝑘) = 𝐶

1
𝑥
1
(𝑘) ,

𝑃
2
: {

𝑥
2
(𝑘 + 1) = Φ

2
𝑥
2
(𝑘) + Γ

2
𝑢
2
(𝑘) ,

𝑦
2
(𝑘) = 𝐶

2
𝑥
2
(𝑘) ,

(6)

where𝑥
1
(𝑘) and𝑥

2
(𝑘) are the states of primary and secondary

plants, respectively, at sampling time 𝑘, 𝑢
2
(𝑘) is the input

of secondary plant 𝑃
2
at sampling time 𝑘, and Φ

1
, Γ
1
, 𝐶
1
,

Φ
2
, Γ
2
, 𝐶
2
are known constant matrixes with appropriate

dimensions.
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Figure 1: Networked control system model.

Due to the existence of data packet dropouts, transmis-
sion link in network cannot normally communicate. The
controller and actuator can use the buffer rule, named first-
in-last-out, to pick up signal [28]. Take the controller, for
example; when a secondary sensor data 𝑥

2
(𝑘) is false to

transmit, the secondary controller gets the latest data𝑥
2
(𝑘−1)

frombuffer and uses it as 𝑥
2
(𝑘) to calculate new control input.

Otherwise, the new sensor data 𝑥
2
(𝑘) will be saved to buffer

and used by the secondary controller as 𝑥
2
(𝑘). Thus,

𝑥
2
(𝑘) =

{

{

{

𝑥
2
(𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘
= 0,

𝑥
2
(𝑘 − 1) , 𝑑

𝑆
2
𝐶
2

𝑘
> 0.

(7)

Similarly

𝑢
2
(𝑘) =

{

{

{

𝑢
2
(𝑘) , 𝑑

𝐶
2
𝐴

𝑘
= 0,

𝑢
2
(𝑘 − 1) , 𝑑

𝐶
2
𝐴

𝑘
> 0.

(8)

It can easily derive

𝑥
2
(𝑘) = 𝑥

2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) . (9)

From the model of NCSs, as shown in Figure 1, 𝑢
1
(𝑘) is

the output of primary controller at sampling time 𝑘 as

𝑢
1
(𝑘) = 𝐹

1
𝑥
1
(𝑘) , (10)

where 𝐹
1
is to be designed by MPC method.

𝑢
2
(𝑘) is the output of secondary controller as

𝑢
2
(𝑘) = 𝑢

1
(𝑘) + 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘) , (11)

where 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) is to be designed by MPC method.

Substituting (9) and (10) into (11), we have

𝑢
2
(𝑘) = 𝐹

1
𝑥
1
(𝑘) + 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) . (12)

Therefore, (8) can be rewritten as

𝑢
2
(𝑘) =

{

{

{

𝐹
1
𝑥
1
(𝑘) + 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) , 𝑑

𝐶
2
𝐴

𝑘
= 0,

𝑢
2
(𝑘 − 1) , 𝑑

𝐶
2
𝐴

𝑘
> 0.

(13)

In order to simplify the expression of the closed-loop
control systems, a function 𝛼 = {

0, 𝑑
𝐶2𝐴

𝑘
=0

1, 𝑑
𝐶2𝐴

𝑘
>0

is introduced,
which is dependent on whether packet dropped or not,
instead of the quantity of packet dropouts. Combining (6)
and (13), it can obtain that

𝑢
2
(𝑘) = 𝛼𝑢

2
(𝑘 − 1) + [1 − 𝛼] 𝐹1𝑥1 (𝑘)

+ [1 − 𝛼] 𝐹2 (𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) ,

(14)

𝑥
1
(𝑘 + 1) = Φ

1
𝑥
1
(𝑘) + Γ

1
𝐶
2
𝑥
2
(𝑘) , (15)

𝑥
2
(𝑘 + 1) = Φ

2
𝑥
2
(𝑘) + Γ

2
𝛼𝑢
2
(𝑘 − 1)

+ Γ
2 [1 − 𝛼] 𝐹1𝑥1 (𝑘) + Γ

2 [1 − 𝛼]

× 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) .

(16)

Combining (10), (14), (15), and (16) and augmenting the
state vectors, the new resulting closed-loop control systems
and the augmenting vector (18) formed by predictive con-
troller (10) and (14) designed by MPC method are as follows:

𝑥 (𝑘 + 1) = 𝐴 (𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘) + 𝐵 (𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) ,

(17)

𝑢 (𝑘) = (
𝑢
1
(𝑘)

𝑢
2
(𝑘)

)

= 𝐶 (𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘) + 𝐷 (𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) ,

(18)



4 Mathematical Problems in Engineering

where 𝑥(𝑘) = (𝑥
Τ

1
(𝑘) 𝑥

Τ

2
(𝑘) 𝑢

Τ

2
(𝑘 − 1))

Τ

,

𝑥 (𝑘 − 𝑑
𝑆
2
𝐶
2

𝑘
)

= (𝑥
Τ

1
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) 𝑥
Τ

2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) 𝑢
Τ

2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
− 1))

T
,

𝐴 (𝑑
𝐶
2
𝐴

𝑘
) = (

Φ
1

Γ
1
𝐶
2

0

Γ
2 [1 − 𝛼] 𝐹1 Φ

2
Γ
2
𝛼

[1 − 𝛼] 𝐹1 0 𝛼

) ,

𝐵 (𝑑
𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) = (

0 0 0

0 Γ
2 [1 − 𝛼] 𝐹2 (𝑑

𝑆
2
𝐶
2

𝑘
) 0

0 [1 − 𝛼] 𝐹2 (𝑑
𝑆
2
𝐶
2

𝑘
) 0

) ,

𝐶 (𝑑
𝐶
2
𝐴

𝑘
) = (

𝐹
1

0 0

[1 − 𝛼] 𝐹1 0 𝛼
) ,

𝐷 (𝑑
𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) = (

0 0 0

0 [1 − 𝛼] 𝐹2 (𝑑
𝑆
2
𝐶
2

𝑘
) 0

) .

(19)

Remark 1. The new closed-loop control systems (17) and the
augmenting vector (18) formed by predictive controller (10)
and (14) are linear jumping systems, where their communica-
tions are described by Markov chain which is the description
of the quantity of packet dropouts at sampling time 𝑘 on
𝐶
2
/𝐴 and 𝑆

2
/𝐶
2
sides. The value of 𝛼 depends on whether

the designed control signal is successfully transmitted or not.
Thereforewe can use the results of linear jumping systemwith
delay to analyze this class of NCSs with packets dropped.

3. Optimum Analysis Based on MPC

Assume that predictive horizon 𝑝 = ∞, control horizon
𝑞 = ∞, and the 𝑚 steps control sequences 𝑢(𝑘 + 𝑚 | 𝑘),
𝑚 = 0, 1, 2, . . . ,∞, are computed by minimizing the follow-
ing performance function:

𝐽
∞

=

∞

∑

𝑚=0

[‖𝑥 (𝑘 + 𝑚 | 𝑘)‖
2

𝑄
+ ‖𝑢 (𝑘 + 𝑚 | 𝑘)‖

2

𝑅
] . (20)

The norm terms in the performance function are defined
as

‖𝑥‖
2

𝑄
= 𝑥
Τ
𝑄𝑥. (21)

The exact measurement state of NCSs at each sampling
time 𝑘 is

𝑥 (𝑘 | 𝑘) = 𝑥 (𝑘) . (22)

By using the control input given in (18), the first control move
is

𝑢 (𝑘) = 𝑢 (𝑘 | 𝑘)

= 𝐶 (𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 | 𝑘)

+ 𝐷 (𝑑
𝑆
2
𝐶
2

𝑘|𝑘
, 𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
| 𝑘) .

(23)

According to (17) and (22), the predicted state at time 𝑘 +

𝑚 is obtained as (24) which is predicted based on the exact
measurement state 𝑥(𝑘 | 𝑘). Consider

𝑥 (𝑘 + 𝑚 + 1 | 𝑘)

= 𝐴 (𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
) 𝑥 (𝑘 + 𝑚 | 𝑘) + 𝐵 (𝑑

𝑆
2
𝐶
2

𝑘+𝑚|𝑘
, 𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
)

× 𝑥 (𝑘 + 𝑚 − 𝑑
𝑆
2
𝐶
2

𝑘+𝑚|𝑘
| 𝑘) ,

(24)

where 𝑑
𝑆
2
𝐶
2

𝑘+𝑚|𝑘
is model-dependent time invariable delay on

𝑆
2
/𝐶
2
side, which is 𝑚-step ahead prediction based on the

measurement time 𝑘. 𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
is the predicted quantity of

packet dropouts at time 𝑘 + 𝑚.
And the key of predictive controller rule is to compute the

matrixes 𝐹
1
and 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) in (14). The predicted controller at

time 𝑘 + 𝑚 based on the first control move 𝑢(𝑘 | 𝑘) is

𝑢 (𝑘 + 𝑚 | 𝑘) = 𝐶 (𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
) 𝑥 (𝑘 + 𝑚 | 𝑘)

+ 𝐷 (𝑑
𝑆
2
𝐶
2

𝑘+𝑚|𝑘
, 𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
) 𝑥 (𝑘 + 𝑚 − 𝑑

𝑆
2
𝐶
2

𝑘+𝑚|𝑘
| 𝑘) ,

(25)

where𝐶(𝑑
𝐶
2
𝐴

𝑘
) and𝐷(𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) arematrixeswhich contain

the control gain matrixes 𝐹
1
and 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
), respectively.

Next wewill introduce amethod to solve the optimal con-
trol sequencewhich canminimize the following performance
index at each sampling time:

min
𝑢(𝑘+𝑚|𝑘),𝑚=0,1,2,...,∞

𝐽
∞

=

∞

∑

𝑚=0

[𝑥
Τ
(𝑘 + 𝑚 | 𝑘)𝑄𝑥 (𝑘 + 𝑚 | 𝑘)

+𝑢
Τ
(𝑘 + 𝑚 | 𝑘) 𝑅𝑢 (𝑘 + 𝑚 | 𝑘)] .

(26)

𝑄 and 𝑅 are symmetric positive definite weight matrixes.
In order to simplify, let 𝑑𝑆2𝐶2

𝑘+𝑚|𝑘
= 𝜐, 𝑑𝐶2𝐴

𝑘+𝑚|𝑘
= 𝜍, 𝑑𝑆2𝐶2

𝑘+𝑚+1|𝑘
=

𝜐
1
.
First, consider a Lyapunov function candidate 𝑉(𝑋(𝑘 +

𝑚 | 𝑘), 𝜐) with𝑋(𝑘 + 𝑚 | 𝑘) = [𝑥
Τ
(𝑘 + 𝑚 | 𝑘), 𝑥

Τ
(𝑘 + 𝑚 − 1 |

𝑘), . . . , 𝑥
Τ
(𝑘 + 𝑚 − 𝜐 | 𝑘)]

Τ as follows:

𝑉 (𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = 𝑉
1
+ 𝑉
2
+ 𝑉
3
, (27)

where

𝑉
1
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = 𝑥

Τ
(𝑘 + 𝑚 | 𝑘) 𝑃 (𝜐) 𝑥 (𝑘 + 𝑚 | 𝑘) ,

𝑉
2
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) =

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝜐

𝑥
Τ
(𝑙 | 𝑘) 𝑆𝑥 (𝑙 | 𝑘) ,

𝑉
3
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐)

= (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ
(𝑙 | 𝑘) 𝑆𝑥 (𝑙 | 𝑘) .

(28)

Matrixes 𝑃(𝜐) and 𝑆 are positive definite with appropriate
dimensions.
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Second, suppose that at sampling time 𝑘, 𝑉(𝑋(𝑘 + 𝑚 |

𝑘), 𝜐) satisfies (29) for any 𝑥(𝑘 + 𝑚 | 𝑘) and 𝑢(𝑘 + 𝑚 | 𝑘).
Consider

𝑉 (𝑋 (𝑘 + 𝑚 + 1 | 𝑘) , 𝜐
1
) − 𝑉 (𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐)

≤ − [𝑥
Τ
(𝑘 + 𝑚 | 𝑘)𝑄𝑥 (𝑘 + 𝑚 | 𝑘)

+𝑢
Τ
(𝑘 + 𝑚 | 𝑘) 𝑅𝑢 (𝑘 + 𝑚 | 𝑘)] .

(29)

For the infinite performance index 𝐽
∞
(𝑘) to be finite, we

must set 𝑥(∞ | 𝑘) = 0; hence, 𝑉(𝑥(∞ | 𝑘), 𝑑
𝑆
2
𝐶
2

∞|𝑘
) = 0.

Summing (29) from 𝑚 = 0 to 𝑚 = ∞, it can be obtained
that

𝐽
∞

(𝑘) ≤ 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) . (30)

Therefore, the infinite optimization problem at time 𝑘

has transformed into optimizing upper function 𝑉(𝑋(𝑘 |

𝑘), 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) at each sampling time 𝑘. As a standard in MPC,

only the first control move 𝑢(𝑘|𝑘) is implemented, and at the
next sampling time 𝑘 + 1, the state 𝑥(𝑘 + 1) is measured
and the optimization is repeated to compute matrixes 𝐹

1
and

𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
).

Third, a sufficient condition for existing of a set of control
sequence is

𝐽
∞

< Υ, (31)
whereΥ is a suitable nonnegative coefficient to beminimized.

Before proceeding, the following lemma needs to be
introduced.

Lemma 2 (Schur Complement Lemma). Given constant
matrixes 𝑍

1
, 𝑍
2
, 𝑍
3
, where 𝑍

1
= 𝑍
Τ

1
, 𝑍
2

= 𝑍
Τ

2
, then 𝑍

1
+

𝑍
Τ

3
𝑍
−1

2
𝑍
3
< 0 holds if ( 𝑍1 𝑍

Τ

3

𝑍
3
−𝑍
2

) < 0 or ( −𝑍2 𝑍3
𝑍
Τ

3
𝑍
1

) < 0.

Assumption 3. The values of 𝑑𝑆2𝐶2
𝑘

and 𝛼 are known to the
controller.

Theorem 4. Suppose the states 𝑥(𝑘 | 𝑘), 𝑥(𝑘−1 | 𝑘), . . . , 𝑥(𝑘−

𝑑
𝑀

| 𝑘) of system (17) are measured; then, the control rule in
(18)makeing (29) and 𝐽

∞
< Υ hold, if existingmatrixes𝑃(𝜐) >

0, 𝑆 > 0, 𝐶(𝜍),𝑋(𝜐) > 0,𝐷(𝜐, 𝜍), 𝐹, and scalar Υ > 0make the
following optimization feasible:

minΥ (32)
subject to

𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘
+

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝑑
𝑆𝐶

𝑘

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

≤ Υ,

(33)

(

−𝑃(𝜐) + (1 + 𝜇) 𝑆 + 𝑄 0 𝐴
Τ
(𝜍) 𝐶

Τ
(𝜍)

0 −𝑆 𝐵
Τ
(𝜐, 𝜍) 𝐷

Τ
(𝜐, 𝜍)

𝐴 (𝜍) 𝐵 (𝜐, 𝜍) −𝑃̂
−1

(𝜐) 0

𝐶 (𝜍) 𝐷 (𝜐, 𝜍) 0 −𝑅
−1

) < 0,

(34)

or

(

−𝑃(𝜐) + (1 + 𝜇) 𝑆 + 𝑄 ∗ ∗ ∗

0 −𝑆 ∗ ∗

𝐴 (𝜍) 𝐵 (𝜍) −Λ ∗

𝐼 (𝜍) + 𝐽 (𝜍) 𝐹𝐻̃
1

𝐾̃ (𝜍) 𝐹𝐻̃ 0 −𝑅
−1

) < 0,

(
𝑃 𝐼

𝐼 𝑋
) ≥ 0, 𝑃𝑋 = 𝐼,

(35)

where 𝜋
𝑚

= min{𝜋
𝑖𝑖
, 𝑖 ∈ 𝜒1}, 𝑃̂(𝜐) = ∑

𝑑
𝑀

𝑗=𝑑
𝑚
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑃(𝑗), 𝑖

denotes the quantity of packet dropouts, 𝑖 ∈ 𝜒1, 𝜒1 = {0, 1,

2, . . . , 𝑑
𝑀
}, 𝜇 = 𝑑

𝑀
(1−𝜋

𝑚
),𝐴(𝜍) = [√𝜋

𝑖0
𝐴(𝜍), √𝜋

𝑖1
𝐴(𝜍), . . . ,

√𝜋
𝑖𝑑
𝑀

𝐴(𝜍)]
Τ, 𝐵(𝜍) = [√𝜋

𝑖0
𝐵(𝜍), √𝜋

𝑖1
𝐵(𝜍), . . . , √𝜋

𝑖𝑑
𝑀

𝐵(𝜍)]
Τ,

Λ = diag(𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑖
), 𝑖 ∈ (0, 1, 2, . . . , 𝑑

𝑀
),

𝑋(𝜐) = 𝑃
−1
(𝜐), Θ = diag[−[1 + (1 − 𝜋

𝑚
)(𝑑
𝑀

− 1)𝑆]
−1,

−[1 + (1 − 𝜋
𝑚
)(𝑑
𝑀

− 2)𝑆]
−1
, . . . , −[(1 − 𝜋

𝑚
)𝑆]
−1
], 𝑥
𝑝

=

[𝑥(𝑘 − 1 | 𝑘), 𝑥(𝑘 − 2 | 𝑘), . . . , 𝑥(𝑘 − 𝑑
𝑀

+ 1 | 𝑘)]
T,

𝐹 = [𝐹
1
, 𝐹
2
].

In order to express conveniently, let 𝑥
𝑘+𝑚|𝑘

= 𝑥(𝑘 + 𝑚 |

𝑘), 𝑥
𝑘+𝑚−𝜐|𝑘

= 𝑥(𝑘 + 𝑚 − 𝜐 | 𝑘), 𝑢
𝑘+𝑚|𝑘

= 𝑢(𝑘 + 𝑚 | 𝑘),
𝑥
𝑙|𝑘

= 𝑥(𝑙 | 𝑘). Thus, (24) becomes 𝑥
𝑘+𝑚+1|𝑘

= 𝐴(𝜍)𝑥
𝑘+𝑚|𝑘

+

𝐵(𝜐, 𝜍)𝑥
𝑘+𝑚−𝜐|𝑘

.
The proof of the previous theorem is divided into the

following two steps: Step 1, we design a Lyapunov function
𝑉(𝑋(𝑘 + 𝑚 | 𝑘), 𝜐) for the systems; Step 2, an optimal con-
troller is designed such that the closed-loop systems are stable
and the optimal characteristics are satisfied.

Proof

Step 1. Consider a Lyapunov function candidate𝑉(𝑋(𝑘 +𝑚 |

𝑘), 𝜐) = 𝑉
1
+ 𝑉
2
+ 𝑉
3
with x ̸= 0, where

𝑉
1
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = 𝑥

Τ

𝑘+𝑚|𝑘

𝑃 (𝜐) 𝑥
𝑘+𝑚|𝑘

, (36)

𝑉
2
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) =

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝜐

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
,

𝑉
3
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = (1 − 𝜋

𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
,

Δ𝑉
1
= Ε [𝑉

1
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐)] − 𝑉
1
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

= Ε [𝑥
Τ

𝑘+𝑚+1|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚+1|𝑘
] − 𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘

= 𝑥
Τ

𝑘+𝑚+1|𝑘
𝑃̂ (𝜐) 𝑥

𝑘+𝑚+1|𝑘
− 𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘

=𝜂
Τ

𝑘+𝑚|𝑘
(

𝐴
Τ
(𝜍) 𝑃̂ (𝜐)

×𝐴 (𝜍)−𝑃 (𝜐)
𝐴
Τ
(𝜍) 𝑃̂ (𝜐) 𝐵 (𝜐, 𝜍)

∗ 𝐵
Τ
(𝜐, 𝜍) 𝑃̂ (𝜐) 𝐵 (𝜐, 𝜍)

) 𝜂
𝑘+𝑚|𝑘

,

(37)
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where 𝜂
𝑘+𝑚|𝑘

= (𝑥𝑘+𝑚|𝑘 𝑥
𝑘+𝑚−𝜐)

Τ, and E is the mathematical
expectation. Consider

Δ𝑉
2
= Ε [𝑉

2
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
)] − 𝑉

2
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

= Ε[

[

𝑘+𝑚

∑

𝑙=𝑘+𝑚+1−𝑑
𝑆𝐶

𝑘

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
]

]

−

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝑑
𝑆𝐶

𝑘

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

= 𝑥
Τ

𝑘+𝑚|𝑘
𝑆𝑥
𝑘+𝑚|𝑘

− 𝑥
Τ

𝑘+𝑚−𝑑
𝑆𝐶

𝑘
|𝑘
𝑆𝑥
𝑘+𝑚−𝑑

𝑆𝐶

𝑘
|𝑘

+

𝑑
𝑀

∑

𝑗=0,𝑖 ̸= 𝑗

𝜋
𝑖𝑗
(

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+1−𝑑
𝑆𝐶

𝑘+1

−

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝑑
𝑆𝐶

𝑘

)𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
,

(38)

and ∑
𝑑
𝑀

𝑗=0,𝑗 ̸= 𝑖
𝜋
𝑖𝑗
= 1 − 𝜋

𝑖𝑖
≤ 1 − 𝜋

𝑚
, 0 ≤ 𝜐 ≤ 𝑑

𝑀
; thus,

Δ𝑉
2
= Ε [𝑉

2
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
)] − 𝑉

2
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

≤ 𝑥
Τ

𝑘+𝑚|𝑘
𝑆𝑥
𝑘+𝑚|𝑘

− 𝑥
Τ

𝑘+𝑚−𝜐|𝑘
𝑆𝑥
𝑘+𝑚−𝜐|𝑘

+ (1 − 𝜋
𝑚
)

𝑘+𝑚

∑

𝑙=𝑘+𝑚−𝑑
𝑀
+1

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
.

(39)

Similarly,

Δ𝑉
3
= Ε [𝑉

3
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
)] − 𝑉

3
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

≤ 𝑑
𝑀

(1−𝜋
𝑚
) 𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
−(1−𝜋

𝑚
)

𝑘+𝑚

∑

𝑙=𝑘+𝑚−𝑑
𝑀
+1

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
.

(40)

Therefore, Δ𝑉 = Δ𝑉
1
+ Δ𝑉
2
+ Δ𝑉
3
and

≤ 𝜂
Τ

𝑘+𝑚|𝑘
(

𝐴
Τ
(𝜍) 𝑃̂ (𝜐) 𝐴 (𝜍)

−𝑃 (𝜐)+(1+𝜇) 𝑆
𝐴
Τ
(𝜍) 𝑃̂ (𝜐) 𝐵 (𝜐, 𝜍)

∗ 𝐵
Τ
(𝜐, 𝜍) 𝑃̂ (𝜐) 𝐵 (𝜐, 𝜍)−𝑆

) 𝜂
𝑘+𝑚|𝑘

,

(A1)

where ∗ denotes the block determined by symmetry.
Substituting (25) and (A1) into (29), we have

𝑉 (𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
) − 𝑉 (𝑋

𝑘+𝑚|𝑘
, 𝜐) + 𝑥

Τ

𝑘+𝑚|𝑘
𝑄𝑥
𝑘+𝑚|𝑘

+ 𝑢
Τ

𝑘+𝑚|𝑘
𝑅𝑢
𝑘+𝑚|𝑘

≤ 𝜂
Τ

𝑘+𝑚|𝑘
Ξ𝜂
𝑘+𝑚|𝑘

,

Ξ = (
Φ 𝐴

Τ
(𝜍) 𝑃̂ (𝜐) 𝐵 (𝜐, 𝜍) + 𝐶

Τ
(𝜍) 𝑅𝐷 (𝜐, 𝜍)

∗ 𝐵
Τ
(𝜐, 𝜍) 𝑃̂ (𝜐) 𝐵 (𝜐, 𝜍) − 𝑆 + 𝐷

Τ
(𝜐, 𝜍) 𝑅𝐷 (𝜐, 𝜍)

) ,

(41)

whereΦ = 𝐴
Τ
(𝜍)𝑃̂(𝜐)𝐴(𝜍)−𝑃(𝜐)+(1+𝜇)𝑆+𝑄+𝐶

Τ
(𝜍)𝑅𝐶(𝜍).

According to Lemma 2, we obtain

Ξ =

(

−𝑃 (𝜐) + (1 + 𝜇) 𝑆 + 𝑄 0 𝐴
Τ
(𝜍) 𝐶

Τ
(𝜍)

0 −𝑆 𝐵
Τ
(𝜐, 𝜍) 𝐷

Τ
(𝜐, 𝜍)

𝐴 (𝜍) 𝐵 (𝜐, 𝜍) −𝑃̂
−1

(𝜐) 0

𝐶 (𝜍) 𝐷 (𝜐, 𝜍) 0 −𝑅
−1

).

(42)

According to (34), then

𝜂
Τ

𝑘+𝑚|𝑘
Ξ𝜂
𝑘+𝑚|𝑘

< 0. (43)

Hence, (29) holds.
And

𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘
+

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝜐

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

≤ Υ.

(44)

That is,

𝑉 (𝑋
𝑘+𝑚|𝑘

, 𝜐) ≤ Υ. (45)

From (30), we have

𝐽
∞

(𝑘) < Υ. (46)

Step 2. A congruence transformation to (17) and (18) leads to

𝐴 (𝜍) = 𝐷 (𝜍) + 𝐸 (𝜍) 𝐹𝐻̃
1
, 𝐵 (𝜐, 𝜍) = 𝐸 (𝜍) 𝐹𝐻̃,

𝐶 (𝜍) = 𝐼 (𝜍) + 𝐽 (𝜍) 𝐹𝐻̃
1
, 𝐷 (𝜐, 𝜍) = 𝐾̃ (𝜍) 𝐹𝐻̃,

(A2)

where

𝐷(𝜍) = (

Φ
1

Γ
1
𝐶
2

0

0 Φ
2

Γ
2
𝛼

0 0 𝛼

) ,

𝐸 (𝜍) = (

0

Γ
2 [1 − 𝛼]

[1 − 𝛼]

) , 𝐹 = [𝐹
1
, 𝐹
2
] ,

𝐻̃ = (
0 0 0

0 Ι 0
) , 𝐼 (𝜍) = (

0 0 0

0 0 𝛼
) ,

𝐽 (𝜍) = (
Ι

[1 − 𝛼]
) , 𝐻̃

1
= (

Ι 0 0

0 0 0
) ,

𝐾̃ (𝜍) = (
0

[1 − 𝛼]
) .

(47)

Substituting (A2) into (34), (35) can be obtained.
The proof of Theorem 4 is completed.

Remark 5. According to the proposed method, the optimal
input is unique. Υ is a scalar and Υ > 0. Unique resolution is
given finally by using Toolbox of Matlab. Its convergence can
be found in Figure 3.

4. Stability Analysis of NCSs with
Packet Dropouts

Theorem 6. Suppose that the optimization problem in
Theorem 4 is feasible at time 𝑘; then, the new resulting closed-
loop systems in (17) are asymptotically stable by the optimal
control law in (18) which is obtained fromTheorem 4.
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Proof. First, the Lyapunov function, 𝑉(𝑋(𝑘 + 𝑚 | 𝑘), 𝜐) =

𝑉
1
+𝑉
2
+𝑉
3
is discussed and𝑉(𝑋(𝑘+𝑚 | 𝑘), 𝑑

𝑆
2
𝐶
2

𝑘+1|𝑘
)−𝑉(𝑋(𝑘 |

𝑘), 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) < 0 holds only when 𝑥 ̸= 0.

Next, in the following we will consider the situation at
time 𝑘 (i.e.,𝑚 = 0):

𝑉(𝑋 (𝑘 | 𝑘) , 𝑑
𝑆𝐶

𝑘|𝑘
) = 𝑥
Τ

𝑘|𝑘

𝑃
𝑘
𝑥
𝑘|𝑘

+

𝑘−1

∑

𝑙=𝑘−𝑑
𝑆𝐶

𝑘|𝑘

𝑥
Τ

𝑙|𝑘
𝑆
𝑘
𝑥
𝑙|𝑘

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘−1

∑

𝑙=𝑘+𝜃

𝑥
Τ

𝑙|𝑘
𝑆
𝑘
𝑥
𝑙|𝑘
,

(48)

where 𝑃
𝑘

> 0, 𝑆
𝑘

> 0 are obtained from the optimal
solution at time 𝑘. Suppose that the optimization problem
in Theorem 4 is feasible at time 𝑘, and according to the
introduction in [8], these optimization problems are also

feasible for all 𝑘 + 1. Let us note values of 𝑃
𝑘

> 0, 𝑆
𝑘

> 0,
𝐹
1𝑘
, 𝐹
2𝑘
, Υ
𝑘
, and 𝑃

𝑘+1
> 0, 𝑆

𝑘+1
> 0, 𝐹

1𝑘+1
, 𝐹
2𝑘+1

obtained
from the optimal solution at time 𝑘 and 𝑘 + 1, respectively.
Therefore, we have

𝑥
Τ

𝑘+1|𝑘+1

𝑃
𝑘+1

𝑥
𝑘+1|𝑘+1

+

𝑘

∑

𝑙=𝑘+1−𝑑
𝑆𝐶

𝑘+1|𝑘+1

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘+1

𝑥
𝑙|𝑘+1

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘

∑

𝑙=𝑘+1+𝜃

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘+1

𝑥
𝑙|𝑘+1

≤ 𝑥
Τ

𝑘+1|𝑘+1
𝑃
𝑘
𝑥
𝑘+1|𝑘+1

+

𝑘

∑

𝑙=𝑘+1−𝑑
𝑆𝐶

𝑘|𝑘

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘
𝑥
𝑙|𝑘+1

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘

∑

𝑙=𝑘+1+𝜃

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘
𝑥
𝑙|𝑘+1

.

(49)

That is because 𝑃
𝑘+1

> 0, 𝑆
𝑘+1

> 0 are optimal, whereas 𝑃
𝑘
>

0, 𝑆
𝑘
> 0 are only feasible at time 𝑘.

From (29), it can be obtained that

𝑉(𝑋 (𝑘 + 1 | 𝑘) , 𝑑
𝑆
2
𝐶
2

𝑘+1|𝑘
) − 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
)

≤ − [𝑥
Τ
(𝑘 | 𝑘) 𝑄𝑥 (𝑘 |𝑘 ) + 𝑢

Τ
(𝑘 | 𝑘) 𝑅𝑢 (𝑘 | 𝑘)]

≤ −𝑥
Τ
(𝑘 | 𝑘) 𝑄𝑥 (𝑘 | 𝑘) ≤ −𝜆min (𝑄) {‖𝑥 (𝑘 | 𝑘)‖

2
} .

(50)

Because 𝑄 is symmetric positive definite, we have
𝜆min(𝑄) > 0 (the minimal eigenvalue of matrix 𝑄), and then

𝑉(𝑋 (𝑘 + 1 | 𝑘) , 𝑑
𝑆
2
𝐶
2

𝑘+1|𝑘
) − 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
) < 0. (51)

When𝑚 = 0, (24) is becoming

𝑥 (𝑘 + 1 | 𝑘) = 𝐴 (𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 | 𝑘)

+ 𝐵 (𝑑
𝑆
2
𝐶
2

𝑘|𝑘
, 𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
| 𝑘) .

(52)

Because of the measured state,

𝑥 (𝑘 + 1 | 𝑘 + 1)

= 𝑥 (𝑘 + 1)

= 𝐴 (𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘) + 𝐵 (𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) .

(53)

So we have

𝑥 (𝑘 + 1 | 𝑘 + 1) = 𝑥 (𝑘 + 1 | 𝑘) . (54)

Comparing with (A1), it can be obtained that

𝑉(𝑋 (𝑘 + 1 | 𝑘 + 1) , 𝑑
𝑆
2
𝐶
2

𝑘+1|𝑘+1
) − 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
) < 0.

(55)
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Figure 4: (a) State response of state 𝑥
2
with designed optimal controller, (b) state response of state 𝑥

1
with designed optimal controller, (c)

state trajectories of state 𝑥
2
, (d) state trajectories of state 𝑥

1
, (e) state response of state 𝑥

2
, and (f) state trajectories of state 𝑥

1
.
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Figure 5: The number of data packet dropouts of 𝑆 to 𝐶 side.

Therefore, the Lyapunov function 𝑉(𝑋(𝑘 | 𝑘), 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) is

decreasing for the new closed loop, and lim
𝑘→∞

𝑥(𝑘 | 𝑘) = 0

is concluded. The stochastic stability is obtained.

5. Simulation Examples

In order to show the effectiveness of the proposed method,
we will give some cases and simulations.

5.1. A Simple Example. Considering the coefficient matrixes
of 𝑃
1
and 𝑃

2

Φ
1
= (

0.9512 1.051

−0.6065 −1.1618
) , Γ

1
= (

8.5530

29.4735
) , (56)

𝐶
1
= (−0.0045 0.1004) ,

Φ
2
= (

−0.3667 −0.0111

1 0
) , Γ

2
= (

1

0
) ,

(57)

𝐶
2
= (0 0.0111) . (58)

Markov models of the whole closed control systems are
consisted. Suppose that 𝑑𝑆2𝐶2

𝑘
= 𝑖 ∈ (0, 1) and 𝑑

𝐶
2
𝐴

𝑘
= 𝑟 ∈

(0, 1), as shown in Figures 2 and 5, which means that the
number of data packet dropouts is 𝑖 at sensor to controller
of secondary side and, similarly, is 𝑟 at secondary controller
to actuator side at time 𝑘. In themethod,Υ is a scalar andΥ >

0. Its convergence is shown in Figure 3. Unique resolution
is given finally by using Toolbox of Matlab. The simulation
results under the optimal state feedback controller are shown
in Figure 4.

From the simulation (1) Figure 3 is the upper of per-
formance index. (2) In Figures 4(a) and 4(b), system state
trajectories will eventually be more stable. It is shown that

NCSs with data packet dropouts are stable with the optimal
controller which is designed by Theorem 4. (3) Through
comparing to LQR controller, which is showed in Figures
4(c), 4(d), 4(e), and 4(f), the systemovershoots are shortened,
and state trajectory paths aremore superior.Thus, the optimal
controller designed in our paper is effective.

5.2. Industrial Systems. In order to verify the method pro-
posed earlier, a networked control system for main furnace
temperature in industrial systems is taken for an example. It is
assumed that the transfer functions of the inertial and leading
sections are 𝐺

𝑝1
(𝑠) = (1/[(30𝑠 + 1)(3𝑠 + 1)]) and 𝐺

𝑝2
(𝑠) =

(1/[(𝑠 + 1)
2
(10𝑠 + 1)]), respectively. After discretization, the

following state space models are available:

𝑃
1
:

{{{{{{{

{{{{{{{

{

𝑥
1
(𝑘 + 1) = (

0.6887 −0.0093

0.8356 0.9951
)𝑥
1
(𝑘)

+(
0.8356

0.4437
)𝑦
2
(𝑘) ,

𝑦
1
(𝑘) = (0 0.0111) 𝑥1 (𝑘) ,

𝑃
2
:

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑥
2
(𝑘 + 1) = (

−0.0342 −0.4364 −0.0342

0.3425 0.6849 −0.0254

0.2542 0.8762 0.9899

)𝑥
2
(𝑘)

+(

0.3425

0.2542

0.1008

)𝑢
2
(𝑘) ,

𝑦
2
(𝑘) = (0 0 0.1) 𝑥2 (𝑘) .

(59)

Figures 6(a) and 6(b) can be obtained, from which the
systems in (17) are stabilized by our designed controller.
Through comparing to LQR controller, as shown in Figures
6(c), 6(d), 6(e), and 6(f), and the system overshoots short-
ened, state trajectories are more superior and performance of
the control systems is further improved. Thus, the proposed
optimal controller designed is effective and feasible.

6. Conclusions

In this paper, the modeling, optimal, and control problems
for a class of NCSs under data packet dropout effect have
been studied. The data packet dropouts are described by
Markov chains.TheMarkov chains describe that the quantity
of packet dropouts between current time 𝑘 and its latest
communicates successfully instead of whether the data pack-
ets dropped or not. Though augmenting the state vectors,
the resulting closed-loop control system is transformed into
a jump system with time delays. Model predictive control
method is applied to study optimization and stability prob-
lems of the resulting closed-loop NCSs. Sufficient conditions
are proposed for the optimization and stability of the resulting
closed-loop NCSs. Some simulations are given in the last
section and it can be seen that the designed controllers are
feasible and effective. In this work, the full state feedback
controllers are designed. However, it is difficult to obtain
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Figure 6: (a) State response of state 𝑥
2
with designed optimal controller, (b) state response of state 𝑥

1
with designed optimal controller, (c)

state trajectories of state 𝑥
2
, (d) state trajectories of state 𝑥

1
, (e) state response of state 𝑥

2
, and (f) state trajectories of state 𝑥

1
.
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the full state. Output feedback controllers should be consid-
ered. Dynamic output feedback can be investigated in the
future work.
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