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Many zero-finding numerical methods are based on the Intermediate Value Theorem, which states that a zero of a real function
𝑓 : R → R is bracketed in a given interval [𝐴, 𝐵] ⊂ R if 𝑓(𝐴) and 𝑓(𝐵) have opposite signs; that is, 𝑓(𝐴) ⋅ 𝑓(𝐵) < 0. But, some
zeros cannot be bracketed this way because they do not satisfy the precondition 𝑓(𝐴) ⋅ 𝑓(𝐵) < 0. For example, local minima and
maxima that annihilate 𝑓 may not be bracketed by the Intermediate Value Theorem. In this case, we can always use a numerical
method for bracketing extrema, checking then whether it is a zero of 𝑓 or not. Instead, this paper introduces a single numerical
method, called generalized regula falsi (GRF) method to determine both zeros and extrema of a function. Consequently, it differs
from the standard regula falsi method in that it is capable of finding any function zero in a given interval [𝐴, 𝐵] ⊂ R even when the
Intermediate Value Theorem is not satisfied.

1. Introduction

Numerical methods such as bisection method [1, 2], secant
method [3–6], regula falsi method [7, 8], andNewton-Raphson
method [9, 10], amongst others, are known as zero-finding
algorithms.They are used for bracketing a zero. We say that a
zero is bracketed in the interval [𝐴, 𝐵] if 𝑓(𝐴) and 𝑓(𝐵) have
opposite signs; that is, 𝑓(𝐴) ⋅𝑓(𝐵) < 0. In this paper, a zero of
this sort is called a crossing zero, as illustrated in Figure 1(a).

Although this class of methods satisfying the Interme-
diate Value Theorem succeeds in finding most zeros (i.e.,
crossing zeros), they fail to bracket zeros that are also
extrema, here called extremal zeros. We say that an extremum
is bracketed in the interval [𝐴, 𝐵] if 𝑓(𝐴) and 𝑓(𝐵), but not
their derivatives, have identical signs; that is, 𝑓(𝐴) ⋅ 𝑓(𝐵) > 0
and 𝑓󸀠(𝐴) ⋅ 𝑓󸀠(𝐵) < 0. If 𝑓(𝐴) > 0 and 𝑓(𝐵) > 0, “go
downhill, taking steps of increasing size, until your function
starts back uphill” [4]. At this point, we have only to check
that such a minimum is a zero. Analogously, if 𝑓(𝐴) < 0 and
𝑓(𝐵) < 0, basically, “go uphill, taking steps of increasing size,
until your function starts back downhill” [4]. Then, we have
only to check that such a maximum is a zero.

Despite the existence of algorithms for finding extrema
(maxima and minima) of functions in the numerical analysis

literature, there is no single iterative formula to find both
crossing and extremum zeros of a real function. Such a
method is described in the next section and is called gener-
alized regula falsi method.

2. Generalized Regula Falsi Method

The generalized regula falsi (GRF) method is based on the
ratio of similar triangles. Its main novelty is that it can be
used to compute both zeros and extrema through a single
interpolation formula.

Let us consider the interval [𝐴, 𝐵], as illustrated in Figures
1(a) and 1(b), being |𝑓(𝐴)| and |𝑓(𝐵)| the absolute values of
the function at 𝐴 and 𝐵, respectively. The endpoints of the
interval [𝐴, 𝐵] work as two distinct estimates for a zero of
𝑓(𝑥) = 0. The next estimate𝑋 is the intersection point of the
straight-line segments (𝐴, 0)(𝐵, 0) and (𝐴, |𝑓(𝐴)|)(𝐵, |𝑓(𝐵)|),
which is given by

𝑋 = 𝐴 +

󵄨󵄨󵄨󵄨𝑓 (𝐴)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝐴)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝐵)

󵄨󵄨󵄨󵄨
⋅ (𝐵 − 𝐴) . (1)



2 Mathematical Problems in Engineering

A BX

f(B)

f(A)

(a)

A BX

f(B)

f(A)

−f(A)

(b)
Figure 1: The generalized regula falsi method for (a) zeros and (b) extrema.

As known, the vectorial equation of the line that passes
through the points 𝐴 and 𝐵 is given by

𝑋(𝑡) = 𝐴 + 𝑡 ⋅ (𝐵 − 𝐴) (2)

with 𝐴 = 𝑋(0) and 𝐵 = 𝑋(1). Thus, the next estimate 𝑋
occurs at 𝑡 = |𝑓(𝐴)|/(|𝑓(𝐴)| + |𝑓(𝐵)|), a result due to the
following equality of triangles:

󵄨󵄨󵄨󵄨𝑓 (𝐴)
󵄨󵄨󵄨󵄨

𝑡
=

󵄨󵄨󵄨󵄨𝑓 (𝐵)
󵄨󵄨󵄨󵄨

1 − 𝑡
. (3)

Remarkably, as explained below, the iterative formula (1)
applies to both zeros and extrema.

2.1. Zeros. The computation of a zero is illustrated in
Figure 1(a). Let us assume that𝑓(𝐴)⋅𝑓(𝐵) < 0, with𝑓(𝐴) < 0.
By replacing |𝑓(𝐴)| = −𝑓(𝐴) and |𝑓(𝐵)| = 𝑓(𝐵) into (1), we
obtain

𝑋 = 𝐴 −
𝑓 (𝐴)

𝑓 (𝐵) − 𝑓 (𝐴)
⋅ (𝐵 − 𝐴) , (4)

that is, the interpolation formula of the well-known regula
falsi method [1]. It is used to determine crossing zeros.

2.2. Extrema. The computation of a local extremum is done
exactly in the same way for minima and maxima. Let us first
consider a local minimum as illustrated in Figure 1(b). In this
case, 𝑓(𝐴) ⋅ 𝑓(𝐵) > 0, with 𝑓(𝐴) > 0. By replacing |𝑓(𝐴)| =
𝑓(𝐴) and |𝑓(𝐵)| = 𝑓(𝐵) into (1), we obtain

𝑋 = 𝐴 +
𝑓 (𝐴)

𝑓 (𝐵) + 𝑓 (𝐴)
⋅ (𝐵 − 𝐴) , (5)

that is, the next estimate𝑋 of a local minimum.

Let us now consider that a reflection takes place across
the 𝑥-axis in Figure 1(b). In this case, we have a function with
a local maximum; that is, 𝑓(𝐴) ⋅ 𝑓(𝐵) > 0, with 𝑓(𝐴) < 0.
Again, by replacing |𝑓(𝐴)| = −𝑓(𝐴) and |𝑓(𝐵)| = −𝑓(𝐵) into
(1), we obtain the next estimate𝑋 through (5).

Thus, formula (5) works equally well for localminima and
maxima, independently of whether 𝑓(𝐴) and 𝑓(𝐵) are either
positive or negative. In fact, looking at (4) and (5), we see
that it is enough to change the sign of either 𝑓(𝐴) or 𝑓(𝐵)
to determine the next estimate 𝑋 of an extremum through
the regula falsi technique.

However, the condition 𝑓(𝐴) ⋅ 𝑓(𝐵) > 0 only indicates
that there may be an extremum between 𝐴 and 𝐵. We have
to evaluate the finite difference 𝑑(𝑥) = (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ,
with an infinitesimal ℎ, at𝐴 and 𝐵 and test whether they have
opposite signs, that is, 𝑑(𝐴) ⋅ 𝑑(𝐵) < 0, to guarantee that an
extremum exists in [𝐴, 𝐵]. We use the finite difference—the
discrete counterpart of the derivative—of a function at a given
point for two main reasons.

(i) Consistency: the regula falsi method does not use
derivatives. So, the generalized regula falsi method
does not use them for consistency either.

(ii) Differentiability: there are zeros and extrema at which
derivatives do not exist. For example, 𝑓(𝑥) = |𝑥|1/3 in
Figure 3(f) has a cusp at 𝑥 = 0 that is also aminimum.
Derivatives cannot be used in this case because the
program would break down.

Therefore, we have to check whether the finite difference
𝑑(𝑋) of the estimate 𝑋 is very close to zero. If so, we have an
extremum at 𝑋 approximately. Besides, if 𝑓(𝑋) ≈ 0, with an
accuracy of 10−6, then𝑋 is a zero.
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In short, in the literature, we find numerical methods
for calculating zeros and extrema. The main novelty of the
method introduced in this paper is its ability to compute zeros
and extrema by means of a single interpolation formula (cf.
formula (1)), that is, using the same formula.

2.3. Convergence Analysis. The convergence of the GRF
method is guaranteed by the following theorem.

Theorem 1. Let 𝑓 be a continuous real function on [𝐴, 𝐵] ⊂ R

and 𝑓(𝐴) ⋅ 𝑓(𝐵) < 0 or 𝑑(𝐴) ⋅ 𝑑(𝐵) < 0. If 𝑃 is the only zero
(i.e., 𝑓(𝑃) = 0) or extremum (i.e., 𝑑(𝑃) = 0) in [𝐴, 𝐵], then the
GRF method generates a sequence {𝑃

𝑛
}+∞
𝑛=1

converging to 𝑃 for
two initial approximations 𝑃

1
= 𝐴 and 𝑃

2
= 𝐵.

Proof. Without loss of generality, that is equivalent to prove
the existence of a sequence {𝐼

𝑛
}+∞
𝑛=1

of intervals 𝐼
𝑛
= [𝑃
𝑛
, 𝑃
𝑛+1
]

converging to 𝑃, with 𝑃 ∈ 𝐼
𝑛
for all 𝑛.

Let 𝑙(𝐼
𝑛
) be the length of the interval 𝐼

𝑛
so that 𝑙(𝐼

1
) =

|𝑃
2
− 𝑃
1
|, 𝑙(𝐼
2
) = |𝑃

3
− 𝑃
2
|, and

𝑙 (𝐼
2
)

𝑙 (𝐼
1
)
=

󵄨󵄨󵄨󵄨𝑃3 − 𝑃2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃2 − 𝑃1
󵄨󵄨󵄨󵄨
. (6)

Now, from (1) we obtain
𝑙 (𝐼
2
)

𝑙 (𝐼
1
)

=

󵄨󵄨󵄨󵄨𝑃2 + (
󵄨󵄨󵄨󵄨𝑓 (𝑃2)

󵄨󵄨󵄨󵄨 / (
󵄨󵄨󵄨󵄨𝑓 (𝑃1)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃2)

󵄨󵄨󵄨󵄨)) ⋅ (𝑃1 − 𝑃2) − 𝑃2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃2 − 𝑃1
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨𝑓 (𝑃2)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃1)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃2)

󵄨󵄨󵄨󵄨
(7)

or

𝑙 (𝐼
2
) = 𝑙 (𝐼

1
) ⋅

󵄨󵄨󵄨󵄨𝑓 (𝑃2)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃1)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃2)

󵄨󵄨󵄨󵄨
. (8)

In general, we can write

𝑙 (𝐼
𝑛
) = 𝑙 (𝐼

𝑛−1
) ⋅

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛−1)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)

󵄨󵄨󵄨󵄨
. (9)

Taking into account that

0 <

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛−1)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)

󵄨󵄨󵄨󵄨
< 1 (10)

we have 𝑙(𝐼
𝑛
) < 𝑙(𝐼

𝑛−1
) for all 𝑛.Thus, the sequence {𝑙(𝐼

𝑛
)}+∞
𝑛=1

is
monotone decreasing. In addition, it is bounded because 0 ≤
𝑙(𝐼
𝑛
) ≤ |𝐵 − 𝐴|. So, by the Monotone Convergence Theorem

we can conclude that {𝑙(𝐼
𝑛
)}+∞
𝑛=1

is convergent. Taking into
account that 𝑃 ∈ 𝐼

𝑛
for all 𝑛, we conclude that the GRF

method converges to 𝑃, being 𝑃 a zero or an extremum of
𝑓.

It is known that the zero-finding regula falsi method
converges linearly [9]. Intuitively, we expect that the GRF
method also converges linearly because it uses the same
interpolation formula and bracketing strategy for both zeros
and extrema.

Theorem 2. The GRF method has linear convergence.

Proof. Let 𝑃
0
, 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
, . . . be a sequence of approxima-

tions to either a zero or an extremum 𝑃 produced by the GRF
method, where lim

𝑛→∞
𝑃
𝑛
= 𝑃. Let 𝜖

𝑛
= 𝑃
𝑛
− 𝑃 be the error

in the 𝑛th iterate.
By (1), the successive iterations are

𝑃
𝑛+1

= 𝑃
𝑛
+

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛−1)

󵄨󵄨󵄨󵄨
⋅ (𝑃
𝑛−1
− 𝑃
𝑛
) . (11)

To determine the speed of convergence subtract 𝑃 and
divide by 𝜖

𝑛
= 𝑃
𝑛
− 𝑃 to get

𝜖
𝑛+1

𝜖
𝑛

= 1 +

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛−1)

󵄨󵄨󵄨󵄨
⋅
(𝑃
𝑛−1
− 𝑃) − (𝑃

𝑛
− 𝑃)

𝑃
𝑛
− 𝑃

= 1 + (
𝑃
𝑛−1
− 𝑃

𝑃
𝑛
− 𝑃

− 1) ⋅

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛−1)

󵄨󵄨󵄨󵄨

= 1 + (
𝜖
𝑛−1

𝜖
𝑛

− 1) ⋅

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑃𝑛−1)

󵄨󵄨󵄨󵄨
.

(12)

Since lim
𝑛→∞

(𝜖
𝑛+1
/𝜖
𝑛
) = lim

𝑛→∞
(𝜖
𝑛
/𝜖
𝑛−1
) and

lim
𝑛→∞

𝑃
𝑛−1

= lim
𝑛→∞

𝑃
𝑛
= 𝑃, we obtain

lim
𝑛→∞

𝜖
𝑛+1

𝜖
𝑛

= 1 + (
1

lim
𝑛→∞

(𝜖
𝑛+1
/𝜖
𝑛
)
− 1) ⋅

1

2
(13)

from where we conclude that lim
𝑛→∞

(𝜖
𝑛+1
/𝜖
𝑛
) = 1. This

concludes the proof.

2.4. GRF Implementation. The C function that implements
the generalized regula falsi method returns either a zero
or an extremum bracketed in a given interval [𝐴, 𝐵]
(see Algorithm 1).

Note that, for the sake of convenience, we have used the
setting ℎ = 1.0𝐸 − 7 for evaluating finite differences, but this
is clearly prone to cancellation errors. A better choice to ℎ
would be√𝜖𝑋, where 𝜖 denotes themachine precision, which
is typically of the order 2.2 × 10−16 for doubles on a 32-bit
computer.

3. Moving GRF Method

As illustrated in Figure 2(a), the regula falsi method may
converge slowly to a zero, spendingmany iterations in pulling
distant bounds closer. For example, the crossing zero of the
function 𝑓

4
(𝑥) = tan(𝑥)tan(𝑥) − 103 on [1.3, 1.4] (Figure 3(d))

was found after 222 iterations. Likewise, the crossing zero of
the function 𝑓

5
(𝑥) = 𝑥𝑒𝑥 − 10 on [−10.0, 10.0] (Figure 3(e))

was only found after 999 iterations. The reason behind the
slow convergence to some zeros is due to the fact that GRF
method always retains a fixed endpoint of interval [𝐴, 𝐵].

The leading idea of speeding up the convergence of the
GRF method is then moving the fixed point as well. To
achieve that we replace the fixed endpoint of the interval
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Figure 2: The mGRF method.

#include <math.h>
#define ACY 1.0E–6 accuracy for estimates, function, and finite difference values

#define h 1.0E–7 infinitesimal for finite diferences

double GRF(float (∗func)(double), double A, double B, int n)

{
double X, fX, dX, A, fA, dA, B, fB, dB, a, fa, da, b, fb, db;

while ( (fabs(B-A)>ACY) && (--n>0) )

{
double fA=(∗func)(A);
double dA=((∗func)(A+h)-(∗func)(A))/h;
if ((fabs(fA)< ACY) || (fabs(dA)< ACY)) // zero or extremum

return A;

fB=(∗func)(B);
dB=((∗func)(B+h)-(∗func)(B))/h;
if ((fabs(fB)< ACY) || (fabs(dB)< ACY)) // zero or extremum

return B;

X=A+fabs(fA)/(fabs(fA)+fabs(fB))∗(B-A);
fX=(∗func)(X);
dX=((∗func)(X+h)-(∗func)(X))/h;
if ((fabs(fX)< ACY) || (fabs(dX)< ACY)) // zero or extremum

return X;

if ((fA∗fX<0) || (dA∗dX<0))
B = X;

else

if ((fX∗fB<0) || (dX∗dB<0))
A = X;

}
}

Algorithm 1

[𝐴, 𝐵] by the abscissa of a point𝑄 that results from intersect-
ing the tangents at the bound points (𝐴, 𝑓(𝐴)) and (𝐵, 𝑓(𝐵))
as shown in Figures 2(b) and 2(c). That is, the abscissa 𝑄 is
the solution 𝑥 of the following system of equations:

𝑦 − 𝑓 (𝐴) = 𝑑 (𝐴) ⋅ (𝑥 − 𝐴)

𝑦 − 𝑓 (𝐵) = 𝑑 (𝐵) ⋅ (𝑥 − 𝐵)
(14)

which yields

𝑄 =
𝑓 (𝐵) − 𝑓 (𝐴) + 𝐴 ⋅ 𝑑 (𝐴) − 𝐵 ⋅ 𝑑 (𝐵)

𝑑 (𝐴) − 𝑑 (𝐵)
, (15)

where 𝑑(𝐴) and 𝑑(𝐵) are the finite differences at 𝐴 and 𝐵,
respectively. Note that the estimate 𝑄 may be closer to the
solution than the estimate produced byNewton’smethod that
results from the intersection between a single tangent and the
𝑥-axis (Algorithm 2).
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double mGRF(float (∗func)(double), double A, double B, int n)

{
double X, fX, dX, A, fA, dA, B, fB, dB, a, fa, da, b, fb, db;

while ( (fabs(B-A)>ACY) && (--n>0) )

{
fA=(∗func)(A);
dA=((∗func)(A+h)-(∗func)(A))/h;
if ((fabs(fA)< ACY) || (fabs(dA)< ACY)) // zero or extremum

return A;

fB=(∗func)(B);
dB=((∗func)(B+h)-(∗func)(B))/h;
if ((fabs(fB)< ACY) || (fabs(dB)< ACY)) // zero or extremum

return B;

X=A+fabs(fA)/(fabs(fA)+fabs(fB))∗(B-A);
fX=(∗func)(X);
dX=((∗func)(X+h)-(∗func)(X))/h;
if ((fabs(fX)< ACY) || (fabs(dX)< ACY)) // zero or extremum

return X;

if ((fA∗fX<0) || (dA∗dX<0))
{

B = X;

fB=(∗func)(B); dB=((∗func)(B+h)-(∗func)(B))/h;
a =(fB-fA+A∗dA-B∗dB)/(dA-dB); // moving fixed point

fa=(∗func)(a); da=((∗func)(a+h)-(∗func)(a))/h;
if ((a>A) && (a<B)) // bracketing moving point

if ((fa∗fA<0) || (da∗dA<0))
B=a;

else

A=a;

}
else if ((fX∗fB<0) || (dX∗dB<0))
{

A = X;

fA=(∗func)(A); dA=((∗func)(A+h)-(∗func)(A))/h;
b =(fA-fB+B∗dB-A∗dA)/(dB-dA); // moving fixed point

fb=(∗func)(b); db=((∗func)(b+h)-(∗func)(b))/h;
if ((b>A) && (b<B)) // bracketing moving point

if ((fb∗fB<0) || (db∗dB<0))
A=b;

else

B=b;

}
}

}

Algorithm 2

So, the C function that implements the moving general-
ized regula falsi (mGRF) method differs fromGRF in that we
have to include statements concerning the calculation of the
moving fixed point 𝑄 that results from intersecting tangents
at 𝐴 and 𝐵, as well as some statements to make sure that 𝑄
remains bracketed in the interval.

3.1. Convergence of mGRF Method. The convergence of the
mGRF method is stated by the following theorem.

Theorem 3. Let𝑓 be a continuous real function on [𝐴, 𝐵] ⊂ R

and𝑓(𝐴)⋅𝑓(𝐵) < 0 or𝑑(𝐴)⋅𝑑(𝐵) < 0. If𝑋 ∈ [𝐴, 𝐵] is such that
𝑓(𝑋) = 0 or 𝑑(𝑋) = 0, then the mGRF method generates two

sequences {𝐴
𝑖
}+∞
𝑖=1

and {𝐵
𝑗
}∞
𝑗=1

converging to 𝑋 for two initial
approximations 𝐴

1
= 𝐴 and 𝐵

1
= 𝐵.

Proof. The mGRF method uses two preliminary estimates 𝐴
and 𝐵 (i.e., the endpoints of the interval [𝐴, 𝐵]) to generate
two sequences of estimates, {𝐴

𝑖
} and {𝐵

𝑖
}, that supposedly

march towards the solution𝑋.
Without loss of generality, we can say that the GRF

method generates the sequence {𝐴
𝑖
}∞
𝑖=1

converging to 𝑋, as
proved byTheorem 1.

It remains to prove that the sequence {𝐵
𝑗
}∞
𝑗=1

generated
by the computation of 𝑄 (cf. formula (15)) also converges to
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Figure 3: Graphs of six real functions: (a) 𝑓
1
has 2 local maxima, 1 local minimum, 2 zeroed minima, and 2 crossing zeros; (b) 𝑓

2
has an

alternate sequence of local maxima and zeroed minima; (c) 𝑓
3
has a single crossing zero; (d) 𝑓

4
has a single crossing zero; (e) 𝑓

5
has also a

single crossing zero; (f) 𝑓
6
has a zeroed minimum that is a cusp.
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𝑋. Without loss of generality, let us assume that 𝑑(𝐵
𝑗−2
) > 0

and 𝑑(𝐵
𝑗−1
) < 0 so that |𝑑(𝐵

𝑗−2
)| = 𝑑(𝐵

𝑗−2
) and |𝑑(𝐵

𝑗−1
)| =

−𝑑(𝐵
𝑗−1
). Now, formula (15) can be rewritten as follows:

𝐵
𝑗

=
𝑓 (𝐵
𝑗−1
) − 𝑓 (𝐵

𝑗−2
) + 𝐵
𝑗−2
⋅
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−2)

󵄨󵄨󵄨󵄨󵄨 + 𝐵𝑗−1 ⋅
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−1)

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−2)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−1)

󵄨󵄨󵄨󵄨󵄨
(16)

or, equivalently

𝐵
𝑗
= 𝐵
𝑗−1
+ 𝑡 ⋅ (𝐵

𝑗−2
− 𝐵
𝑗−1
) (17)

which is the vectorial equation of the line defined by the
points 𝐵

𝑗−1
and 𝐵

𝑗−2
, being

𝑡 =
𝑓 (𝐵
𝑗−1
) − 𝑓 (𝐵

𝑗−2
)

(
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−1)

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−2)

󵄨󵄨󵄨󵄨󵄨) ⋅ (𝐵𝑗−2 − 𝐵𝑗−1)

+

󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−2)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−1)
󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑑 (𝐵𝑗−2)

󵄨󵄨󵄨󵄨󵄨

.

(18)

Let 𝑙(𝐼
𝑗
) be the length of the interval 𝐼

𝑗
so that 𝑙(𝐼

𝑗
) = |𝐵

𝑗
−

𝐵
𝑗−1
|, 𝑙(𝐼
𝑗−1
) = |𝐵

𝑗−1
− 𝐵
𝑗−2
|. Now, from (17) we obtain

𝑙 (𝐼
𝑗
)

𝑙 (𝐼
𝑗−1
)
=

󵄨󵄨󵄨󵄨󵄨𝐵𝑛 − 𝐵𝑗−1
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝐵𝑗−1 − 𝐵𝑗−2
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨𝐵𝑗−1 + 𝑡 ⋅ (𝐵𝑗−2 − 𝐵𝑗−1) − 𝐵𝑗−1
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝐵𝑗−1 − 𝐵𝑗−2
󵄨󵄨󵄨󵄨󵄨

= 𝑡.

(19)

But, as said before, the new estimate 𝐵
𝑖
is only taken

into account in the convergence process if it lies in the
interval ]𝐵

𝑗−2
, 𝐵
𝑗−1
[; otherwise,𝐵

𝑗
equals to the estimate𝐴

𝑗
∈

]𝐵
𝑗−2
, 𝐵
𝑗−1
[ determined by the GRFmethod; that is, 𝐵

𝑗
= 𝐴
𝑗
.

From (17) and (19), this implies that 0 < 𝑡 < 1 and 𝑙(𝐼
𝑗
) <

𝑙(𝐼
𝑗−1
) for all 𝑗. Thus, the sequence {𝑙(𝐼

𝑗
)}+∞
𝑗=1

is monotone
decreasing. In addition, it is bounded because 0 < 𝑙(𝐼

𝑗
) ≤

|𝐵 − 𝐴|. So, by the Monotone Convergence Theorem we can
conclude that {𝑙(𝐼

𝑗
)}+∞
𝑗=1

is convergent. Taking into account
that 𝑋 ∈ 𝐼

𝑗
for all 𝑗, we can also conclude that the mGRF

method converges because the sequence {𝐵
𝑖
}∞
𝑗=1

converges to
𝑋, being𝑋 a zero or an extremum of 𝑓.

4. Experimental Results

We have carried out a number of the convergence tests
on computer in order to assess the convergence of the
superlinear version of generalized regula falsi (GRF)method.
For that purpose, we have used a MacBook Pro laptop
powered by a 2.33GHz Intel Core 2 Duo processor, with
3GB 667MHz DDR2 SDRAM, runningMac OS X operating
system (version 10.6.8).

4.1. Functions, Zeros, and Extrema. We have used a number
of real analytic functions in testing of the method conver-
gence, including algebraic (or polynomial) and transcenden-
tal functions, some of which are depicted in Figure 3; for
example, 𝑓

1
and 𝑓

3
are algebraic functions, but not 𝑓

2
and

𝑓
4
which are transcendental functions. These functions have

been chosen because they cover most types of zeros and
(local) extrema, namely, as shown in what follows.

(i) Crossing Zeros (cZ): a crossing zero is a point at
which the function graph crosses the 𝑥-axis. We find
5 crossing zeros in Figure 3. More specifically, 𝑓

1
has

2 crossing zeros in the interval [1.5, 3.5], 𝑓
3
has 1

crossing zero in the interval [−2.0, −1.0], 𝑓
4
has 1

crossing zero in the interval [1.3, 1.4], and 𝑓
5
has 1

crossing zero in the interval [1.5, 2.5].
(ii) Minima (m): we find 1 minimum in Figure 3; 𝑓

1
has 1

local minimum in the interval [2.0, 3.0].
(iii) Maxima (M): we have 4 maxima in Figure 3; 𝑓

1
has

2 local maxima in the interval [−1.0, 2.0], while 𝑓
2

possesses 2 local maxima, the first in the interval
[1.0, 2.0] and the second in the interval [4.0, 5.0].

(iv) Zeroed Minima (Zm): a local zeroed minimum is
a point at which the function takes on the value 0
and has a local minimum; that is, the function graph
touches but does not cross the 𝑥-axis. We have 5
zeroed minima in Figure 3. In particular, 𝑓

1
has 2

local zeroedminima in the interval [−1.0, 1.0],𝑓
2
also

possesses 2 local zeroedminima, the first at 𝑥 = 0 and
the second in the interval [3.0, 4.0], whereas 𝑓

6
has 1

local minimum at 𝑥 = 0 that is a cusp.
(v) Zeroed Maxima (ZM): a local zeroed maximum is a

point at which the function takes on the value 0 and
has a local maximum.

For the purpose of testing, we carried out the convergence
experiments for crossing zeros and extrema separately, as
described below.

4.2. Convergence to Crossing Zeros. The experimental results
shown in Table 1 put in evidence how different GRF and
mGRFmethods are in terms of convergence to crossing zeros.
According to Theorem 2, the GRF has linear convergence.
But, following the results shown in Figure 4(top), mGRF
seems to have superlinear convergence.

As known, the GRF converges very slowly to a crossing
zero when the slope of the function graph changes very
fast near to such a zero, as it is the case of those shown in
Figures 3(d)-3(e). For example, in Figure 3(d), the crossing
zero of 𝑓

4
on the narrow interval ]1.3, 1.4[ was found after

222 iterations, while that one of 𝑓
5
in Figure 3(e) was found

after 999 iterations, though in the bigger interval [−10, 10] (cf.
Table 1).

As explained above, themGRF is faster thanGRF because
both endpoints of the bracketing interval converge to the
solution, while GRF keeps one of the endpoints fixed. The
mGRF convergence rate seems to be at least quadratic
because the estimates produced by (15) are usually closer to
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Figure 4: Semilogarithmic graphs relative to convergence to zeros
and extrema.

Table 1: Experimental convergence results for zeros using GRF and
mGRF methods.

Function 𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

Estimate type cZ — cZ cZ cZ —
Interval [3.0, 3.3] — [−3.0, 2.0] [1.3, 1.4] [−10, 10] —
GRF iterations 11 — 19 222 999 —
mGRF iterations 4 — 5 9 15 —

Table 2: Experimental convergence results for extrema using GRF
and mGRF methods.

Function 𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

𝑓
6

Estimate type m M — — — Zm
Interval [2.0, 3.0] [1, 1.8] — — — [−0.5, 1.5]

GRF iterations 23 19 — — — 18
mGRF iterations 10 10 — — — 10

the solution than those produced byNewton’smethod.This is
confirmed by the error semilogarithmic graphs versus num-
ber of iterations shown in Figure 4(top). The convergence

curve in black concerns the crossing zero of 𝑓
1
in the interval

[3.0, 3.3], while the red, blue, and green curves represent the
convergence to zero crossings of 𝑓

3
, 𝑓
4
, and 𝑓

5
(cf. Table 1).

4.3. Convergence to Extrema. Unlike the numerical methods
found in the literature, the GRF and mGRF methods are
capable of computing both zeros and extrema of a real
function through a single interpolation formula.

However, as shown in Figure 4(bottom), the convergence
rate for extrema is lower than for crossing zeros and tends to
be linear. This is explained by the fact that some estimates of
the lateral sequence {𝐴

𝑖
}+∞
𝑖=1

jump to the sequence {𝐵
𝑗
}∞
𝑗=1

, and
vice versa.

The data shown in Table 2 concerns some extrema of
𝑓
1
, 𝑓
2
, and 𝑓

6
, whose convergence curves are plotted in

Figure 4(bottom); the red curve concerns the minimum of
𝑓
1
in the interval [2.0, 3.0], the magenta curve has to do with

the convergence to the maximum 𝑓
2
in the interval [1, 1.8],

and the cyan curve refers to zeroed minimum (cusp) of 𝑓
6

in the interval [−0.5, 1.5]. This latter case shows that the
method proposed in this paper is also capable of calculating
a zero at which 𝑓 is not differentiable. These semilogarith-
mic graphs suggest that mGRF has linear convergence for
extrema. Nevertheless, the red convergence curve associated
to the local maximum of 𝑓

1
in the interval [−0.9, −0.4] may

suggest that we can possibly obtain superlinear convergence
for extrema too, but that would require redesigning the
algorithm somehow.

5. Conclusions

The experimental results presented in the previous section
show us the following.

(i) It is feasible to have a single numerical method to
determine both zeros and extrema of a real function.

(ii) The algorithm (m)GRF works well even under condi-
tions of lack of differentiability. So, singular zeros such
as cusps and corners can be also computed.

(iii) It is also feasible to compute inflection points. For
that, the algorithm must include the computation of
the second finite differences.

This algorithm has been designed and implemented to
solve a difficult problem in computer graphics and geometric
modeling, which has to do with rendering sign-invariant
components of implicit curves. For example, the circle
described by function 𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦2 − 1)2 = 0 in R2

cannot be sampled and, thus, rendered by algorithms that
make usage of the Intermediate Value Theorem because the
function is positive everywhere, with the exception of the
curve points on which the function takes on the value 0; that
is, all the circle points are extrema.
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