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This paper investigates 𝑝-moment stability of the stochastic differential delay systems with impulsive jump and Markovian
switching. Some stability criteria are obtained based on Lyapunov functional method and stochastic theory. It is shown that, even if
all the subsystems governing the continuous dynamics without impulse are not stable, as impulsive and switching signal satisfies a
dwell-time upper bound condition, impulses can stabilize the systems in the𝑝-moment stability sense.The opposite situation is also
developed for which all the subsystems governing the continuous dynamics are 𝑝-moment stable. The results can be easily applied
to stochastic systems with arbitrarily large delays. The efficiency of the proposed results is illustrated by two numerical examples.

1. Introduction

Stochastic differential systems which include stochastic delay
differential systems have attracted much attention, owing
to stochastic modeling having played an important role in
many ways such as science and engineering and forecast of
the growth of population [1, 2]. Stability analysis of different
stochastic systems has been a subject of intense activities in
the literature [3–9]. Switched systems are an important class
of hybrid dynamical systems which are composed of a family
of continuous time or discrete-time dynamical systems and
a rule that orchestrates the switching among them [10]. A
particular class of switched systems is named as markovian
switched systems, whose system mode is governed by a
Markov process. During the past few decades, many issues
on Markovian switched systems such as stability and stabi-
lization [11–14], 𝐻

∞
control and filtering [15], and adaptive

control problem [16, 17] have been well investigated.
Beside stochastic effects andmarkovian switching, impul-

sive effect likewise exists in many evolution processed in
which systems states change abruptly at certain moments
of time, involving such fields as biology, engineering, and
information science [18].Therefore, the stability investigation
of stochastic differential systems with impulsive jump is
interesting to many investigators. The 𝑝-moment stability

of stochastic differential systems is studied in [19] for the
systems with impulsive jump, nonswitched, and no time
delay. Thus, the results in [19] cannot be easily applied to
the class of impulsive systems with markovian switching
and time-varying delay. Liu and Peng [20] discussed the 𝑝-
moment stability of stochastic differential delay systems with
impulsive jump and markovian switching. It is shown that
when the delayed continuous dynamics are𝑝-moment stable,
the stability properties is not destroyed by impulse at discrete
instants irrespective of the length of delay. It is also noticed
that the conclusions received in [20] are restricted to the
case that are all the subsystems that govern the continuous
dynamics are stable in 𝑝-moment sense.There is no attention
has been paid to the class of hybrid systems in which all the
subsystems that govern the continuous dynamics is not stable.
Thus, how to establish a sufficient condition of 𝑝-moment
stability for the class of stochastic delays hybrid systems is the
key problem to be solved in future research.

Based on the above analysis, in this work, the 𝑝-moment
stability of stochastic differential delay systems with impul-
sive jump andmarkovian switching is investigated.Motivated
by the work of [20], we first relax the global Lipschitz
condition of impulsive control law Δ𝑥(𝑡

𝑘
). Then, we will

propose some conditions of the 𝑝-moment stability for two
classes of stochastic hybrid delay systems, that is, all the
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subsystems that govern the continuous dynamics are stable
and not. Compared with [20], the criteria for the stable case
in this paper are more general. Further, the results are applied
to linear stochastic delay systems with arbitrarily large delays.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω, 𝐹, {𝐹

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with a
filtration {𝐹

𝑡
}
𝑡≥0

satisfying the usual conditions, that is, it is
right continuous and 𝐹

0
contains all 𝑃-null sets. 𝜔(𝑡) is an𝑚-

dimensional Brownian motion defined on (Ω, 𝐹, {𝐹
𝑡
}
𝑡≥0

, 𝑃).
Let 𝑍+ define the set of nonnegative real numbers and 𝑅

𝑛 the
𝑛-dimensional real Euclidean space. | ⋅ | denotes the Euclidean
norm for vectors or the spectral norm for matrices. For 𝑟 > 0,
let PC([−𝑟, 0], 𝑅

𝑛

)denote the class of functions from [−𝑟, 0] to
𝑅
𝑛 satisfying the following: (i) it has at most a finite number

of jump discontinuities on (−𝑟, 0]; (ii) it is continuous from
the right at all points in [−𝑟, 0). For simplicity, PC is used
for PC([−𝑟, 0], 𝑅

𝑛

) for the rest of this paper. For function 𝜙 :

[−𝑟, 0] → 𝑅
𝑛, a norm is defined as ‖𝜙‖

𝑟
= sup

−𝑟≤𝜃≤0
|𝜙(𝜃)|.

Given 𝑥 ∈ PC([−𝑟,∞], 𝑅
𝑛

) and for each 𝑡 ∈ 𝑅
+, define

𝑥
𝑡
, 𝑥

𝑡
− ∈ PC by 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠) for −𝑟 ≤ 𝑠 ≤ 0 and 𝑥

𝑡
−(𝑠) =

𝑥(𝑡+𝑠) for −𝑟 ≤ 𝑠 < 0, respectively. Denote by PC𝑝

𝐹
𝑡

the family
of all 𝐹

𝑡
-measurable PC-valued random variables 𝜙 = {𝜙(𝜃) :

−𝑟 ≤ 𝜃 ≤ 0}, satisfying sup
−𝑟≤𝜃≤0

𝐸‖𝜙(𝜃)‖
𝑝

< ∞, where 𝐸

stands for the mathematical expectation. Let PC𝑏

𝐹
𝑡

(𝛿) = {𝜙 :

𝜙 ∈ PC𝑝

𝐹
𝑡

([−𝑟, 0], 𝑅
𝑛

) and sup
−𝑟≤𝜃≤0

𝐸‖𝜙(𝜃)‖
𝑝

< 𝛿}.
The Markov process {𝑟(𝑡), 𝑡 ≥ 0} represents the switching

between the different modes taking values in a finite state
space 𝑆 = {1, 2, . . . , 𝑁} with generator 𝜋 = (𝜋

𝑖𝑗
)
𝑁×𝑁

given
by

Pr {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , if 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
Δ + 𝑜 (Δ) , if 𝑖 = 𝑗,

(1)

where 𝜋
𝑖𝑗
is the transition rate from mode 𝑖 to 𝑗 and satisfies

the following relations:

𝜋
𝑖𝑗
≥ 0, 𝜋

𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝜋
𝑖𝑗
, (2)

and 𝑜(Δ) is such that lim
Δ→0

𝑜(Δ)/Δ = 0. We assume that
theMarkov chain 𝑟(𝑡) is independent of the Brownianmotion
𝜔(⋅). It is known that almost every sample path of 𝑟(𝑡) is a
right-continuous step functionwith a finite number of simple
jumps in any finite subinterval of 𝑅+

= [0, +∞).
Consider the following stochastic nonlinear delay system

with impulsive jump and markovian switching

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) = 𝐼
𝑘
(𝑥 (𝑡

−

) , 𝑡) , 𝑡 = 𝑡
𝑘
,

𝑥 (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝑟, 0] ,

(3)

where 𝜙(𝜃) ∈ PC is the initial data, 𝑥(𝑡) ∈ 𝑅
𝑛 is the systems

state, 𝑥(𝑡+) and 𝑥(𝑡
−

) denote the limit from the right and the
left at point 𝑡, respectively, and {𝑡

𝑘
: 𝑘 ∈ 𝑍

+

} ⊂ 𝑅
+ a strictly

increasing sequence. We assume that for each 𝑖 ∈ 𝑆, given
functional 𝑓 : 𝑅

𝑛

× PC × 𝑆 → 𝑅
𝑛, 𝑔 : 𝑅

𝑛

× PC × 𝑆 → 𝑅
𝑛×𝑚

satisfying𝑓(0, 0, 𝑡, 𝑖) ≡ 𝑔(0, 0, 𝑡, 𝑖) ≡ 0. 𝐼
𝑘
: 𝑅

𝑛

×𝑅 → 𝑅
𝑛 with

𝐼
𝑘
(0, 𝑡) ≡ 0 is the change of state variable at instant 𝑡

𝑘
. In this

paper, we always assume that there exists a unique stochastic
process satisfying systems (3), and all solutions of systems (3)
are continuous on the right-hand side and on the left-hand
side. Moreover, by 𝑓(0, 0, 𝑡, 𝑖) ≡ 𝑔(0, 0, 𝑡, 𝑖) ≡ 0 and 𝐼

𝑘
(0, 𝑡) ≡

0, it is easily obtained that system (3) admits a trivial solution.

Definition 1 (see [20]). The trivial solution of system (3) is
(1) 𝑝-moment stable if for any initial data 𝑥

𝑡
0

= 𝜙 and any
𝜀 > 0, there exists a 𝛿 > 0 such that

𝐸‖𝑥(𝑡)‖
𝑝

< 𝜀, 𝑡 ≥ 𝑡
0
, (4)

whenever ‖𝜙‖𝑝
𝑟
< 𝛿;

(2) uniformly 𝑝-moment stable if the 𝛿 in (1) is indepen-
dent of 𝑡

0
.

Definition 2. Let𝐶2,1

(𝑅
𝑛

×[𝑡
0
−𝑟,∞]×𝑆; 𝑅

+

)denote the family
of all nonnegative functions 𝑉(𝑥, 𝑡, 𝑖) that are continuously
twice differentiable in 𝑥 and once differentiable with respect
to 𝑡. For each𝑉(𝑥, 𝑡, 𝑖) ∈ 𝐶

2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆; 𝑅

+

), define
an operator 𝐿𝑉 from 𝑅

𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆 to 𝑅

+ as follows:

𝐿𝑉 (𝑥, 𝑡, 𝑖) = 𝑉
𝑡
(𝑥, 𝑡, 𝑖) + 𝑉

𝑥
(𝑥, 𝑡, 𝑖) 𝑓 (𝑥, 𝑦, 𝑡, 𝑖)

+
1

2
trace [𝑔𝑇

(𝑥, 𝑦, 𝑡, 𝑖) 𝑉
𝑥𝑥

(𝑥, 𝑡, 𝑖) 𝑔 (𝑥, 𝑦, 𝑡, 𝑖)]

+

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑉 (𝑥, 𝑡, 𝑗) ,

(5)

where

𝑉
𝑡
(𝑥, 𝑡, 𝑖) =

𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑡
,

𝑉
𝑥
(𝑥, 𝑡, 𝑖) = (

𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

(𝑥, 𝑡, 𝑖) = (
𝜕
2

𝑉(𝑥, 𝑡, 𝑖)

𝜕𝑥
𝑖
𝜕𝑥

𝑗

)

𝑛×𝑛

.

(6)

Before giving the results, we need a lemma.

Lemma 3 (see [20]). If 𝑉 ∈ 𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆; 𝑅

+

),
then for any stopping times 0 ≤ 𝑡

1
≤ 𝑡

2
< +∞,

𝐸 (𝑉 (𝑥 (𝑡
2
) , 𝑡

2
, 𝑟 (𝑡

2
))) = 𝐸 (𝑉 (𝑥 (𝑡

1
) , 𝑡

1
, 𝑟 (𝑡

1
)))

+ 𝐸(∫

𝑡
2

𝑡
1

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠) ,

(7)

as long as the integration involved exist and finite.
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3. Main Results

In this section, Lyapunov-based sufficient conditions for 𝑝-
moment stability of system (3) are developed. The first result
is concerned with 𝑝-moment stability of system (3), in the
case when all the subsystems governing the continuous
dynamics of (3) are stable. Intuitively, the conditions in the
following theorem consist of three aspects: (i) the Lyapunov-
Krasovskii functionals satisfy certain positive definite and
decrescent conditions; (ii) there exist some negative estimates
of the upper right-hand derivatives of the functionals with
respect to each stable mode of system (3); (iii) the jumps
induced by the impulses and the estimates on the decay rate
of continuous dynamics satisfy certain conditions.

Theorem 4. Assume that there exist function 𝑉(𝑥(𝑡), 𝑡, 𝑖) ∈

𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞]× 𝑆; 𝑅

+

) and some positive constants 𝑝, 𝑎,
𝑏, 𝑒

𝑖
, the nonnegative and continuous functions 𝑐

𝑖
(𝑡) and 𝑑

𝑖
(𝑡),

such that

(i) 𝑎|𝑥|𝑝 ≤ 𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ 𝑏|𝑥
𝑡
|
𝑝

𝑟
;

(ii) 𝐸𝐿𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ −𝑐
𝑖
(𝑡)𝐸𝑉(𝑥(𝑡), 𝑡, 𝑖) + 𝑑

𝑖
(𝑡)𝐸𝑉(𝑥

𝑡
, 𝑡, 𝑖),

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 = 1, 2, . . .;

(iii) 𝐸𝑉(𝜙(0) + 𝐼
𝑘
(𝜙, 𝑡

𝑘
, �̃�) ≤ 𝑒

𝑖
𝑉(𝜙(0), 𝑡

−

𝑘
, 𝑖);

(iv) 0 < 𝑐
∗

< 1, where 𝑐
∗

= sup{𝑐∗
𝑖

| 𝑐
∗

𝑖
= 𝑏𝑒

𝑖
/𝑎, 𝑖 = 1,

2, . . .};
(v) 𝑐

𝑖
(𝑡) > 𝑑

𝑖
(𝑡)/𝑐

∗

, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

);

then the trivial solution of system (3) is uniformly 𝑝-moment
stable.

Proof. For any 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀) > 0 such that
𝛿 < (𝑎𝑐

∗

/𝑏)𝜀 independent of 𝑡
0
. For any 𝑡

0
≥ 0 and 𝑥

𝑡
0

= 𝜙 ∈

PC𝑏

𝐹
𝑡

(𝛿), let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) be the solution of (3).

In the following, we will show that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑘 ∈ 𝑍

+

. (8)

It will be firstly proved that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
, 𝑡
1
) . (9)

For any initial data 𝑥
𝑡
0

∈ PC𝑏

𝐹
𝑡

(𝛿), it follows from assumption
(i) that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑏𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑟

≤ 𝑏𝛿 <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

0
] .

(10)

Suppose that (9) is not true, then there exists some 𝑡 ∈ (𝑡
0
, 𝑡
1
)

such that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) >
𝑏

𝑐∗
𝛿 > 𝑏𝛿 ≥ 𝐸𝑉 (𝑥 (𝑡

0
) , 𝑡

0
, 𝑟 (𝑡

0
)) .

(11)

Set 𝑡∗ = inf{𝑡 ∈ [𝑡
0
, 𝑡
1
) : 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) > (𝑏/𝑐

∗

)𝛿}. Observe
that 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is continuous on 𝑡 ∈ [𝑡

0
, 𝑡
1
), then 𝑡

∗

∈

(𝑡
0
, 𝑡
1
) and

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) =
𝑏

𝑐∗
𝛿, (12)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

∗

) . (13)

In view of (10), define 𝑡
∗∗

= sup{𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
∗

] :

𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ≤ 𝑏𝛿}. Then 𝑡
∗∗

∈ (𝑡
0
, 𝑡

∗

) and

𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) = 𝑏𝛿, (14)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) > 𝑏𝛿, 𝑡 ∈ (𝑡
∗∗

, 𝑡
∗

] . (15)

Consequently, in view of (10)–(15), for all 𝑡 ∈ [𝑡
∗

, 𝑡
∗∗

] and
𝜃 ∈ [−𝑟, 0], one has

𝐸𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤
𝑏

𝑐∗
𝛿 ≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡

∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

))

≤
1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(16)

Now, combining (16) and condition (ii), we have

𝐸𝐿𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

≤ −𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) + 𝑑

𝑖
(𝑡) 𝐸𝑉 (𝑥

𝑡
, 𝑡, 𝑟 (𝑡))

≤ (−𝑐
𝑖
(𝑡) +

𝑑
𝑖
(𝑡)

𝑐∗
)𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(17)

Applying Lemma 3, integrating (17) on [𝑡
∗∗

, 𝑡
∗

], one obtains
that

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

))

≤ 𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

))

+ ∫

𝑡
∗

𝑡
∗∗

(−𝑐
𝑖
(𝑡) +

𝑑
𝑖
(𝑡)

𝑐∗
)𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠.

(18)

By condition (v) and (14) and the Gronwall inequality, one
has

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

))

≤ 𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) 𝑒
(−𝑐
𝑖

(𝑡)+(𝑑
𝑖

(𝑡)/𝑐
∗

))(𝑡
∗

−𝑡
∗∗

)

≤ 𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) = 𝑏𝛿 <
𝑏

𝑐∗
𝛿.

(19)

Since (19) contradicts with (12), inequality (9) holds and (8)
is true for 𝑘 = 1.

Now, assume that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , (20)
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for all 𝑘 ≤ 𝑚, where 𝑘,𝑚 ∈ 𝑍
+. We proceed to show that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

) . (21)

Suppose that (21) is not true, set 𝑡 = inf{𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

) :

𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) > (𝑏/𝑐
∗

)𝛿}. From condition (i), (iv), and (21),
we know that

𝐸𝑉 (𝑥 (𝑡
𝑚
) , 𝑡

𝑚
, 𝑟 (𝑡

𝑚
))

≤ 𝑒
𝑖
𝑚

𝐸𝑉 (𝑥 (𝑡
−

𝑚
) , 𝑡

−

𝑚
, 𝑟 (𝑡

−

𝑚
))

≤ 𝑏𝑒
𝑖
𝑚

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
−

𝑚

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑟

≤
𝑏𝑒

𝑖
𝑚

𝑎
sup

−𝑟≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡
−

𝑚
+ 𝜃) , 𝑡

−

𝑚
+ 𝜃, 𝑟 (𝑡

−

𝑚
+ 𝜃))

≤
𝑏𝑒

𝑖
𝑚

𝑎

𝑏

𝑐∗
𝛿 ≤ 𝑏𝛿 <

𝑏

𝑐∗
𝛿.

(22)

Owing to 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is continuous on 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

),
then 𝑡 ∈ (𝑡

𝑚
, 𝑡
𝑚+1

) and

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) =
𝑏

𝑐∗
𝛿, (23)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑚
, 𝑡) . (24)

Define 𝑡 = sup{𝑡 ∈ [𝑡
0
− 𝑟, 𝑡] : 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ≤ 𝑏𝛿}, then

𝑡 ∈ (𝑡
𝑚
, 𝑡) and

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) = 𝑏𝛿, (25)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) > 𝑏𝛿, 𝑡 ∈ (𝑡, 𝑡] . (26)

Fix any 𝑡 ∈ [𝑡, 𝑡], when 𝑡+𝜃 ≥ 𝑡
𝑚
for all 𝜃 ∈ [−𝑟, 0], then from

(22)–(26), one has

𝐸𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤
𝑏

𝑐∗
𝛿 ≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

≤
1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(27)

When 𝑡 + 𝜃 < 𝑡
𝑚

for some 𝜃 ∈ [−𝑟, 0], without loss of
generality, we assume that 𝑡 + 𝜃 ∈ [𝑡

𝑙−1
, 𝑡
𝑙
) for some 𝑙 ∈ 𝑍

+,
𝑙 < 𝑚, then from (20) and (25), we obtain that

𝐸𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤
𝑏

𝑐∗
𝛿 ≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

≤
1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(28)

Therefore, from condition (ii), (27), and (28), one gets

𝐸𝐿𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤ (−𝑐
𝑖
𝑚

(𝑡) +
𝑑
𝑖
𝑚

(𝑡)

𝑐∗
)𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(29)

Similar to the argument on [𝑡
∗∗

, 𝑡
∗

], an application of Ito’s
formula on [𝑡, 𝑡]will lead to𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) < (𝑏/𝑐

∗

)𝛿,which
would contradict with (23). So the inequality (21) is true.
Therefore, by mathematical induction, one can obtain that
(8) holds for all 𝑘 ∈ 𝑍

+. Then from condition (i) and the
definition of 𝛿, we have

𝐸‖𝑥(𝑡)‖
𝑝

≤
𝑏

𝑎𝑐∗
𝛿 < 𝜀, 𝑡 ≥ 𝑡

0
. (30)

According to Definition 1, it is concluded that the trivial
solution of system (3) is uniformly 𝑝-moment stable. The
proof is complete.

Corollary 5. Assume that there exist function 𝑉(𝑥(𝑡), 𝑡, 𝑖) ∈

𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞]× 𝑆; 𝑅

+

) and some positive constants 𝑝, 𝑎,
𝑏, 𝑒

𝑖
, 𝑐

𝑖
, and 𝑑

𝑖
such that

(i) 𝑎|𝑥|𝑝 ≤ 𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ 𝑏|𝑥
𝑡
|
𝑝

𝑟
;

(ii) 𝐸𝐿𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ −𝑐
𝑖
𝐸𝑉(𝑥(𝑡), 𝑡, 𝑖) + 𝑑

𝑖
𝐸𝑉(𝑥

𝑡
, 𝑡, 𝑖), 𝑡 ∈

[𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 = 1, 2, . . .;

(iii) 𝐸𝑉(𝜙(0) + 𝐼
𝑘
(𝜙, 𝑡

𝑘
, �̃�) ≤ 𝑒

𝑖
𝑉(𝜙(0), 𝑡

−

𝑘
, 𝑖);

(iv) 0 < 𝑐
∗

< 1, where 𝑐
∗

= sup{𝑐∗
𝑖

| 𝑐
∗

𝑖
= (𝑏𝑒

𝑖
/𝑎), 𝑖 =

1, 2, . . .};
(v) 𝑐

𝑖
> 𝑑

𝑖
/𝑐

∗, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

);

then the trivial solution of system (3) is uniformly 𝑝-moment
stable.

Proof. Replacing 𝑐
𝑖
(𝑡) and 𝑑

𝑖
(𝑡) in Theorem 4 with 𝑐

𝑖
and

𝑑
𝑖
, respectively, we find that it is a direct conclusion of

Theorem 4.

Remark 6. From condition (ii) in Theorem 4, it is seen that
each of the continuous dynamics is stable. On the other
hand, from condition (iv), we see that each of the discrete
dynamics is also stabilizing (0 < 𝑐

∗

< 1 implies 𝑒
𝑖
< 1). It

implies that the stability properties of a time-delay impulsive
markovian switched system with stable continuous dynamics
can be preserved under stabilizing impulsive perturbations
irrespective of the times of impulses and switching. Hence,
the bound of dwell-time is not necessary.

Remark 7. If condition (iii) is omitted in Corollary 5, the
result is consistent with that of Theorem 1 in [20]. Thus, the
results in this work are an extension of that in [20].

We proceed to consider in next the 𝑝-moment stability of
systems (3). It is supposed that all the subsystems governing
the continuous dynamics of (3) can be unstable while the
impulses are stabilizing. Intuitively, the conditions in the
following theorem consist of four aspects: (i) the Lyapunov
functionals satisfy certain positive definite and decrescent
conditions; (ii) there exist some positive estimates of the
upper right-hand derivatives of the functionals with respect
to each unstable mode of system (3); (iii) the dwell time of
each mode of system (3) satisfies some supper bounds; (iv)
the jumps induced by the stabilizing impulses satisfy certain
diminishing conditions.
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Theorem 8. Assume that there exist function 𝑉(𝑥(𝑡), 𝑡, 𝑖) ∈

𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆; 𝑅

+

) and some positive scalars 𝑝, 𝑎, 𝑏,
𝑒
𝑖
, 𝜌 < 1, 𝛼, and 𝛽 such that

(i) 𝑎|𝑥|𝑝 ≤ 𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ 𝑏|𝑥
𝑡
|
𝑝

𝑟
;

(ii) 𝐸𝑉(𝜙(0) + 𝐼
𝑘
(𝜙, 𝑡

𝑘
, �̃�) ≤ 𝜌𝑒

𝑖
𝑉(𝜙(0), 𝑡

−

𝑘
, 𝑖);

(iii) 0 < 𝑐
∗

< 1, where 𝑐
∗

= sup{𝑐∗
𝑖

| 𝑐
∗

𝑖
= (𝑏/𝑎)𝜌𝑒

𝑖
, 𝑖 =

1, 2, . . .};

(iv) there exist nonnegative and piecewise continuous func-
tions 𝑐

𝑖
(𝑡) : [𝑡

0
,∞) → 𝑅

𝑛 satisfying ∫𝑡+𝛼

𝑡

𝑐
𝑖
(𝑠) 𝑑𝑠 ≤ 𝛼𝛽

for all 𝑡 ≥ 𝑡
0
, such that

𝐸𝐿𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤ 𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ,

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

(31)

whenever 𝑡 ≥ 𝑡
0
and 𝜙 ∈ PC𝑏

𝐹
𝑡

are such that 𝑐∗𝐸𝐿𝑉
(𝜙(𝑠), 𝑡 + 𝑠, �̃�) ≤ 𝐸𝑉(𝜙(0), 𝑡, 𝑖);

(v) sup
𝑘∈𝑍
+
{𝑡
𝑘
− 𝑡

𝑘−1
} = 𝛼 < −(1/𝛽) ln((𝑏/𝑎)𝜌𝑒

𝑖
), 𝑘 ∈ 𝑍

+;

then the trivial solution of system (3) is uniformly 𝑝-
moment stable.

Proof. For any 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀) > 0 such that
𝛿 < (𝑎𝑐

∗

/𝑏)𝜀 independent of 𝑡
0
. For any 𝑡

0
≥ 0 and 𝑥

𝑡
0

= 𝜙 ∈

PC𝑏

𝐹
𝑡

(𝛿), let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) be the solution of (3).

By generalized Ito’s formula (Lemma 3), when 𝑡 ∈ [𝑡
𝑘
,

𝑡
𝑘+1

), we get

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝐸𝑉 (𝑥 (𝑡
𝑘
) , 𝑡

𝑘
, 𝑟 (𝑡

𝑘
))

+ 𝐸(∫

𝑡

𝑡
𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠)

+ 𝐸(∫

𝑡

𝑡
𝑘

𝜕𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))

𝜕𝑥 (𝑠)
𝑔 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝜔 (𝑠))

= 𝐸𝑉 (𝑥 (𝑡
𝑘
) , 𝑡

𝑘
, 𝑟 (𝑡

𝑘
))

+ 𝐸(∫

𝑡

𝑡
𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠) .

(32)

Given small enough Δ𝑡 > 0 such that 𝑡 + Δ𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), one
has

𝐸𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑡 + Δ𝑡, 𝑟 (𝑡 + Δ𝑡))

= 𝐸𝑉 (𝑥 (𝑡
𝑘
) , 𝑡

𝑘
, 𝑟 (𝑡

𝑘
))

+ 𝐸(∫

𝑡+Δ𝑡

𝑡
𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) .

(33)

In view of condition (iv), (32), and (33), it follows that

𝐸𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑡 + Δ𝑡, 𝑟 (𝑡 + Δ𝑡))

− 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

= ∫

𝑡+Δ𝑡

𝑡

𝐸𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠

≤ ∫

𝑡+Δ𝑡

𝑡

𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) .

(34)

From (34), one gets

𝐷
+

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) ,

(35)

where𝐷+ is the Dini-derivative defined as

𝐷
+

𝑉 (𝑡) = lim
ℎ→0

+

sup 𝑉 (𝑡 + ℎ) − 𝑉 (𝑡)

ℎ
, (36)

in which 𝑉(𝑡) is continuous function.
In the following, we will show that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑘 ∈ 𝑍

+

. (37)

For this purpose, we first prove that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
, 𝑡
1
) . (38)

From condition (i) and 𝑥
𝑡
0

∈ PC𝑏

𝐹
𝑡

(𝛿), it follows that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑏𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
0

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑟

≤ 𝑏𝛿 <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

0
] .

(39)

If (38) is not true, there must exist some 𝑡 ∈ [𝑡
0
, 𝑡
1
) such that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) >
𝑏

𝑐∗
𝛿 > 𝑏𝛿 ≥ 𝐸𝑉 (𝑥 (𝑡

0
) , 𝑡

0
, 𝑟 (𝑡

0
)) .

(40)

Let 𝑡∗ = inf{𝑡 ∈ [𝑡
0
, 𝑡
1
) : 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) > (𝑏/𝑐

∗

)𝛿}. From
(39), one has 𝑡∗ ∈ (𝑡

0
, 𝑡
1
) and

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) =
𝑏

𝑐∗
𝛿,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

∗

) ,

𝐷
+

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) ≥ 0.

(41)

Owing to (𝑏/𝑐
∗

)𝛿 > 𝑏𝛿 and 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ≤ 𝑏𝛿 for 𝑡 ∈

[𝑡
0
− 𝑟, 𝑡

0
], then there exists a 𝑡

∗∗

∈ [𝑡
0
, 𝑡

∗

) such that

𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) = 𝑏𝛿,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) > 𝑏𝛿, 𝑡 ∈ (𝑡
∗∗

, 𝑡
∗

] ,

𝐷
+

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) ≥ 0.

(42)
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Consequently, by (41) and (42), for 𝑡 ∈ [𝑡
∗

, 𝑡
∗∗

], we have

𝐸𝑉 (𝑥 (𝑡 + 𝑠) , 𝑡 + 𝑠, 𝑟 (𝑡 + 𝑠)) ≤
𝑏𝛿

𝑐∗
≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(43)

So, for 𝑡 ∈ [𝑡
∗

, 𝑡
∗∗

], it has

𝐷
+

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) . (44)

Integrating (44) from 𝑡
∗∗ to 𝑡

∗

∫

𝑡
∗

𝑡
∗∗

𝐷
+

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))
𝑑𝑠 ≤ ∫

𝑡
1

𝑡
0

𝑐
𝑖
(𝑡) 𝑑𝑠 ≤ 𝛼𝛽. (45)

Meanwhile, by condition (v), one has

∫

𝑡
∗

𝑡
∗∗

𝐷
+

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))
𝑑𝑠

= ∫

𝐸𝑉(𝑥(𝑡
∗

),𝑡
∗

,𝑟(𝑡
∗

))

𝐸𝑉(𝑥(𝑡
∗∗

),𝑡
∗∗

,𝑟(𝑡
∗∗

))

1

𝑢
𝑑𝑢

= ∫

(𝑏/𝑐
∗

)𝛿

𝑏𝛿

1

𝑢
𝑑𝑢 = − ln 𝑐

∗

> 𝑐
𝑖
(𝑡
1
− 𝑡

0
) ,

(46)

which is contradictory with (45), so (38) is true.
By condition (i) and (38), we have

𝐸𝑉 (𝑥 (𝑡
1
) , 𝑡

1
, 𝑟 (𝑡

1
))

≤ 𝜌𝑒
𝑖
1

𝐸𝑉 (𝑥 (𝑡
−

1
) , 𝑡

−

1
, 𝑟 (𝑡

−

1
))

≤ 𝑏𝑒
𝑖
1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
−

1

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑟

≤
𝑏

𝑎
𝜌𝑒

𝑖
1

sup
−𝑟≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡
−

1
+ 𝜃) , 𝑡

−

1
+ 𝜃, 𝑟 (𝑡

−

1
+ 𝜃))

≤
𝑏

𝑎

𝑏

𝑐∗
𝜌𝑒

𝑖
1

𝛿 ≤ 𝑏𝛿 <
𝑏

𝑐∗
𝛿.

(47)

Now, we assume that (37) holds for 𝑘 = 1, 2, . . . , 𝑚, that is,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
] . (48)

We will prove that, for 𝑘 = 𝑚 + 1,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

) . (49)

Suppose that (49) does not hold, by the same procedure as in
[𝑡
0
, 𝑡
1
), we can get a contradiction and (49) follows. Finally,

we get

𝐸‖𝑥(𝑡)‖
𝑝

≤
𝑏

𝑎𝑐∗
𝛿 < 𝜀, 𝑡 ≥ 𝑡

0
. (50)

From Definition 1, it is concluded that the trivial solution
of system (3) is uniformly 𝑝-moment stable. The proof is
complete.

Corollary 9. Assume that there exist positive scalars 𝑝, 𝑎, 𝑏,
𝜌 < 1, 𝑒

𝑖
, 𝑐

𝑖
(𝑖 ∈ 𝑆), 𝛼, and 𝛽 such that conditions (iv) in

Theorem 8 are replaced by the following:

(iv)∗ there exists positive number 𝑐
𝑖
such that

𝐸𝐿𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤ 𝑐
𝑖
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ,

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

(51)

whenever 𝑡 ≥ 𝑡
0
and 𝜑 ∈ PC𝑏

𝐹
𝑡

([−𝑟, 0]; 𝑅
𝑛

) are such that
𝑐
∗

𝐸𝐿𝑉(𝜑(𝑠), 𝑡 + 𝑠, �̃�) ≤ 𝐸𝑉(𝜑(0), 𝑡, 𝑖); and all other conditions
remain the same, then the trivial solution of system (3) is
uniformly 𝑝-moment stable.

Proof. Similar to the procedure of Theorem 8, correspond-
ingly, the item 𝑐

𝑖
(𝑡) in the proof is replaced by 𝑐

𝑖
.

Remark 10. It is clear that Theorem 8 implies that each of
the continuous dynamics can be unstable, since the item
𝑐
𝑖
(𝑡) in condition (iv), which characterizes the changing rate

of Lyapunov function 𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) at 𝑡, is assumed to be
nonnegative. Theorem 8 shows that an unstable stochastic
delay system can be successfully stabilized by impulse.

Remark 11. Constant 𝑒
𝑖
in condition (ii) characterizes certain

perturbations in the overall impulsive stabilization process,
that is, it is not strictly required by Theorem 8 that each
impulse contributes to stabilize the system, as long as the
overall contribution of the impulses is stabilizing. When 𝑒

𝑖
≡

1, it is easily obtained that each impulse must be stabilizing
(𝜌 < 1), which is more restrictive.

Now consider the linear stochastic system with impulses
and markovian switching

𝑑𝑥 (𝑡) = [𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝑟)] 𝑑𝑡

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝑟)] 𝑑𝜔 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝐸
𝑘
(𝑥 (𝑡

−

) , 𝑟 (𝑡)) , 𝑡 = 𝑡
𝑘
,

𝑥 (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝑟, 0] ,

(52)

where 𝐴
𝑖
, 𝐵

𝑖
, 𝐶

𝑖
, 𝐷

𝑖
, and 𝐸

𝑘
are all 𝑛 × 𝑛 matrices and

𝜔 is a one-dimensional standard wiener process. 𝑟(𝑡) is a
Markov chain taking values in 𝑆 = {1, 2, . . . , 𝑁} in which the
transition rate is 𝜋

𝑖𝑗
.

Theorem 12. When 𝑟(𝑡) = 𝑖 ∈ 𝑆, define 𝐴(𝑟(𝑡)) = 𝐴
𝑖
,

𝐵(𝑟(𝑡)) = 𝐵
𝑖
, 𝐶(𝑟(𝑡)) = 𝐶

𝑖
,𝐷(𝑟(𝑡)) = 𝐷

𝑖
.

(i) If there exist constants 𝑝
𝑖
, 𝑐

𝑖
, 𝑑

𝑖
, 𝜀

1
, and 𝜀

2
such that

𝑝
𝑖
𝜆max (𝐴

𝑇

𝑖
+ 𝐴

𝑖
+ 𝜀

1
𝐼) + 𝑝

𝑖
(1 + 𝜀

2
)
󵄩󵄩󵄩󵄩𝐷𝑖

󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗
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≤ −𝑐
𝑖
, 𝑝

𝑖
{𝜀

−1

1

󵄩󵄩󵄩󵄩𝐵𝑖

󵄩󵄩󵄩󵄩
2

+ (1 + 𝜀
−1

2
)
󵄩󵄩󵄩󵄩𝐺𝑖

󵄩󵄩󵄩󵄩
2

} ≤ 𝑑
𝑖
;

𝑝
𝑖
𝑐
𝑖

󵄩󵄩󵄩󵄩𝐼 + 𝐸
𝑘

󵄩󵄩󵄩󵄩
2

> 𝑑
𝑖
,

(53)

then system (52) is uniformly 𝑝-moment stable.
(ii) If there exist constants 𝑐

𝑖
, 𝜀

1
, and 𝜀

2
such that

𝑝
𝑖
𝜆max (𝐴

𝑇

𝑖
+ 𝐴

𝑖
+ 𝜀

1
𝐼) + 𝑝

𝑖
(1 + 𝜀

2
)
󵄩󵄩󵄩󵄩𝐷𝑖

󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗
+ 2𝑝

𝑖
ln 󵄩󵄩󵄩󵄩𝐼 + 𝐸

𝑘

󵄩󵄩󵄩󵄩

× [𝜀
−1

1

󵄩󵄩󵄩󵄩𝐵𝑖

󵄩󵄩󵄩󵄩
2

+ (1 + 𝜀
−1

2
)
󵄩󵄩󵄩󵄩𝐺𝑖

󵄩󵄩󵄩󵄩
2

] ≤ 𝑐
𝑖
;

ln (𝑝
𝑖

󵄩󵄩󵄩󵄩𝐼 + 𝐸
𝑘

󵄩󵄩󵄩󵄩) ≤ −
1

2
𝑐
𝑖
(𝑡
𝑘+1

− 𝑡
𝑘
) ,

(54)

then system (52) is uniformly 𝑝-moment stable.

Proof. It is a direct consequence of Corollaries 5 and 9 with
𝑉(𝑥(𝑡), 𝑟(𝑡)) = 𝑝

𝑖
‖𝑥(𝑡)‖

2.

4. Numerical Examples

The applicability of the results derived in the preceding
section is illustrated by the following two examples.

Example 1. Consider the following linear impulsive switching
delay system:

𝑑𝑥 (𝑡) = [𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝑡

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝜔 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝐸
𝑘
(𝑥 (𝑡

−

) , 𝑟 (𝑡)) , 𝑡 = 𝑡
𝑘
,

(55)

where

𝐴
1
= [

[

0.1 0.2 −0.1

0.2 0.15 0.3

0 0.24 0.1

]

]

, 𝐵
1
= [

[

−0.24 0.04 0

0.24 −0.4 0.1

0 0.24 −0.2

]

]

,

𝐷
1
= [

[

0.5 0.4 0.2

−0.24 0.32 0.3

0.6 0.26 −0.5

]

]

, 𝐺
1
= [

[

0.14 0 −0.21

0.2 0.1 0.16

0.1 0.15 0.17

]

]

,

𝐴
2
= [

[

0.2 0.3 −0.1

0.3 0.1 0.3

0 0.2 0.1

]

]

, 𝐵
2
= [

[

−0.2 0.04 0

0.2 −0.4 0.1

0 0.2 −0.2

]

]

,

𝐷
2
= [

[

0.5 0.4 0.2

−0.2 0.3 0.3

0.6 0.2 −0.5

]

]

, 𝐺
2
= [

[

0.24 0 −0.21

0.2 0.1 0.16

0.1 0.1 0.17

]

]

,

𝐸
𝑘
= [

[

−0.5 0 0

0 −0.4 0

0 0 −0.3

]

]

, 𝜋 =
[
[
[

[

−
1

3

1

3

2

3
−
2

3

]
]
]

]

.

(56)
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0.3

0.4

0.5
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3

Figure 1: State response of system (55) under impulsive perturba-
tions.

Set 𝜀
1
= 𝜀

2
= 0.5, 𝑝

𝑖
= 1. It is easy to see that 𝜆max(𝐴

𝑇

1
+

𝐴
1
+ 0.5𝐼) = 1.3819, 𝜆max(𝐴

𝑇

2
+𝐴

2
+ 0.5𝐼) = 1.5020, ‖𝐵

1
‖
2

=

0.3141, ‖𝐵
2
‖
2

= 0.2764, ‖𝐷
1
‖
2

= 0.9175, ‖𝐷
2
‖
2

= 0.8737,
‖𝐺

1
‖
2

= 0.1360, ‖𝐺
2
‖
2

= 0.1219, and ‖𝐼 + 𝐸
𝑘
‖
2

= 4.9. Taking
𝑐
1
= 3.1, 𝑐

2
= 3.2, 𝑡

𝑘
− 𝑡

𝑘−1
= 0.22, we can verify that all the

conditions (ii) of Theorem 12 are satisfied:

𝜆max (𝐴
𝑇

1
+ 𝐴

1
+ 𝜀

1
𝐼) + (1 + 𝜀

2
)
󵄩󵄩󵄩󵄩𝐷1

󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑗=1

𝜋
1𝑗

+ 2 ln 󵄩󵄩󵄩󵄩𝐼 + 𝐸
𝑘

󵄩󵄩󵄩󵄩

× [𝜀
−1

1

󵄩󵄩󵄩󵄩𝐵1

󵄩󵄩󵄩󵄩
2

+ (1 + 𝜀
−1

2
)
󵄩󵄩󵄩󵄩𝐺1

󵄩󵄩󵄩󵄩
2

]

= 3.0190 ≤ 𝑐
1
= 3.1;

𝜆max (𝐴
𝑇

2
+ 𝐴

2
+ 𝜀

1
𝐼) + (1 + 𝜀

2
)
󵄩󵄩󵄩󵄩𝐷1

󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑗=1

𝜋
2𝑗

+ 2 ln 󵄩󵄩󵄩󵄩𝐼 + 𝐸
𝑘

󵄩󵄩󵄩󵄩

× [𝜀
−1

1

󵄩󵄩󵄩󵄩𝐵2

󵄩󵄩󵄩󵄩
2

+ (1 + 𝜀
−1

2
)
󵄩󵄩󵄩󵄩𝐺2

󵄩󵄩󵄩󵄩
2

]

= 3.1574 ≤ 𝑐
2
= 3.2;

ln 󵄩󵄩󵄩󵄩𝐼 + 𝐸
𝑘

󵄩󵄩󵄩󵄩
2

= −0.7133 ≤ −𝑐
𝑖
(𝑡
𝑘+1

− 𝑡
𝑘
)

= −3.2 × 0.22 = −0.7040.

(57)

So, system (55) is 𝑝-moment stable. Numerical simulations
for this example are shown in Figures 1 and 2. It is clearly
demonstrated that impulses can successfully stabilize an
otherwise unstable stochastic delay system.
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Figure 2: State response of system (55) without impulsive perturbations.

Example 2. Consider the following linear impulsive switch-
ing delay system:

𝑑𝑥 (𝑡) = [𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝑡

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝜔 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝐸
𝑘
(𝑥 (𝑡

−

) , 𝑟 (𝑡)) , 𝑡 = 𝑡
𝑘
,

(58)

where

𝐴
1
= [

−4 0

0 −5
] , 𝐵

1
= [

0.2 0.3

0.5 0.1
] ,

𝐷
1
= [

0.3 0.4

0.5 0.2
] , 𝐺

1
= [

0.8 0.1

0.1 0.3
] ,

𝐸
𝑘
= [

−0.6 0.5

0.3 −0.5
] ,

𝐴
2
= [

−3 0

0 −4
] , 𝐵

2
= [

0.3 0.5

0.4 0.3
] ,

𝐷
2
= [

0.5 0.1

0.4 0.1
] , 𝐺

2
= [

0.2 0.2

0.1 0.4
] ,

(59)

𝑃 = [
0.5 0.5

0.5 0.5
] . (60)

Choosing 𝜀
1
= 𝜀

2
= 2, 𝑝

𝑖
= 1. It is easy to see that 𝜆max(𝐴

𝑇

1
+

𝐴
1
+ 2𝐼) = −6, 𝜆max(𝐴

𝑇

2
+ 𝐴

2
+ 2𝐼) = −4, ‖𝐵

1
‖
2

= 0.3403,
‖𝐵

2
‖
2

= 0.5687, ‖𝐷
1
‖
2

= 0.5009, ‖𝐷
2
‖
2

= 0.4298, ‖𝐺
1
‖
2

=

0.6712, ‖𝐺
2
‖
2

= 0.2347, ‖𝐼 + 𝐸
𝑘
‖
2

= 0.7467. Taking 𝑐
1
= 3.3,

𝑐
2

= 1.6, 𝑑
1

= 1.2, 𝑑
2

= 0.65, we can verify that all the
conditions (i) of Theorem 12 are satisfied:

𝜆max (𝐴
𝑇

𝑖
+ 𝐴

𝑖
+ 𝜀

1
𝐼) + (1 + 𝜀

2
)
󵄩󵄩󵄩󵄩𝐷𝑖

󵄩󵄩󵄩󵄩
2

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
= {

−3.4973 < −3.3 = 𝑐
1
;

−1.7166 < −1.6 = 𝑐
2
;

𝜀
−1

1

󵄩󵄩󵄩󵄩𝐵𝑖

󵄩󵄩󵄩󵄩
2

+ (1 + 𝜀
−1

2
)
󵄩󵄩󵄩󵄩𝐺𝑖

󵄩󵄩󵄩󵄩
2

= {
1.1770 < 1.2 = 𝑑

1
;

0.6364 < 0.65 = 𝑑
2
;

(61)

󵄩󵄩󵄩󵄩𝐼 + 𝐸
𝑘

󵄩󵄩󵄩󵄩
2

𝑐
𝑖
= 0.7467 × {

3.3 = 2.4641 > 1.2 = 𝑑
1
;

1.6 = 1.1947 > 0.65 = 𝑑
2
.

(62)

Theorem 12 guarantees that the trivial solution of system
(58) is 𝑝-moment stable. Numerical simulations are shown
in Figure 3. It is clearly demonstrated that the 𝑝-moment
stability properties can be preserved irrespective of the length
of the delay.

5. Conclusions

In this paper, a method of multiple Lyapunov functionals
has been applied to deal with the effects of impulses on 𝑝-
moment stability of stochastic differential delay systems with
impulsive jump and markovian switching. Some stability cri-
teria are obtained based on Lyapunov functional method and
stochastic theory. It is shown that, even if all the subsystems
governing the continuous dynamics without impulse are not
stable, as impulsive and switching signal satisfies a dwell-time
upper bound condition, impulses can stabilize the systems
in the 𝑝-moment stability sense. The opposite situation is
also developed for which all the subsystems governing the
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Figure 3: State response of system (58) under impulsive perturba-
tions

continuous dynamics without impulse are 𝑝-moment stable.
Applying the derived results to a class of stochastic systems
with arbitrarily large delays, the deduced new stability criteria
can relax some restrictions on impulses imposed by the
existing results. Two illustrative examples have been provided
to demonstrate the main theoretical analysis.
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