Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 403912, 7 pages
http://dx.doi.org/10.1155/2013/403912

Research Article

Hindawi

Partial Refactorization in Sparse Matrix Solution: A New
Possibility for Faster Nonlinear Finite Flement Analysis

Qi Song, Pu Chen, and Shuli Sun

Department of Mechanics and Engineering Science & LTCS, College of Engineering, Peking University, Beijing 100871, China

Correspondence should be addressed to Shuli Sun; sunsl@mech.pku.edu.cn

Received 8 July 2013; Accepted 7 August 2013

Academic Editor: Song Cen

Copyright © 2013 Qi Song et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes a partial refactorization for faster nonlinear analysis based on sparse matrix solution, which is nowadays the
default solution choice in finite element analysis and can solve finite element models up to millions degrees of freedom. Among
various fill-in’s reducing strategies for sparse matrix solution, the graph partition is in general the best in terms of resultant fill-
ins and floating-point operations and furthermore produces a particular graph of sparse matrix that prevents local change of
entries from wide spreading in factorization. Based on this feature, an explicit partial triangular refactorization with local change
is efficiently constructed with limited additional storage requirement in row-sparse storage scheme. The partial refactorization
of the changed stiffness matrix inherits a big percentage of the original factor and is carried out only on partial factor entries. The
proposed method provides a new possibility for faster nonlinear analysis and is mainly suitable for material nonlinear problems and
optimization problems. Compared to full factorization, it can significantly reduce the factorization time and can make nonlinear

analysis more efficient.

1. Introduction

Nonlinearities [1, 2] occur in practical applications of many
engineering fields. For example, in design of steel structures,
elastoplastic analyses are necessary to compute the limit
loads of truss, frame, or shell structures. In area of concrete
structural design or soil mechanics, complicated nonlinear
constitutive relations have to be involved for realistic descrip-
tions. In case of cable design, geometrically nonlinear effects
have to be considered for large displacements. In numerical
simulation of rainfall effect on stability of slope, the changes
in pore-water pressure will alter the elastoplastic behavior of
geologic media. In analysis of seepage [3], the coeflicient of
permeability changes with capillary pressure and can be also
treated as nonlinear problems.

The nonlinear equilibrium equations are typified by the
nonlinear system of equations:

R (x) = 0.)

Generally, this can be achieved in finite element methods
by the so-called Newton-Raphson method, which involves

the linearization of the equilibrium equations, given by
R(xc1) = R(x) + K(x)u=0; X, =%+, @
K (x,)u = DR(x;) [u],

where DR(x)[u] indicates directional derivative of R at x in
the direction of an increment u and K indicates the tangent
matrix. In each iteration step k, a linear system of equations
has to be solved. Nowadays, for up to about two million
equations, direct methods may be still dominant for the
solution, compared with iterative methods. As stated in [1],
the advantage of direct solvers lies on their capability to
solve even ill-conditioned and indefinite system of equations,
which is especially interesting for nonlinear applications.
Moreover, direct methods are generally robust.

The convergence behavior of Newton-Raphson method is
advantageous. Generally only a few iterations are needed to
obtain the solution. However, in every iteration step, triangu-
larization of the tangent matrix K(x;) in (2) involves extensive
computational effort for large finite element models.

To reduce time consumption of triangular factorization
of K, the modified Newton method is proposed in which K
is not changed in several successive iteration steps. Therefore
the number of refactorizations of K decreases and total
computing time might be saves. In practice, this saving
may be counterbalanced by the fact that modified New-
ton method converges much slower than Newton-Raphson
method, while repetitive residuum load vector building,
forward reduction, and back substitution in each iteration
step become then time consuming.

Fortunately, it can be noticed that between two adja-
cent iteration steps, nonlinear phenomenon usually appears
locally. For example, stress concentration often occurs around
one or several points; plastic deformation usually starts
from local elements and then spreads around; in analysis of
seepage, only elements around the interface of liquid need to
change the coefficient of permeability, and so forth. All these
features are equivalent to local change of tangent matrix K;
that is to say, only a small or very small percentage (but the
number might be large such as five thousand rows) of stiffness
coeflicients will be changed in each linearized step.

In light of this, a new algorithm is proposed in this
study to refactorize tangent matrix with local change. Our
goal is to save time of triangular factorization, to make
Newton-Raphson method more efficient and thus to provide
a new possibility for faster nonlinear analysis. Generally
speaking, local change occurs frequently in material nonlin-
ear problems and optimization problems; thus the proposed
algorithm is mainly suitable for them. In the worst case, a
global change causes that the proposed algorithm degrades
to full factorization.

An outline of this paper follows. In Section 2, background
on sparse direct solution techniques is given. In Section 3,
we discuss the effect propagation of local change in the
matrix factor and conclude that only part of matrix factor
needs to be recalculated. Based on all preparations, a new
algorithm for refactorization is described in Section 4. The
cost of computation is predictably reduced, and the precision
is unaffected. In Section 5, numerical examples are given to
illustrate performance of the proposed algorithm. Finally in
Section 6, it is concluded that the algorithm proposed in this
paper is significantly efficient and suitable for local change
of structures. This method can be applied to a wide range of
engineering problems and could be the foundation of faster
nonlinear finite element analysis.

2. Sparse Direct Solution Techniques

Since 1990s, direct solution techniques of finite element
analysis [4] have developed from conventional variable band-
width [5] or frontal solutions [6] to various sparse solutions
[5, 7-11], such as backward-reference (left-looking), forward-
reference (right-looking), and multifrontal [12, 13] methods.
They have yielded a breakthrough in terms of solution speed
and storage requirement in finite element analysis. It is quite
safe to conclude that solvers based on various row pivoting
sparse storage schemes are, in terms of the solution time,
memory requirement and scale of problems, much more
efficient than those based on variable bandwidth or skyline

Mathematical Problems in Engineering

storage schemes. With the achievements in hardware, the
analysis 0£10,000 to 500,000 nodes finite element calculations
on microcomputers becomes popular. Since 1995, commer-
cial FEA packages have turned to sparse direct solvers and
gained a speedup of more than 10 times. The scale of problems
that can be solved on certain machines increased about 3 to
10 times.

Sparse solution has two essential features. One is sparse
index storage scheme, also called compact storage scheme,
storing nonzero entries of matrix in a row or column
compact form, which significantly improves the efficiency of
time and space because only nonzero entries are considered
in triangular factorization. The other is fill-in’s reducing,
an optimization procedure before numerical factorization,
which finds an optimized pivoting sequence by permuting
rows and columns of matrix, so that fill-ins as well as float-
point operations of factorization will be decreased greatly.

Generally, a stiffness matrix of finite element analysis
can be considered as an adjacency list of graph, in which a
vertex presents an equation and a nonzero off-diagonal entry
implies that the two corresponding vertices are adjacent.
At present, one of practical fill-reducing algorithms is the
so-called multilevel graph partition [14-16], a special case
of graph partition. It is a divide and conquer algorithm,
which partitions global optimization cost functions into
some unrelated cost functions of subproblems and additional
cost function between these subproblems. Approximately,
the global cost function is minimized if the additional cost
function is minimized and the scales of subproblems are
roughly equal. The division guarantees that local change on
one side does not spread to the other side. In other words, the
graph partition prevents local change from wide spreading.

Taking advantage of both row-sparse solution and fill-
reducing, a new algorithm to refactorize the tangent matrix
for local change is designed. Only a part of rows of the matrix
factor involves recalculation, and therefore the computational
cost decreases. It is to note that no approximation is assumed
in the presented algorithm; therefore accuracy is guaranteed
as the same of full refactorization.

For simplicity, we assume in following discussions that a
pivoting sequence of fill-in’s reducing of a positive definite
global stiffness matrix has been already found through a
graph partition algorithm, such as METIS [19].

3. Effect of Local Change in Sparse Solution

In each iteration step of Newton-Raphson method, nonlinear
finite element analysis yields to a system of linear equations
as (2) or closely

K (x)u=-R(x), (3)

where K(x;) denotes the tangent stiffness matrix, which
is symmetric positive definite generally in finite element
method, —R(x;) the residuum vector, and u the displacement
increment vector.

At present, general solution procedure of finite element
equation (3) is LDL", which decomposes K into product

Mathematical Problems in Engineering

dorow j=1,n
do k = all appropriate rows (u; #0)
RowTask (k, j)
end do
RowTask (j, 7)
end do

ALGORITHM 1: Simple jki form of LDL" factorization [17, 18].

of lower triangular matrix L, diagonal matrix D, and upper
triangular matrix LT, as

K=LU = LDL". (4)

With the result of LDLT, the displacement u can be
obtained easily by forward reduction and back substitution.
In the process, factorization of stiffness matrix K is the most
time consuming. In nonlinear analysis, repetitive factoriza-
tions are carried out at each iteration step. It is to point
out that, in two adjacent iteration steps, the tangent stiffness
matrices differ frequently only from each other on a small
portion of elements. Besides, the difference is frequently local.

Suppose K = (k;) € R™, the factors L = (I;;) € R™,
and D = diag(d;) € R™", which are alower triangular matrix
with unit diagonal and a diagonal matrix, respectively, where
n is the number of equations. With regard to memory
management, U shares the same memory locations as L' and
D together, since the unit diagonal of L™ does not necessarily
occupy any storage space. Practically, we denote K before
factorization and U/DL! after factorization as A = (aij) €

R™". The bulk of the work in the LDL" factorization occurs
in a triple nested loop around a single statement [20]:

a; = aj; — Ll ydig = aj; — L. (5)

There are six different forms [17] to implement LDL!
factorization, which are six permutations of the indices i, j, k.
Row-sparse factorization [21] and its improvement [8, 18] are
foundations of the present sparse solution implementation,
in which jki form and its variations are used. The simple jki
form can be expressed in terms of tasks [18, 22]:

(1) RowTask (k, j): reduction of the target jth row by a
multiple of the kth row, k < j, that is, elimination of
ajk;

(2) RowTask (j, j): division of the off-diagonals of the
target jth row by its diagonal.

The RowTask (k, j) itself involves an i-loop from j to
n. We can symbolically write this procedure as shown in
Algorithm 1.

As stiffness matrix is sparse, most entries in K as well as in
L or U vanish, and therefore, only nonzero entries are actually
involved in calculation. Besides nonzero entries in K, the
factor L or U contains additional nonzero entries generated
by factorization. Thus, it is necessary to predetermine sym-
bolically, not numerically, which entries will become nonzero

in L or U. This step is called symbolic analysis. After this, it
can be analyzed by (5) how the variation of entries of stiffness
matrix K will affect the factors L or U and D and how the
effect will propagate in the L or U.

Since the matrices differ on a small portion of elements,
consider a change of row j of U which is caused by previous
eliminations or entries change of K directly. It will cause
change of row i that u; # 0 as shown in Algorithm 1. Take (6),
for example. Change of row 1 generally causes change of row
3 and row 7, since change of 1, and u,, spreads to d, and d.
Change of row 3 spreads changes to row 5 and row 7:

d, Ups Uy
dy uy Uy
d; Uszs Usz
d, Uys . (6)
ds Usg Us;
de¢ ug
d

7

In general, change of diagonal entry directly affects value
of all nonzero entries of this row in the matrix, and therefore,
for convenience, let a row be the smallest unit of change,
corresponding to an equation or a general displacement of
the structure. Through the previous analysis, the rule of direct
effect of change is summarized as follows.

Rule. In LDL" factorization, change of a row in stiffness
matrix K directly affects values of this row in factorization
results U(L") and D, and then affects rows corresponding to
the columns where nonzero entries of this row are.

Consider (6) again. The change of row 1 will affect rows
3 and 7. The effect will propagate in the matrix, as row 3 will
affect rows 5 and 7, and row 5 will affect rows 6 and 7. Due to
sparseness of stiffness matrix, the number of nonzero entries
in each row is finite. As a result, change of one row is able to
affect only part of the matrix. In this case, change of row 1
will eventually affect rows 3, 5, 6, and 7, whereas rows 2 and 4
remain unchanged.

In practice, fill-ins’ reducing, which minimizes the num-
ber of fill-ins (additional nonzero entries produced by fac-
torization) through equation reordering, is always required
before numerical factorization. A typical optimized result
delivered by the divide and conquer graph partition algo-
rithm is as follows:

Ky, Ki; K7
K, Ky
K; K;, Ky
K= K44 K46
Kss Kse
Ky Kgs Kgg
K7 Ky, Ky Ky Kys Ky

27
37
g |- @)
57
67
77

ANARAAARA

In this case, if stiffness of group 2 is changed, only groups
2,3, and 7 are necessary to be recalculated; similarly, if stiff-
ness of group 6 is changed, only groups 6 and 7 are affected.

Now it is concluded that if the stiffness matrix changes
locally, based on fill-ins’ reducing, only part of values in L

Mathematical Problems in Engineering

row i is changed;

all the changed rows:

Step 1. Input original stiffness matrix K, upper triangular matrix U and diagonal matrix D;
Step 2. Create array CHANGE(n) with the initial value zero, where 7 is the number of
equations. CHANGE(i) = 0 indicates row i is not changed, while CHANGE(i) = 1 indicates

Step 3. Input the change of each element stiffness matrix and assemble them to original
total stiffness matrix. Then let CHANGE(?) be 1 if row i is changed;
Step 4. According to Rule, spread the effect of changes over the whole matrix and mark

Step 5. Assemble matrix to the original factor. If CHANGE(i) = 0, fill in row i with

original factorization result; if CHANGE(i) = 1, fill in row i with entries of new stiffness matrix;
Step 6. Numerically factorize the matrix, only recalculating entries in changed rows
(CHANGE(i) = 1) according to (5). Only changed row is added to the elimination tree, in
implementation being represented by the linked list.

Step 7. The solution procedure after factorization stays the same.

ALGORITHM 2: Sparse direct methods of refactorization.

doj=1,nm

doi=j+1L,nm
end do
end if
end do

if (CHANGE(j) = 1) then

if (u i s nonzero) then CHANGE(i) =1

ALGoriTHM 3: Spread the effect of modification in jki factorization.

and D need to be recalculated. The cost of computation is
predictably reduced, and the precision is unaffected.

4. Algorithm Design for Local Change of
Sparse Matrix

Algorithm for refactorization involves sparse storage scheme,
which takes extremely advantage of sparseness of numerical
part. However, index can be compressed furthermore, and
indirect addressing of data access can be reduced substan-
tially [5]. Row-sparse factorization [21] and its improvement
[18] are the foundation of present sparse solution, which
consist of four steps: symbolic assembly, symbolic factoriza-
tion, numerical assembly, and numerical factorization. Instead
of the elimination tree, an updated linked list is used in
factorization.

In this refactorization algorithm, structural topology is
unchanged, so symbolic assembly and symbolic factoriza-
tioninherit the original results. Thus, three steps need to be
redesigned.

(a) Modification analysis: determines which rows will be
changed in upper triangular matrix U.

(b) Numerical assembly: reassembles entries of matrix in
rows which are changed.

(¢) Numerical factorization: modifies rows of upper tri-
angular matrix U and recalculates the value of corre-
sponding entries.

The detailed steps of this algorithm are shown as
Algorithm 2.

For further illustration steps 4 and 6 are refined as follows
in Algorithms 3 and 4.

In step 6 (Algorithm 4), only parts of factor are recalcu-
lated for elimination, and as a result, computation efficiency
compared to full refactorization is improved.

5. Numerical Examples and Analysis

Two building structures are selected to show the efficiency of
proposed algorithm, in size of 321,210 and 442,331 equations
or DOFs (degrees of freedom), in which up to 5000 DOFs are
changed. Both numerical examples are tested on Windows 7
system with Intel Xeon CPU E5-2620 (2.00GHz, 2 x 6
cores, but only one core used) and 32 GB memory. The
codes have not integrated in nonlinear solver, and there-
fore only refactorization part is presented. Moreover, only
computational effort and elapsed time of factorization are
discussed, since the algorithm proposed in this paper involves
no approximation and the solution is as accurate as a full
recalculation.

Example 1. A multitower building, as shown in Figure 1(a),
is calculated. The number of DOFs or equations is 321,210;
the number of nonzero entries in stiffness matrix is 17,169,579,
and that in factor is 62,281,728.

Mathematical Problems in Engineering 5
TABLE 1: Statistic results of refactorization of Example 1.
Changed elements Changed DOFs Affected DOFs Number of operations (MFLOP) Factorization time (sec)
Full refactorization 321210 321210 30630 10.71
Partial refactorization Average Min Max Average Min Max Average Min Max Average
1 8 0.003% 159 3219 2283 0.71% 72 4654 2894 9.45% 0.2 219 145 13.54%
2 13 0.004% 159 3936 2431 0.76% 72 4837 2930 9.57% 0.18 2.22 147 13.71%
5 26 0.01% 1977 4512 2834 0.88% 2524 4916 3252 10.62% 1.33 219 160 14.94%
10 51 0.02% 2193 5295 3317 1.03% 2524 4953 3416 11.15% 136 223 164 15.33%
20 95 0.03% 2247 5466 3526 110% 2524 4955 3426 11.18% 127 233 166 15.53%
50 227 0.07% 2487 10101 3975 1.24% 2528 6246 3507 11.45% 125 255 167 15.62%
100 358 0.11% 2541 10452 4124 1.28% 2528 6252 3511 11.46% 1.28 2.63 168 15.67%
200 533 0.17% 2622 10548 4560 1.42% 2528 7911 3677 12.00% 1.3 335 172 16.11%
500 1175 0.37% 3714 15978 7947 2.47% 3357 10655 6237 20.36% 1.6 3.88 2.62 24.44%
1000 2167 0.67% 4770 19347 13351 4.16% 3371 14167 9370 30.59% 1.56 5.43 3.69 34.43%
2000 4949 1.54% 12462 29079 17262 5.37% 5314 14005 10234 33.41% 212 534 4.06 3794%
TABLE 2: Statistic results of refactorization of Example 2.
Changed elements Changed DOFs Affected DOFs Number of operations (MFLOP) Factorization time (sec)
Full refactorization 442331 442331 141251 48.87
Partial refactorization Average Min Max Average Min Max Average Min Max Average
1 9 0.002% 1662 5472 4410 1.00% 7330 21280 16521 11.70% 354 876 6.34 12.96%
2 15 0.003% 1674 6018 4901 111% 7330 21515 17389 12.31% 317 875 6.82 13.96%
5 30 0.01% 1701 8760 5344 121% 7330 22401 17705 12.53% 3.01 878 6.71 13.72%
10 54 0.01% 1761 12972 5906 1.34% 7330 38960 18622 13.18% 3.05 14.95 7.08 14.48%
20 98 0.02% 1803 13734 6558 1.48% 7330 39431 19774 14.00% 3.09 12.89 732 14.98%
50 198 0.04% 1893 18411 7185 1.62% 7330 39616 20212 14.31% 342 143 761 1557%
100 345 0.08% 2016 19326 7553 1.71% 7330 39810 20259 14.34% 3.55 13.84 756 15.48%
200 597 0.14% 2103 23763 8185 1.85% 7330 40123 20360 14.41% 3.07 13.57 765 15.65%
400 2472 0.56% 6525 25506 10995 2.49% 16097 40123 21653 15.33% 5.88 14.92 8.07 16.51%
1000 3288 0.74% 20766 42306 26598 6.01% 29494 42004 35659 25.25% 10.06 15.76 12.81 26.20%

dorowj=1,n
if (CHANGE(j) =1) then
do k = all appropriate row
RowTask (k, j)
end do
RowTask (j, j)
end if
end do

AvGoRrITHM 4: Simple jki form of LDL" refactorization.

Consider that nonlinear phenomenon occurs between
two adjacent iteration steps. For example, part of steel
structures reaches plastic phase. For simplicity, in each test
one group’s element stiffness is changed to 90% of standard
value, and one group here normally consists of a certain
number (from 1 to 2000) of well-connected elements in one
floor which means a local change.

The performance of the proposed algorithm is shown
in Tablel. The first row of data shows the result of full
refactorization, a violent method to factorize the new matrix,

introduced as reference of comparison. The rest of the rows
show the result of partial refactorization using the proposed
algorithm. For each case (change of certain number of ele-
ments) about 30 samples are selected randomly. For statistical
purpose, minimum, maximum, and average affected DOFs,
(million floating-point operations), MFLOP and computing
time are given. The percentage next to average values is
the ratio between this item and corresponding value of full
refactorization.

The numerical results indicate that the local change, up
to 2% DOFs in this example, will only spread to a little
bit large percentage of DOFs, up to 10% here. The elapsed
time or computational effort is usually less than half of full
recalculation, which demonstrates that this method is more
efficient than full recalculation. The MFLOP ratio of this
algorithm and full recalculation is always much larger than
the ratio of affected DOFs and total DOFs, because reduction
of some DOFs or equations refers a large number of DOFs,
both changed and unchanged. Also, it is shown that the
MFLOP ratio is coincident with elapsed time ratio.

Comparing the cases of different numbers of changed
elements, it is concluded that computational effort of refactor-
ization depends slightly on the number of modified/affected

Mathematical Problems in Engineering

(a)

(b)

FIGURE 1: Schematic diagrams of two numerical examples.

DOFs and the relation is roughly monotonic but not neces-
sarily linear. In this numerical example, changing less than
200 elements, the computational efforts of refactorization are
almost the same, about 15%, and even changing 500 or more
elements, the computational effort does not increase much.
In fact, in the worst case, changing all DOFs, it degrades to
tull refactorization.

Example 2. A two-tower building, as shown in Figure 1(b), is
calculated. The number of DOFs or equations is 442,331; the
number of nonzero entries in stiffness matrix is 27,160,169 and
that in factor is 152,414,429.

Like Example 1, this structure is changed by a certain
number (from 1 to 1000) of well-connected elements. The
results are shown in Table 2. For each case about 100 samples
are selected randomly.

The results demonstrate again that the proposed algo-
rithm is efficient and factorization time decreases. Further-
more, in each case of these two examples, maximum (affected
DOFs, MFLOP, and computing time) is usually less than
twice the average, which indicates that the algorithm is
robust.

Summarizing the results of numerical tests yields qualita-
tively the relationship between computational effort ratio and
ratio of changed DOFs in Figure 2. It shows clearly that the
algorithm proposed in this paper is efficient most of the time.

6. Conclusions

In this paper, a partial refactorization algorithm based on
row-sparse solution and fill-in’s reducing is proposed for
nonlinear finite element analysis, especially material non-
linear problems and optimization problems. Instead of full
refactorization in traditional nonlinear analysis, the proposed

1.2

1 T

=
g
= 0.8 A
&
[
€ 0.6 -
)
=
E 0.4
: |
O 024
0 T T T T T T T T T |
0 01 02 03 04 05 06 07 08 09 1
Ratio of changed DOFs
—— Recalculation
------ Proposed algorithm

FIGURE 2: Schematic diagram of computational effort.

procedure finds the changed factor of the tangent matrix with
much lower cost.

It is concluded that this algorithm can significantly
improve the efliciency compared with full refactorization.
There are several advantages as follows.

(a) The algorithm does not affect the precision of final
results, since it involves no approximation, just skip-
ping repetitive computation.

(b) A large number of elements or DOFs can be changed.

(c) The amplitude of change is not limited to being small,
as usually being required by approximate approaches.

(d) Only one additional array CHANGE is required to
perform the computation.

Mathematical Problems in Engineering

(e) The implementation is simple, if one understands
row-sparse solution procedure.

We expect the proposed algorithm could be integrated
in nonlinear analysis, especially Newton-Raphson method.
It can significantly reduce the refactorization time and make
Newton-Raphson method more efficient. In other words, it
opens a new possibility for faster nonlinear analysis. The
proposed algorithm can also be applied to many engineering
problems, in which a series of linear systems of equations
with step-by-step local change has to be solved, including
structural optimization, progressive collapse analysis, and
analysis of seepage.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (no. 10972005) and National Basic Research
Program of China (2010CB731503). The authors thank Mr. XL
Wang from YJK Building Software Co. who provided the data
of examples.

References

[1] P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin,
Germany, 2008.

[2] J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics
for Finite Element Analysis, Cambridge University Press, Cam-
bridge, UK, 1997.

[3] L. Lam and D. G. Fredlund, “Saturated-unsaturated transient
finite element seepage model for geotechnical engineering,” in
Finite Elements in Water Resources, pp. 113-122, Springer, Berlin,
Germany, 1984.

[4] H. Zhou, S. Wu, and P. Chen, “Advances in direct solution
technique of finite element analysis,” Advances in Mechanics,
vol. 37, no. 2, pp. 175-188, 2007 (Chinese).

[5] E. L. Wilson, K. Bathe, and W. P. Doherty, “Direct solution of
large systems of linear equations,” Computers and Structures,
vol. 4, no. 2, pp. 363-372,1974.

[6] B.M.Irons, “A frontal solution program for finite element analy-
sis,” International Journal for Numerical Methods in Engineering,
vol. 2, pp. 5-32, 1970.

[7] P. Chen, D. Zheng, S. Sun, and M. Yuan, “High performance

sparse static solver in finite element analyses with loop-

unrolling,” Advances in Engineering Software, vol. 34, no. 4, pp.

203-215, 2003.

D. T. Nguyen, J. Qin, T. Y. Chang et al., “Efficient sparse equation

solver with unrolling strategies for computational mechanics,”

in Proceedings of the 4th International Conference on Concurrent

Enterprising (ICES ’97), pp. 676-681, San Jose, Costa Rica,

August 1997.

O. Schenk, K. Gartner, W. Fichtner, and A. Stricker, “PARDISO:

a high-performance serial and parallel sparse linear solver in

semiconductor device simulation,” Future Generation Computer

Systems, vol. 18, no. 1, pp. 69-78, 2001.

S. Balay, W. D. Gropp, L. C. McInnes, and B. E. Smith, “Efficienct

management of parallelism in object oriented numerical soft-

ware libraries,” in Modern Software Tools in Scientific Comput-

ing, pp. 163-202, Birkhauser Press, Boston, Mass, USA, 1997.

I. S. Duff and J. K. Reid, “MA47, a Fortran code for direct

solution of indefinite sparse symmetric linear systems,” Tech.

[8

=

(10]

(12]

(13]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

Rep. RAL 95-001, Rutherford Appleton Laboratory, Oxford,
UK, 1995.

I. S. Duff and J. K. Reid, “The multifrontal solution of indef-
inite sparse symmetric linear equations,” ACM Transactions
on Mathematical Software, vol. 9, no. 3, pp. 302-325, 1983.

J. W. H. Liu, “The multifrontal method for sparse matrix
solution: theory and practice,” SIAM Review, vol. 34, no. 1, pp.
82-109, 1992.

B. Hendrickson and R. Leland, “A multilevel algorithm for
partitioning graphs,” Tech. Rep. SAND93-1301, Sandia National
Laboratories, Albuquerque, NM, USA, 1993.

A. Gupta, “Fast and effective algorithms for graph partitioning
and sparse matrix ordering,” Tech. Rep. RC, 20496 (90799),
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA,
1996.

S. Wu, Algebraic multigrid analysis and its application in finite
element method [M.S. thesis], Peking University, Beijing, China,
2007, (Chinese).

J. M. Ortega, “The ijk forms of factorization methods. I. Vector
computers,” Parallel Computing, vol. 7, no. 2, pp. 135-147, 1988.
P.Chenand S. Sun, “A new high performance sparse static solver
in finite element analysis with loop-unrolling;” Acta Mechanica
Solida Sinica, vol. 18, no. 3, pp. 248-255, 2005.

G. Karypis and V. Kumar, Metis: A Software Package for Par-
titioning Unstructured Graphs, Partitioning Meshes, and Com-
puting Fill-Reducing Ordering of Sparse Matrices Version 4. 0,
University of Minnesota, Department of Computer Science,
Minneapolis, Minn, USA, 1998.

G. H. Golub and C. E. V. Loan, Matrix Computation, The Johns
Hopkins University Press, Baltimore, Md, USA, 3rd edition,
1996.

S. Pissanetzky, Sparse Matrix Technology, Academic Press,
London, UK, 1984.

D. Zheng and T. Y. P. Chang, “Parallel cholesky method on
MIMD with shared memory;,” Computers and Structures, vol. 56,
no. 1, pp. 25-38,1995.

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

