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The paper concerns cyclic scheduling problems arising in aMultimodal TransportationNetwork (MTN) in which several unimodal
networks (AGVs, hoists, lifts, etc.) interact with each other via common shared workstations as to provide a variety of demand-
responsive material handling operations. The material handling transport modes provide movement of work-pieces between
workstations along their manufacturing routes in the MTN. The goal is to provide a declarative framework enabling to state a
constraint satisfaction problem aimed at AGVs fleet match-up scheduling taking into consideration assumed itineraries of concur-
rently manufactured product types. In that context, treating the different product types as a set of cyclic multimodal processes is
the main objective to discuss the conditions sufficient for FMS rescheduling imposed by production orders changes. To conclude,
the conditions sufficient for an FMS rescheduling imposed by changes of production orders treated as cyclic multimodal processes
are stated as the paper’s main contribution.

1. Introduction

The design and operational issues arising in an Automated
Guided Vehicle (AGV) served Flexible Manufacturing Sys-
tem (FMS)when deciding on how to achieve a desired system
performance are usually hard to determine and evaluate.This
is because productivity of an AGV-served flow shop produc-
ing a set of different kinds of products, repetitively, depends
on both the job flow sequencing (aimed at maximizing
throughput or minimizing cycle time) and the material han-
dling system required to achieve a prespecified throughput,
that is, AGVs fleet sizing, assignment and scheduling [1–5].
So, assuming a deterministic systemwhere demand is known
in advance and the processing times of each job on each
machine is a known constant, in order to improve its pro-
ductivity, the AGV fleet size and the scheduling/dispatching
influence on the system throughput are usually examined
[1, 6–9].

In opposite to conventionally applied approach assuming
AGVs fleet sizing, routing, and timetabling while match-
ing up prescheduled multiproduct manufacturing flow (i.e.,
providing detailed transportation route and materials load/
unload schedule between workstations in FMS), we pro-
pose AGVs following a Multimodal Transportation Network
(MTN) concept. MTN can be seen as composition of several
unimodal networks (AGVs, hoists, lifts, etc.) interacting with
each other via common shared workstations as to provide a
variety of demand-responsive material handling operations.
Thematerial handling transportmodes providemovement of
work-pieces betweenworkstations along theirmanufacturing
routes in the MTN. The MTN encompasses a well-known
multimodal approach to freight transportation supply chains
and passenger transportation systems. So, similarly to such
systems having ability to use the appropriate mode of trans-
port formovement of goods andpeople, the assumedmaterial
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handling transport modes provide movement of work-pieces
between workstations along their manufacturing routes in
the MTN. In that context, assuming that the modes can be
treated as cyclic local transportation processes, and material
(e.g., work-pieces/tools) flows supported by them can be
treated as multimodal processes, the problems considered
can be seen either as aimed at designing of a multimodal
network infrastructure guaranteeing assumed materials flow
or focused onwork-pieces routing ensuring lag-free worksta-
tions service.

The problems arising concerning material transportation
routing and scheduling belong to NP-hard ones [2]. Since the
steady state of production flows has a cyclic character, hence
servicing them AGV-served transportation processes (usu-
ally executed along loop-like routes) encompasses also cyclic
behavior. That means that the periodicity of FMS [10]
depends on both the periodicity of production flow cyclic
schedule and following this schedule the AGVs periodicity.
Of course, the Multimodal Transportation Network (MTN)
throughput is maximized by the minimization of its cycle
time.

It seems to be obvious that not all the behaviors (including
cyclic ones) are reachable under constraints imposed by
the system’s structure. The similar observation concerns the
system’s behavior that can be achieved in systems possessing
specific structural constraints. Since system constraints deter-
mine its behavior, both the system structure and the desired
cyclic schedule have to be considered simultaneously. So, the
problem solution requires that the system structure must
be determined for the purpose of processes scheduling, yet
scheduling must be done to devise the system configuration.
In that context, our contribution provides a discussion
of some solvability issues concerning cyclic processes dis-
patching problems, especially the conditions guaranteeing
solvability of the cyclic processes scheduling as well as direct
and/or indirect transitions between assumed cyclic steady
states.Their examinationmay replace exhaustive searches for
solution satisfying required system capabilities.

Many models and methods have been considered to date
[11]. Among them, the mathematical programming approach
[1, 12], max-plus algebra [13], constraint logic programming
[14–16] evolutionary algorithms, Petri nets [17, 18], and
heuristic frameworks [19] belong to themore frequently used.
Most of these are oriented at finding a minimal cycle or
maximal throughputwhile assuming deadlock-free processes
flow. Note that processes’ operations are blocking if theymust
stay on a resource (e.g., the station, the machine) after
finishing when the next resource is occupied by a job from
another process. During this stay the resource is blocked for
other processes. The approaches trying to estimate the cycle
time from cyclic processes structure and the synchroniza-
tion mechanism employed (i.e., mutual exclusion instances)
while taking into account deadlock phenomena are quite
unique.

In our approach a declarative framework aimed at refine-
ment and prototyping of the cyclic steady states for concur-
rently executed cyclic processes modelling material handling
systems is employed. These systems are of the type of AGVs
fleets in the flexible manufacturing systems (FMS) and are

frequently encountered in industry. The following questions
are the main focus of the research. Can the assumed material
handling system, for example, AGVs, meet load/unload
deadlines imposed by flow of scheduled work-pieces process-
ing? Does there exist sufficient AGVS enabling to schedule
the AGVs fleet as to ensure lag-free service of scheduled work
pieces processing? So, the main question is Can the assumed
AGVs fleet assignment reach its goal subject to constraints
assumed on concurrent multiproduct manufacturing at
hand?

Moreover the declarative framework enables to state a
problem of multimodal processes rescheduling which boils
down to searching for transient periods allowing the mutual
reachability of MTN cyclic behaviors. In the case of MTNs,
distinguishing many different cyclic steady states (cyclic
behaviors), the following questions play a pivotal role. Does
there exist the smooth (direct) transition between two
assumed cyclic behaviors? What conditions guarantee the
reachability of a given cyclic behavior from any other ones?
Is it possible to come back to a given cyclic behavior from
any disturbance-born one, for instance, caused by operation
time delays, damage of devices, route modifications, and so
forth?

In other words, the paper’s objective concerns the MTN
infrastructure assessment from the perspective of possible
FMS oriented requirements imposed by AGVs fleet assign-
ment, sizing, and scheduling (problems of cyclic processes
scheduling and rescheduling). Due to the complexity implied
in answering the above questions, the combined problem
remains unsolved for all practical purposes. This is especially
problematic as many manufacturing companies would stand
to reap considerable rewards through better fleet assign-
ment and scheduling. The presented approach addresses this
through solving the combined rather than the separate prob-
lems individually.

The rest of the paper is organized as follows. Section 2
introduces the Automated Guided Vehicles System (AGVS)
modelled in terms of concurrently flowing cyclic processes
(SCCPs) and a cyclic steady state space concept. Section 3
regarding multimodal processes rescheduling provides a
problem statement concerning AGVs fleet match-up sched-
uling with an assumed multiproduct manufacturing flow
schedule. Sufficient conditions allowing one to search for
states with mutual allocation as well as illustrative example
of implementing them algorithm usage are discussed. The
related work and concluding remarks are presented in Sec-
tions 4 and 5, respectively.

2. Multimodal Network Modeling

Considered case of multimodal processes rescheduling prob-
lem is presented on the example of Automated Guided Vehi-
cle Systems (AGVS) modeled by Systems of Concurrently
Flowing Cyclic Processes (SCCPs). To solve this kind of prob-
lems a nonempty state space, that is, containing nonempty
set of possible cyclic behaviors, is required. For that reason
the conditions guaranteeing cyclic behavior are presented,
primarily. They are specified in terms of a declarative model
formalism distinguishing the structure and behavior as the
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main components of an SCCP. Relationship linking the
structure and reachable behaviors is the main subject of this
section.

2.1. Model of AGVS. Automated Guided Vehicle Systems are
used for material handling within a Flexible Manufacturing
System (FMS) and provide asynchronous movement pallets
of products through a network of guide paths between the
workstations by the AGVs. Each workstation is connected to
the guide path network by a pick-up/delivery station where
pallets are transferred from/to the AGVs.

In AGVS literature, most are related to AGVS design
issues, which include determination of the number of vehicles
required, flow path design, and route planning as well as
vehicle dispatching and traffic management. Recently, an
integrated problem of dispatching and conflict free routing
of AGVs, that is, integrating the simultaneous assignment,
scheduling, and conflict free routing of the vehicles, is receiv-
ing increasing attention. The above mentioned problems, in
the general case, belong to the class of NP-hard problems.
Since most processes observed in steady state manufacturing
are periodic, cyclic schedules and following them, cyclic
schedulingmethods can be considered. Since cyclic schedules
encompass repetitive character of manufacturing processes,
the cyclic processes modeling approach seems to be a reason-
able perspective [13–15].

To present some of the design and operational issues that
arise in repetitive manufacturing systems served by AGVs in
network of loops layout with unidirectional material flow, a
case example of a simple FMS is shown in Figure 1. The con-
current multiproduct flows are depicted by bold green, blue,
and orange color lines, while the transportation loop-like
networks are distinguished by double solid line. Both kinds
of material (jobs) and transportation (AGVs) flows shown in
Figure 1 can be modeled in terms of Systems of Concurrently
Flowing Cyclic Processes [14, 15] as shown in Figure 2. In
turn, the SCCP framework provides a formal model enabling
to state and resolve problems of AGV fleet size minimization
as well as steady state cycle timeminimization.The cycle time
minimization is required to obtain maximum throughput
rate.

Eight local cyclic processes are considered, namely, 𝑃
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Apart from local processes, we consider threemultimodal
processes (i.e., processes executed along the routes consisting
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- Production routes,
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multimodal process mPi (orange process)

Figure 1: Example of an AGVS.
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Let us assume also that the considered SCCPs follow the
constraints stated below [15]:
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3)
𝜎123

𝜎12 (mP1
2, mP2

2, mP3
2, mP4

2) 𝜎113 (mP1
1, mP2

1, mP3
1, mP4

1) 𝜎124 (mP1
2, mP2

2, mP3
2, mP4

2)

𝜎13 (mP1
1, mP2

1, mP3
1, mP4

1) 𝜎114 𝜎125 (mP3
3, mP4

3, mP1
3, mP2

3)

𝜎14
(mP4

3, mP4
2, mP1

3, mP1
2

mP2
3, mP2

2, mP1
3, mP1

2)
𝜎115 (mP3

3, mP4
3, mP1

3, mP2
3) 𝜎126

𝜎15
(mP3

1, mP4
2, mP4

1, mP1
2

mP1
1, mP2

2, mP2
1, mP3

2)
𝜎116 𝜎127 (mP1

3, mP2
3, mP3

3, mP4
3)

𝜎16 (mP1
1, mP2

1, mP3
1, mP4

1) 𝜎117 (mP1
1, mP2

1, mP3
1, mP4

1) 𝜎128
(mP4

3, mP4
2, mP1

3, mP1
2

mP2
3, mP2

2, mP1
3, mP1

2)

𝜎17
(mP3

2, mP4
3, mP4

2, mP1
3

mP1
2, mP2

3, mP2
2, mP3

3)
𝜎118

(mP3
3, mP4

3, mP1
3, mP2

3) 𝜎129 (mP3
2, mP4

2, mP1
2, mP2

2)

𝜎18
(mP3

3, mP3
1, mP4

3, mP4
1

mP1
3, mP1

1, mP2
3, mP2

1)
𝜎119 𝜎130

𝜎19
(mP3

3, mP4
3, mP1

3, mP2
3) 𝜎120 (mP1

2, mP2
2, mP3

2, mP4
2) 𝜎131

𝜎110 (mP3
2, mP4

2, mP1
2, mP2

2) 𝜎121 (mP3
1, mP4

1, mP1
1, mP2

1) 𝜎132

𝜎111 (mP3
1, mP4

1, mP1
1, mP2

1) 𝜎122 (mP3
1, mP4

1, mP1
1, mP2

1) 𝜎133

Dispatching rules Θ1

4 3 2 1

- ith resource with dispatching rules 𝜎01, 𝜎
1
1

Ri

(𝜎0i , 𝜎
1
i )

Ri - ith resource representing transportation sector

Pi - ith local process

- Multimodal processes streams

R6

R1

R12

R10

R11

R9

R7

R8

R4

R5
R2

mP1
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R16
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P5
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R30 R32

P6
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P7

R33
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(𝜎01, 𝜎
1
1)

(𝜎02, 𝜎
1
2)

(𝜎03, 𝜎
1
3)

(𝜎06, 𝜎
1
6)

(𝜎09, 𝜎
1
9) (𝜎012, 𝜎

1
12)

(𝜎011, 𝜎
1
11)(𝜎08, 𝜎

1
8)(𝜎05, 𝜎

1
5)

(𝜎04, 𝜎
1
4) (𝜎07, 𝜎

1
7)

(𝜎010, 𝜎
1
10)

- Multimodal processes mPi

∅

∅

∅∅

∅

∅

∅

∅

∅

Figure 2: Example of FMS-SCCP model of an AGVS.

(i) a new subsequent operation of the local process may
start on a required resource only if the current oper-
ation has been completed and the resource has been
released;

(ii) each new consecutive operation in the multimodal
process may start its execution on an assigned re-
source only if the current operation has been com-
pleted and the resource has been released and an
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appropriate local process begins its consecutive oper-
ation on this resource;

(iii) local/multimodal processes share common resources
in the mutual exclusion mode, the operation of a
local/multimodal process can only be suspended if
the necessary resource is occupied, suspended pro-
cesses cannot be released, and processes are nonper-
ceptible; that is, a resource may not be taken from a
process as long as it is used by it;

(iv) the SCCP resources can be shared by local and multi-
modal processes as well as by both of them;

(v) multimodal processes encompassing production flow
conveyed by AGVs follow local transportation routes;

(vi) different multimodal processes can be executed si-
multaneously along the same local process;

(vii) local and multimodal processes execute cyclically
with periods 𝛼 and𝑚𝛼, respectively; resources occur
uniquely in each transportation route;

(viii) in a cyclic steady state, each 𝑖th stream must cover its
local route the same number of times.

A resource conflict (caused by the application of the mutual
exclusion protocol) is resolved with the aid of a priority
dispatching rule [14–16], which determines the order in
which streams access shared resources. For instance, in the
case of the resource 𝑅

5
, the priority dispatching rule 𝜎0

5
=

(𝑃
2

2
, 𝑃

3

2
, 𝑃

1

5
, 𝑃

2

5
, 𝑃

1

2
) determines the order in which streams of

local processes can access the shared resource 𝑅
5
; in the case

considered the stream 𝑃2

2
is allowed to access as first, then the

stream 𝑃3

2
as next, then streams 𝑃1

5
, 𝑃2

5
, and 𝑃1

2
, and then once

again 𝑃2

2
, and so on. The stream 𝑃

𝑘

𝑖
occurs the same number

of times (in the considered system once) in each dispatching
rule associated with the resources featuring in its route (in
the case considered each stream 𝑃

𝑘

𝑖
occurs uniquely). The

SCCP shown in Figure 2 is specified by the following set of
dispatching rules: Θ = {Θ

0
, Θ

1
}, where Θ0

= {𝜎
0

1
, . . . , 𝜎

0

33
}

is set of rules determining the orders of local processes and
Θ

1
= {𝜎

1

1
, . . . , 𝜎

1

33
} is set of rules determining the orders of

multimodal processes.
In general, the following notation is used.

(i) A sequence 𝑝𝑘
𝑖
= (𝑝

𝑘

𝑖,1
, 𝑝

𝑘

𝑖,2
, . . . , 𝑝

𝑘

𝑖,𝑗
, . . . , 𝑝

𝑘

𝑖,𝑙𝑟(𝑖)
) spec-

ifies the route of the stream of a local process 𝑃𝑘

𝑖
(the

𝑘th stream of the 𝑖th local process 𝑃
𝑖
). Its compo-

nents define the resources used in the execution of
operations, where 𝑝𝑘

𝑖,𝑗
∈ 𝑅 (the set of resources

𝑅 = {𝑅
1
, 𝑅

2
, . . . , 𝑅

𝑐
, . . . , 𝑅

𝑚
}) denotes the resources

used by the 𝑘th stream of the 𝑖th local process in
the 𝑗th operation; in the rest of the paper, the 𝑗th
operation executed on the resource 𝑝𝑘

𝑖,𝑗
in the stream

𝑃
𝑘

𝑖
will be denoted by 𝑜𝑘

𝑖,𝑗
; 𝑙𝑟(𝑖) is the length of the

cyclic process route (all streams of 𝑃
𝑖
are of the same

length). For example, the route 𝑝1
1
= (𝑅

16
, 𝑅

3
, 𝑅

13
, 𝑅

6
)

of the stream of process 𝑃
1
(Figure 2) is the sequence

𝑝
1

1
= (𝑝

1

1,1
, 𝑝

1

1,2
, 𝑝

1

1,3
, 𝑝

1

1,4
), where the first element 𝑝1

1,1

is equal to 𝑅
16
, whereas the second, 𝑝1

1,2
= 𝑅

3
, and so

on, 𝑝1
1,3
= 𝑅

13
, 𝑝1

1,4
= 𝑅

6
.

(ii) 𝑥𝑘
𝑖,𝑗
(𝑙) ∈ N is the timing of commencement of opera-

tion 𝑜𝑘
𝑖,𝑗
in the 𝑙th cycle.

(iii) 𝑡𝑘
𝑖
= (𝑡

𝑘

𝑖,1
, 𝑡

𝑘

𝑖,2
, . . . , 𝑡

𝑘

𝑖,𝑗
, . . . , 𝑡

𝑘

𝑖,𝑙𝑟(𝑖)
) specifies the operation

times of local processes, where 𝑡𝑘
𝑖,𝑗
denotes the time of

execution of operation 𝑜𝑘
𝑖,𝑗
.

(iv) 𝑚𝑝𝑘

𝑖
= (𝑚𝑝𝑟

𝑞
1

𝑖
1

(𝑎
𝑖
1

, 𝑏
𝑖
1

), 𝑚𝑝𝑟
𝑞
2

𝑖
2

(𝑎
𝑖
2

, 𝑏
𝑖
2

), . . . , 𝑚𝑝𝑟
𝑞
𝑦

𝑖
𝑦

(𝑎
𝑖
𝑦

,

𝑏
𝑖
𝑦

)) specifies the route of the stream 𝑚𝑃
𝑘

𝑖
from the

multimodal process 𝑚𝑃
𝑖
(the 𝑘th stream of the 𝑖th

multimodal process𝑚𝑃
𝑖
), where

𝑚𝑝𝑟
𝑞

𝑖
(𝑎, 𝑏)

=

{

{

{

(𝑝
𝑞

𝑖,𝑎
, 𝑝

𝑞

𝑖,𝑎+1
, . . . , 𝑝

𝑞

𝑖,𝑏
) , 𝑎 ≤ 𝑏,

(𝑝
𝑞

𝑖,𝑎
, 𝑝

𝑞

𝑖,𝑎+1
, . . . , 𝑝

𝑞

𝑖,𝑙𝑟(𝑖)
, 𝑝

𝑞

𝑖,1
, . . . , 𝑝

𝑞

𝑖,𝑏−1
, 𝑝

𝑞

𝑖,𝑏
) 𝑎 > 𝑏,

𝑎, 𝑏 ∈ {1, . . . , 𝑙𝑟 (𝑖)} ,

(4)

is the subsequence of the route 𝑝𝑞
𝑖
= (𝑝

𝑞

𝑖,1
, 𝑝

𝑞

𝑖,2
, . . . ,

𝑝
𝑞

𝑖,𝑗
, . . . , 𝑝

𝑞

𝑖,𝑙𝑟(𝑖)
) containing elements from 𝑝

𝑞

𝑖,𝑎
to 𝑝𝑞

𝑖,𝑏
.

In other words, the transportation route 𝑚𝑝
𝑖
is a

sequence of parts of routes of local processes. For
instance, the route followed by process 𝑚𝑃

1
(see

Figure 2) is as follows: 𝑚𝑝𝑘
1

= ((𝑅
3
, 𝑅

13
, 𝑅

6
),

(𝑅
17
, 𝑅

5
), (𝑅

21
, 𝑅

8
), (𝑅

22
, 𝑅

11
)), where 𝑚𝑝𝑟1

1
(2, 4) =

(𝑅
3
, 𝑅

13
, 𝑅

6
); 𝑚𝑝𝑟1

2
(7, 8) = (𝑅

17
, 𝑅

5
); 𝑚𝑝𝑟3

2
(1, 2) =

(𝑅
21
, 𝑅

8
),𝑚𝑝𝑟2

4
(5, 6) = (𝑅

22
, 𝑅

11
).

(v) 𝑚𝑥𝑘
𝑖,𝑗
(𝑙) ∈ N is the timing of commencement of oper-

ation𝑚𝑜𝑘
𝑖,𝑗
in the 𝑙th cycle.

(vi) 𝑚𝑡𝑘
𝑖
= (𝑚𝑡

𝑘

𝑖,1
, 𝑚𝑡

𝑘

𝑖,2
, . . . , 𝑚𝑡

𝑘

𝑖,𝑗
, . . . , 𝑚𝑡

𝑘

𝑖,𝑙𝑚(𝑖)
) specifies

the operation times of multimodal processes, where
𝑚𝑡

𝑘

𝑖,𝑗
denotes the time of execution of operation𝑚𝑜𝑘

𝑖,𝑗

and 𝑙𝑚(𝑖) is the length of the cyclic process route𝑚𝑝𝑘
𝑖
.

(vii) Θ = {Θ
0
, Θ

1
} is the set of priority dispatching rules,

Θ
𝑖
= {𝜎

𝑖

1
, 𝜎

𝑖

2
, . . . , 𝜎

𝑖

𝑐
, . . . , 𝜎

𝑖

𝑚
} is the set of priority dis-

patching rules for local (𝑖 = 0)/multimodal (𝑖 = 1)
processes where 𝜎𝑖

𝑐
= (𝑠

𝑖

𝑐,1
, . . . , 𝑠

𝑖

𝑐,𝑑
, . . . , 𝑠

𝑖

𝑐,𝑙𝑝(𝑐)
) are

sequence components which determine the order in
which the processes can be executed on the resource
𝑅
𝑐
, 𝑠0

𝑐,𝑑
∈ 𝐻 (where 𝐻 is the set of local streams,

e.g., in the case presented in Figure 2, 𝐻 = {𝑃
1

1
, 𝑃

1

2
,

𝑃
2

2
, 𝑃

3

2
, 𝑃

1

3
, 𝑃

1

4
, 𝑃

2

4
, 𝑃

1

5
, 𝑃

2

5
, 𝑃

1

6
, 𝑃

2

6
, 𝑃

1

7
}), and 𝑠1

𝑐,𝑑
∈ 𝑚𝐻

(where 𝑚𝐻 is the set of multimodal streams, e.g., in
case from Figure 2, 𝑚𝐻 = {𝑚𝑃

𝑘

1
, 𝑚𝑃

𝑘

2
, 𝑚𝑃

𝑘

3
| 𝑘 =

1 ⋅ ⋅ ⋅ 4}).

Using the above notation, a SCCP can be defined as a tuple:

SC = ((𝑅, SL) , SM) , (5)
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where one has the following: 𝑅 = {𝑅
1
, 𝑅

2
, . . . , 𝑅

𝑐
, . . . , 𝑅

𝑚
}—

the set of resources, 𝑚—the number of resources,
SL = (𝑈, 𝑇,Θ

0
)—the structure of local processes, that is,

𝑈 = {𝑝
1

1
, . . . , 𝑝

𝑙𝑠(1)

1
, . . . , 𝑝

1

𝑛
, . . . , 𝑝

𝑙𝑠(𝑛)

𝑛
}—the set of routes of

local process, 𝑙𝑠(𝑖)—the number of streams belonging
to the process 𝑃

𝑖
, 𝑛—the number of local processes,

𝑇 = {𝑡
1

1
, . . . , 𝑡

𝑙𝑠(1)

1
, . . . , 𝑡

1

𝑛
, . . . , 𝑡

𝑙𝑠(𝑛)

𝑛
}—the set of sequences of

operation times in local processes, Θ0
= {𝜎

0

1
, 𝜎

0

2
, . . . , 𝜎

0

𝑐
,

. . . , 𝜎
0

𝑚
}—the set of priority dispatching rules for local

processes, SM = (𝑀,𝑚𝑇,Θ
1
)—the structure of multimodal

processes, that is, 𝑀 = {𝑚𝑝
1

1
, . . . , 𝑚𝑝

𝑙𝑠𝑚(1)

1
, . . . , 𝑚𝑝

1

𝑤
, . . . ,

𝑚𝑝
𝑙𝑠𝑚(𝑛)

𝑤
}—the set of routes of a multimodal process,

𝑙𝑠𝑚(𝑖)—the number of streams belonging to the
process 𝑚𝑃

𝑖
𝑤—the number of multimodal processes,

𝑚𝑇 = {𝑚𝑡
1

1
, . . . , 𝑚𝑡

𝑙𝑠𝑚(1)

𝑤
, . . . , 𝑚𝑡

1

𝑛
, . . . , 𝑚𝑡

𝑙𝑠𝑚(𝑛)

𝑤
}—the set of

sequences of operation times in multimodal processes, and
Θ

1
= {𝜎

1

1
, 𝜎

1

2
, . . . , 𝜎

1

𝑐
, . . . , 𝜎

1

𝑚
}—the set of priority dispatching

rules for multimodal processes.
The SCCP model (5) can be seen as a multilevel model,

cf. Figure 3, that is, a model composed of an “𝑅 level”
(resources), an “SL level” (local cyclic processes), and an “SM1

level” (multimodal cyclic processes), as well as an “SM𝑞 level”
(the 𝑞th metamultimodal process). The SL level is defined
by the transportation routes structure following the set 𝑈 of
local processes and the set of parameters Θ determining the
required system behavior. In turn, the SM1 level takes into
account multimodal processes, as well as metamultimodal
processes (SM2 level) composed of multimodal processes
from the SM1 level. In other words, it is assumed that the
variables describing SM𝑞 are the same as in the case of SM,
whereas the routes of the multimodal process of the 𝑞th level
remain composed of the processes from the (𝑞 − 1)th level.
The presented model is an extended version of a simplified
model limited to 𝑅 and SL levels, which is introduced in
[15].

Therefore, in general, the SC = ((𝑅, SL), SM) model can
be seen as composed of 𝑙𝑝 levels as follows:

SC𝑙𝑝
= (((((𝑅, SL) , SM1

) , SM2
) , . . . , SM𝑞

) , . . . , SM𝑙𝑝
) .

(6)

The SC𝑙𝑝 model emphasizes structural characteristics of the
SCCP modeled. In turn, the behavioral characteristics can
be specified in terms of the admissible states reachability
concept, that is, either taking into account the state space
concept including both cyclic steady states and leading to
them transient states [16] or the cyclic steady state space only
[14, 15].

The second way, which does not take into account initial
states leading through the transient states to the cyclic steady
states, seems to be quite close to the cyclic scheduling
methods widely used in many real-life cases [9, 11].

In that context the relevant multilevel cyclic schedule𝑋𝑙𝑝

encompassing the SCCP behavior on each of its processes

level, that is, local SL and multimodal SM𝑙𝑝 processes, can be
defined as follows:
𝑋

𝑙𝑝
= (((((𝑋, 𝛼) , (𝑚

1
𝑋,𝑚

1
𝛼)) , . . . , ) , . . . , (𝑚

𝑞
𝑋,𝑚

𝑞
𝛼)) ,

. . . , (𝑚
𝑙𝑝
𝑋,𝑚

𝑙𝑝
𝛼)) ,

(7)

where one has the following: 𝑋, 𝛼/(𝑚𝑞
𝑋,𝑚

𝑞
𝛼)—sequence of

commencement of operations and periodicity of local/multi-
modal (𝑖th level) processes executions.

It should also be noted that the schedule 𝑋𝑙𝑝 can be
defined as a sequence of ordered pairs describing behaviors
of local (𝑋, 𝛼) and multimodal (𝑚𝑖

𝑋,𝑚
𝑖
𝛼) processes, where

𝑋 is a sequence of timings 𝑥𝑘
𝑖,𝑗

(for 𝑙 = 0th cycle) of com-
mencement of operations 𝑜𝑘

𝑖,𝑗
from streams𝑃𝑘

𝑖
executed along

local processes 𝑋 = (𝑥
1

1,1
, 𝑥

1

1,2
, . . . , 𝑥

𝑙𝑠(𝑛)

𝑛,𝑙𝑟(𝑛)
), and by analogy,

the sequence 𝑚𝑞
𝑋 = (𝑚

𝑞
𝑥
1

1,1
, 𝑚

𝑞
𝑥
1

1,2
, . . . , 𝑚

𝑞
𝑥
𝑙𝑠𝑚(𝑤,𝑞)

𝑤(𝑞),𝑙𝑚(𝑤,𝑞)
)

consists of the timing of commencement of multimodal
processes operations (from the 𝑞th level, where one has the
following: 𝑤(𝑞)—the number of multimodal processes at the
𝑞th level, 𝑙𝑠𝑚(𝑖, 𝑞)—the number of streams of the 𝑖th process
at the 𝑞th level, and 𝑙𝑚(𝑖, 𝑞)—the number of operation of the
𝑖th process at the 𝑞th level).

Variables 𝑥𝑘
𝑖,𝑗
/𝑚

𝑞
𝑥
𝑘

𝑖,𝑗
∈ Z describe the timing of com-

mencement of operations in the 𝑞th cycle of the SCCP cyclic
steady state behavior: 𝑥𝑘

𝑖,𝑗
(𝑙) = 𝑥

𝑘

𝑖,𝑗
+ 𝑙 ⋅ 𝛼/𝑚

𝑞
𝑥
𝑘

𝑖,𝑗
(𝑙) = 𝑚

𝑞
𝑥
𝑘

𝑖,𝑗
+

𝑙 ⋅ 𝑚
𝑞
𝛼.

Since values of 𝑥𝑘
𝑖,𝑗
/𝑚

𝑞
𝑥
𝑘

𝑖,𝑗
follow from system structure,

hence the cyclic behavior 𝑋𝑙𝑝 of SCCP is determined by its
structure SM𝑙𝑝.Moreover, themultimodal processes behavior
(𝑚𝑖
𝑋,𝑚

𝑖
𝛼) also depends on the local cyclic processes behav-

ior (𝑋, 𝛼).
In the general case, besides depending on the structural

characteristics of SCCP the values of the considered variables
𝑥
𝑘

𝑖,𝑗
/𝑚

𝑞
𝑥
𝑘

𝑖,𝑗
depend on constraints from the mutual exclusion

protocol, that is, the set of priority dispatching rules Θ,
operation times, and so forth [14, 15] as well as on the way
the local and multimodal processes interacting with each
other. For example, in case of the two levels structure model,
that is, including levels SL and SM as shown in Figure 2, the
constraints determining 𝑥𝑘

𝑖,𝑗
/𝑚𝑞

𝑥
𝑘

𝑖,𝑗
can be expressed by the

following rules [15]:
(i) for local processes: the timing of commencement of

operation 𝑜𝑘
𝑖,𝑗
beginning states for a maximum of the

completion time of operation 𝑜𝑘
𝑖,𝑗−1

preceding 𝑜𝑘
𝑖,𝑗
and

the release time (with delay Δ𝑡) of the resource 𝑝𝑘
𝑖,𝑗

awaiting for 𝑜
𝑖,𝑗
execution is as follows:

moment of operation 𝑜𝑘
𝑖,𝑗

beginning

= max {(moment of 𝑝𝑘
𝑖,𝑗

release + lag time Δ𝑡) ,

(moment of operation 𝑜𝑘
𝑖,𝑗−1

completion)}

𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑙𝑟 (𝑖) ; 𝑘 = 1, . . . , 𝑙𝑠 (𝑖) ;

(8)
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Figure 3: Multilayered model of the SCCP from Figure 2.

(ii) for multimodal processes: the timing of commence-
ment of operation𝑚𝑜𝑘

𝑖,𝑗
beginning is equal to the near-

est admissible value (determined by setX𝑘

𝑖,𝑗
of values

𝑚𝑥
𝑘

𝑖,𝑗
) being a maximum of both the completion time

of operation 𝑚𝑜𝑘
𝑖,𝑗−1

preceding 𝑚𝑜
𝑖,𝑗

and the release
time (lag time Δ𝑡𝑚) of the resource𝑚𝑝𝑘

𝑖,𝑗
awaiting for

𝑚𝑜
𝑖,𝑗
execution. Consider

moment of operation 𝑚𝑜𝑘
𝑖,𝑗

beginning

= ⌈max {(moment of 𝑚𝑝𝑘
𝑖,𝑗

release + lag time Δ𝑡𝑚) ,

moment of operation 𝑚𝑜𝑘
𝑖,𝑗−1

completion}⌉
X𝑘
𝑖,𝑗

𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑙𝑚 (𝑖) ; 𝑘 = 1, . . . , 𝑙𝑠𝑚 (𝑖) ,

(9)

where one has the following:X𝑘

𝑖,𝑗
—set of values𝑚𝑥𝑘

𝑖,𝑗

following the set of local processes 𝑋, (X𝑘

𝑖,𝑗
—the

set of moments when operation 𝑚𝑜𝑘
𝑖,𝑗
of multimodal

process may use required local process) and ⌈𝑎⌉
𝐵
—

the smallest integer greater than or equal to 𝑎 in terms
of the set 𝐵: ⌈𝑎⌉

𝐵
= min{𝑘 ∈ 𝐵 : 𝑘 ≥ 𝑎}.

In other words, the timing of commencement of opera-
tion 𝑚𝑜

𝑖,𝑗
belongs to the set X𝑘

𝑖,𝑗
and being coincident with

operation processes by relevant local transportation process
𝑃
𝑖
.
The constraints determining (due to introduced rules (8)

and (9)) the timing of commencement of operations for the
SCCP from Figure 2 are gathered in Tables 1 and 2.

2.2. Cyclic Steady State Space. According to the previous
section, a set of cyclic process achieved in the structure SC𝑙𝑝

(6) can be represented as a cyclic schedule𝑋𝑙𝑝 (7) that meets
the constraints (8) and (9). Figure 4 presents an example
of a cyclic schedule which can be achieved in the system
illustrated in Figure 1. It shows that for a set of production
plan (represented by multimodal processes 𝑚𝑃

1
, 𝑚𝑃

2
, and

𝑚𝑃
3
) it is possible to organize the work of AGVs responsible

for transportation of elements between workstations (local
processes 𝑃

1
–P

8
) in such a way that no deadlocks appear in

the system or there is no process waiting at the resources. An
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Table 1: Constraints determining the local processes behavior of the SCCP from Figure 2.

Constraints of the local processes
𝑥
1

1,1
= 𝑥

1

1,4
+ 𝑡

1

1,4
− 𝛼 𝑥

2

4,1
= max {(𝑥1

4,8
+ Δ𝑡 − 𝛼) , (𝑥

2

4,8
+ 𝑡

2

4,8
− 𝛼)} —

𝑥
1

1,2
= 𝑥

1

1,1
+ 𝑡

1

1,1
𝑥
2

4,2
= max {(𝑥1

4,1
+ Δ𝑡) , (𝑥

2

4,1
+ 𝑡

2

4,1
)} 𝑥

2

5,1
= max {(𝑥1

5,7
+ Δ𝑡 − 𝛼) , (𝑥

2

5,8
+ 𝑡

2

5,8
− 𝛼)}

𝑥
1

1,3
= 𝑥

1

1,2
+ 𝑡

1

1,2
𝑥
2

4,3
= max {(𝑥1

4,2
+ Δ𝑡) , (𝑥

2

4,2
+ 𝑡

2

4,2
)} 𝑥

2

5,2
= max {(𝑥1

5,8
+ Δ𝑡 − 𝛼) , (𝑥

2

5,1
+ 𝑡

2

5,1
)}

𝑥
1

1,4
= max {(𝑥1

2,7
+ Δ𝑡) , (𝑥

1

1,3
+ 𝑡

1

1,3
)} 𝑥

2

4,4
= max {(𝑥1

4,3
+ Δ𝑡) , (𝑥

2

4,3
+ 𝑡

2

4,3
)} 𝑥

2

5,3
= max {(𝑥1

5,1
+ Δ𝑡) , (𝑥

2

5,2
+ 𝑡

2

5,2
)}

— 𝑥
2

4,5
= max {(𝑥1

4,4
+ Δ𝑡) , (𝑥

2

4,4
+ 𝑡

2

4,4
)} 𝑥

2

5,4
= max {(𝑥1

5,2
+ Δ𝑡) , (𝑥

2

5,3
+ 𝑡

2

5,3
)}

𝑥
1

2,1
= max {(𝑥3

2,6
+ Δ𝑡 − 𝛼) , (𝑥

1

2,8
+ 𝑡

1

2,8
− 𝛼)} 𝑥

2

4,6
= max {(𝑥3

2,7
+ Δ𝑡) , (𝑥

2

4,5
+ 𝑡

2

4,5
)} 𝑥

2

5,5
= max {(𝑥1

5,3
+ Δ𝑡) , (𝑥

2

5,4
+ 𝑡

2

5,4
)}

𝑥
1

2,2
= max {(𝑥2

4,7
+ Δ𝑡 − 𝛼) , (𝑥

1

2,1
+ 𝑡

1

2,1
)} 𝑥

2

4,7
= max {(𝑥1

4,6
+ Δ𝑡) , (𝑥

2

4,6
+ 𝑡

2

4,6
)} 𝑥

2

5,6
= max {(𝑥1

5,4
+ Δ𝑡) , (𝑥

2

5,5
+ 𝑡

2

5,5
)}

𝑥
1

2,3
= max {(𝑥3

2,8
+ Δ𝑡 − 𝛼) , (𝑥

1

2,2
+ 𝑡

1

2,2
)} 𝑥

2

4,8
= max {(𝑥1

4,7
+ Δ𝑡) , (𝑥

2

4,7
+ 𝑡

2

4,7
)} 𝑥

2

5,7
= max {(𝑥1

5,5
+ Δ𝑡) , (𝑥

2

5,6
+ 𝑡

2

5,6
)}

𝑥
1

2,4
= max {(𝑥3

2,1
+ Δ𝑡) , (𝑥

1

2,3
+ 𝑡

1

2,3
)} — 𝑥

2

5,8
= max {(𝑥1

5,6
+ Δ𝑡) , (𝑥

2

5,7
+ 𝑡

2

5,7
)}

𝑥
1

2,5
= max {(𝑥3

2,2
+ Δ𝑡) , (𝑥

1

2,4
+ 𝑡

1

2,4
)} 𝑥

1

5,1
= max {(𝑥2

5,5
+ Δ𝑡 − 𝛼) , (𝑥

1

5,8
+ 𝑡

1

5,8
− 𝛼)} —

𝑥
1

2,6
= max {(𝑥3

2,3
+ Δ𝑡) , (𝑥

1

2,5
+ 𝑡

1

2,5
)} 𝑥

1

5,2
= max {(𝑥2

5,6
+ Δ𝑡 − 𝛼) , (𝑥

1

5,1
+ 𝑡

1

5,1
)} 𝑥

1

6,1
= max {(𝑥2

6,3
+ Δ𝑡 − 𝛼) , (𝑥

1

6,5
+ 𝑡

1

6,5
− 𝛼)}

𝑥
1

2,7
= max {(𝑥3

2,4
+ Δ𝑡) , (𝑥

1

2,6
+ 𝑡

1

2,6
)} 𝑥

1

5,3
= max {(𝑥3

2,5
+ Δ𝑡) , (𝑥

1

5,2
+ 𝑡

1

5,2
)} 𝑥

1

6,2
= max {(𝑥2

5,1
+ Δ𝑡) , (𝑥

1

6,1
+ 𝑡

1

6,1
)}

𝑥
1

2,8
= max {(𝑥2

5,7
+ Δ𝑡) , (𝑥

1

2,7
+ 𝑡

1

2,7
)} 𝑥

1

5,4
= max {(𝑥2

5,8
+ Δ𝑡 − 𝛼) , (𝑥

1

5,3
+ 𝑡

1

5,3
)} 𝑥

1

6,3
= max {(𝑥2

6,5
+ Δ𝑡 − 𝛼) , (𝑥

1

6,2
+ 𝑡

1

6,2
)}

— 𝑥
1

5,5
= max {(𝑥2

6,4
+ Δ𝑡) , (𝑥

1

5,4
+ 𝑡

1

5,4
)} 𝑥

1

6,4
= max {(𝑥2

4,5
+ Δ𝑡) , (𝑥

1

6,3
+ 𝑡

1

6,3
)}

𝑥
2

2,1
= max {(𝑥1

2,8
+ Δ𝑡 − 𝛼) , (𝑥

2

2,8
+ 𝑡

2

2,8
− 𝛼)} 𝑥

1

5,6
= max {(𝑥1

8,3
+ Δ𝑡) , (𝑥

1

5,5
+ 𝑡

1

5,5
)} 𝑥

1

6,5
= max {(𝑥2

6,2
+ Δ𝑡) , (𝑥

1

6,4
+ 𝑡

1

6,4
)}

𝑥
2

2,2
= max {(𝑥1

2,1
+ Δ𝑡) , (𝑥

2

2,1
+ 𝑡

2

2,1
)} 𝑥

1

5,7
= max {(𝑥1

8,2
+ Δ𝑡) , (𝑥

1

5,6
+ 𝑡

1

5,6
)} —

𝑥
2

2,3
= max {(𝑥1

2,2
+ Δ𝑡) , (𝑥

2

2,2
+ 𝑡

2

2,2
)} 𝑥

1

5,8
= max {(𝑥2

5,4
+ Δ𝑡) , (𝑥

1

5,7
+ 𝑡

1

5,7
)} 𝑥

2

6,1
= max {(𝑥2

6,3
+ Δ𝑡) , (𝑥

2

6,5
+ 𝑡

2

6,5
− 𝛼)}

𝑥
2

2,4
= max {(𝑥1

4,5
+ Δ𝑡) , (𝑥

2

2,3
+ 𝑡

2

2,3
)} — 𝑥

2

6,2
= max {(𝑥1

6,2
+ Δ𝑡) , (𝑥

2

6,1
+ 𝑡

2

6,1
)}

𝑥
2

2,5
= max {(𝑥1

2,4
+ Δ𝑡) , (𝑥

2

2,4
+ 𝑡

2

2,4
)} 𝑥

1

3,1
= 𝑥

1

3,4
+ 𝑡

1

3,4
− 𝛼 𝑥

2

6,3
= max {(𝑥1

8,4
+ Δ𝑡) , (𝑥

2

6,2
+ 𝑡

2

6,2
)}

𝑥
2

2,6
= max {(𝑥1

2,5
+ Δ𝑡) , (𝑥

2

2,5
+ 𝑡

2

2,5
)} 𝑥

1

3,2
= 𝑥

1

3,1
+ 𝑡

1

3,1
𝑥
2

6,4
= max {(𝑥1

6,4
+ Δ𝑡) , (𝑥

2

6,3
+ 𝑡

2

6,3
)}

𝑥
2

2,7
= max {(𝑥1

2,1
+ Δ𝑡) , (𝑥

2

2,6
+ 𝑡

2

2,6
)} 𝑥

1

3,3
= max {(𝑥2

2,7
+ Δ𝑡) , (𝑥

1

3,2
+ 𝑡

1

3,2
)} 𝑥

2

6,5
= max {(𝑥1

7,3
+ Δ𝑡) , (𝑥

2

6,4
+ 𝑡

2

6,4
)}

𝑥
2

2,8
= max {(𝑥1

1,1
+ Δ𝑡 − 𝛼) , (𝑥

2

2,7
+ 𝑡

2

2,7
)} 𝑥

1

3,4
= 𝑥

1

3,3
+ 𝑡

1

3,3
—

— — 𝑥
1

7,1
= 𝑥

1

7,4
+ 𝑡

1

7,4
− 𝛼

𝑥
3

2,1
= max {(𝑥2

2,8
+ Δ𝑡 − 𝛼) , (𝑥

3

2,8
+ 𝑡

3

2,8
− 𝛼)} 𝑥

1

4,1
= max {(𝑥1

7,4
+ Δ𝑡 − 𝛼) , (𝑥

1

4,8
+ 𝑡

1

4,8
− 𝛼)} 𝑥

1

7,2
= max {(𝑥1

6,5
+ Δ𝑡) , (𝑥

1

7,1
+ 𝑡

1

7,1
)}

𝑥
3

2,2
= max {(𝑥2

2,1
+ Δ𝑡) , (𝑥

3

2,1
+ 𝑡

3

2,1
)} 𝑥

1

4,2
= max {(𝑥2

6,1
+ Δ𝑡) , (𝑥

1

4,1
+ 𝑡

1

4,1
)} 𝑥

1

7,3
= max {(𝑥2

4,4
+ Δ𝑡) , (𝑥

1

7,2
+ 𝑡

1

7,2
)}

𝑥
3

2,3
= max {(𝑥2

2,2
+ Δ𝑡) , (𝑥

3

2,2
+ 𝑡

3

2,2
)} 𝑥

1

4,3
= max {(𝑥2

4,6
+ Δ𝑡 − 𝛼) , (𝑥

1

4,2
+ 𝑡

1

4,2
)} 𝑥

1

7,4
= max {(𝑥2

4,3
+ Δ𝑡) , (𝑥

1

7,3
+ 𝑡

1

7,3
)}

𝑥
3

2,4
= max {(𝑥2

2,3
+ Δ𝑡) , (𝑥

3

2,3
+ 𝑡

3

2,3
)} 𝑥

1

4,4
= max {(𝑥1

2,3
+ Δ𝑡) , (𝑥

1

4,3
+ 𝑡

1

4,3
)} —

𝑥
3

2,5
= max {(𝑥2

2,4
+ Δ𝑡) , (𝑥

3

2,4
+ 𝑡

3

2,4
)} 𝑥

1

4,5
= max {(𝑥2

4,8
+ Δ𝑡 − 𝛼) , (𝑥

1

4,4
+ 𝑡

1

4,4
)} 𝑥

1

8,1
= max {(𝑥2

5,3
+ Δ𝑡) , (𝑥

1

8,4
+ 𝑡

1

8,4
− 𝛼)}

𝑥
3

2,6
= max {(𝑥2

2,5
+ Δ𝑡) , (𝑥

3

2,5
+ 𝑡

3

2,5
)} 𝑥

1

4,6
= max {(𝑥2

4,1
+ Δ𝑡) , (𝑥

1

4,5
+ 𝑡

1

4,5
)} 𝑥

1

8,2
= max {(𝑥2

5,2
+ Δ𝑡) , (𝑥

1

8,1
+ 𝑡

1

8,1
)}

𝑥
3

2,7
= max {(𝑥2

2,6
+ Δ𝑡) , (𝑥

3

2,6
+ 𝑡

3

2,6
)} 𝑥

1

4,7
= max {(𝑥2

4,2
+ Δ𝑡) , (𝑥

1

4,6
+ 𝑡

1

4,6
)} 𝑥

1

8,3
= max {(𝑥1

6,3
+ Δ𝑡) , (𝑥

1

8,2
+ 𝑡

1

8,2
)}

𝑥
3

2,8
= max {(𝑥2

2,7
+ Δ𝑡) , (𝑥

3
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3
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4,8
= max {(𝑥1

7,1
+ Δ𝑡 − 𝛼) , (𝑥
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4,7
)} 𝑥

1

8,4
= 𝑥

1

8,3
+ 𝑡

1

8,3

assumption was made that the transportation of work-pieces
(streams of multimodal processes) takes one unit of time
and their loading to/unloading from AGVs (local processes)
takes place in the first and the last unit of each operation (see
Figure 4).

Thework [20] shows that schedules of this kind (ensuring
such an organization of AGVs that guarantees the accom-
plishment of the set of production routes without any stop-
pages) can be obtained by means of solving the following
constraint satisfaction problem (10):

CS
𝑋𝑇
= (({𝑋

𝑙𝑝
, 𝑇

𝑙𝑝
} , {𝐷

𝑋
, 𝐷

𝑇
}) , {𝐶

𝐿
, 𝐶

𝑀
}) , (10)

where one has the following: 𝑋𝑙𝑝, 𝑇𝑙𝑝—decision variables,
𝑋

𝑙𝑝—cyclic schedule (7), 𝑇𝑙𝑝—sequence of operation times
𝑇
𝑙𝑝
= (((𝑇,𝑚𝑇

1
), . . . , 𝑚𝑇

𝑞
), . . . , 𝑚𝑇

𝑙𝑝
), 𝐷

𝑋
, 𝐷

𝑇
, 𝐷

𝛼
= N—

domains determining admissible value of decision variables

𝐷
𝑋
: 𝑚

𝑞
𝑥
𝑘

𝑖,𝑗
, 𝑥𝑘

𝑖,𝑗
∈ Z, 𝑚𝑞

𝛼, 𝛼 ∈ N; 𝐷
𝑇
: 𝑚

𝑞
𝑡
𝑘

𝑖,𝑗
, 𝑡𝑘

𝑖,𝑗
∈ N,

{𝐶
𝐿
, 𝐶

𝑀
}—the set of constraints𝐶

𝐿
and𝐶

𝑀
describing SCCP

behavior, 𝐶
𝐿
—constraints determining cyclic steady state

of local processes, that is, their cyclic schedule, and 𝐶
𝑀
—

constraints determining multimodal processes behavior.
The sequence of operations times 𝑇𝑙𝑝 and the sequence of

their beginningmoments𝑋𝑙𝑝 both of them follow constraints
𝐶

𝐿
,𝐶

𝑀
which are the sufficient conditions for the SCCPcyclic

steady state behavior, that is, the state following the problem
(10) solution. In case of two level systems, that is, SL and
SM (see Figure 3), the constraints 𝐶

𝐿
, 𝐶

𝑀
can be specified in

terms of constraints (8) and their extension (9) [15].
Presenting cyclic processes as𝑋𝑙𝑝 schedules is commonly

used both in SCCP [11, 12, 14, 15] and in various problems
of cyclic scheduling. Instead of cyclic schedules, the so-called
behavior digraphs [16], that create the state spaceP, can also
be applied.
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Figure 4: AGVs fleet cyclic schedule matching the multiproduct manufacturing.
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The digraph 𝐺
𝑊

(denoted by 𝑊 index, in case of cyclic
processes representation) is a digraph whose vertexes repre-
sent the admissible states 𝑆𝑟 of the system and arcs represent
transitions between the states (while depicting a given tran-
sition function 𝛿 [16]).

In the considered case, the state of SCCP describes the
present (valid in a given 𝑡 period) allocation on the resources
of local (AGVs) and multimodal (technological routes) pro-
cesses and describes the current access rights to the resources
(determined by dispatching priority rules Θ). Formally, in
the state definition, three elements are distinguished that
characterize processes at the particular behavior levels (see
Figure 3).

In this approach, the state of SCCP takes the following
form:

𝑆
𝑟
= ((((𝑆𝑙

𝑟
, 𝑚

1
𝑆
𝑟

) , . . . , 𝑚
𝑙
𝑆
𝑟

) , . . .) , 𝑚
𝑙𝑝
𝑆
𝑟

) , (11)

where one has the following: (i) 𝑙𝑝—the number of levels of
structure SC𝑙𝑝 (6) and (ii) 𝑆𝑙𝑟—the 𝑟th state of local processes
executed on the SL level (5) as follows:

𝑆𝑙
𝑟
= (𝐴

𝑟
, 𝑍

𝑟
, 𝑄

𝑟
) , (12)

where one has the following: 𝐴𝑟
= (𝑎

1

𝑟
, 𝑎

2

𝑟
, . . . , 𝑎

𝑐

𝑟
, . . . ,

𝑎
𝑚

𝑟
)—allocation of processes in the 𝑟th state, 𝑎

𝑐

𝑟
∈ 𝑃 ∪ {Δ},

𝑎
𝑐

𝑟
= 𝑃

𝑘

𝑖
—the 𝑐th resource 𝑅

𝑐
is occupied by the local stream

𝑃
𝑘

𝑖
, and 𝑎

𝑐

𝑟
= Δ—the 𝑐th resource 𝑅

𝑐
is unoccupied.

𝑍
𝑟
= (𝑧

1

𝑟
, 𝑧

2

𝑟
, . . . , 𝑧

𝑐

𝑟
, . . . 𝑧

𝑚

𝑟
) is the sequence of sema-

phores corresponding to the 𝑟th state and 𝑧
𝑐

𝑟
∈ 𝑃 is name of

the stream (specified in the 𝑐th dispatching rule 𝜎
𝑐
, allocated

to the 𝑐th resource) which was allowed to occupy the 𝑐th
resource; for example, 𝑧

𝑐

𝑟
= 𝑃

𝑘

𝑖
means that stream 𝑃

𝑘

𝑖
is

currently allowed to occupy the 𝑐th resource.
𝑄

𝑟
= (𝑞

1

𝑟
, 𝑞

2

𝑟
, . . . , 𝑞

𝑐

𝑟
, . . . , 𝑞

𝑚

𝑟
) is the sequence of sem-

aphore indices, corresponding to the 𝑟th state and 𝑞
𝑐

𝑟

determines the position of the semaphore 𝑧
𝑐

𝑟 in the priority
dispatching rule𝜎

𝑐
, 𝑧

𝑐

𝑟
= 𝑠

𝑐,(𝑞
𝑐

𝑟
)
, 𝑞

𝑐

𝑟
∈ N. For instance, 𝑞

2

𝑟
= 2

and 𝑧
2

𝑟
= 𝑃

2

1
correspond to the semaphore 𝑧

2

𝑟
= 𝑃

2

1
taking

the 2nd position in the priority dispatching rule 𝜎
2
.

(iii) 𝑚𝑙
𝑆
𝑟

is the 𝑟th state of multimodal processes executed
on the SM𝑙 level (6) as follows,

𝑚
𝑙
𝑆
𝑟
= (𝑚

𝑙
𝐴

𝑟

, 𝑚
𝑙
𝑍

𝑟

, 𝑚
𝑙
𝑄

𝑟

) , (13)

where one has the following: 𝑚𝑙
𝐴

𝑟

= (𝑚
𝑙
𝐴

𝑟,1

1
, . . . ,

𝑚
𝑙
𝐴

𝑟,ℎ

𝑖
, . . . , 𝑚

𝑙
𝐴

𝑟,𝑙𝑠𝑚(𝑙𝑤(𝑙),𝑙)

𝑙𝑤(𝑙)
)—allocation of the process

streams𝑚𝑙
𝑃
ℎ

𝑖
; that is,

𝑚
𝑙
𝐴

𝑟,ℎ

𝑖
= (𝑚

𝑙
𝑎
𝑟,ℎ

𝑖,1
, 𝑚

𝑙
𝑎
𝑟,ℎ

𝑖,2
, . . . , 𝑚

𝑙
𝑎
𝑟,ℎ

𝑖,𝑐
, . . . , 𝑚

𝑙
𝑎
𝑟,ℎ

𝑖,𝑚
) , (14)

where one has the following: 𝑚𝑙
𝑃
ℎ

𝑖
—the ℎth stream

of the 𝑖th multimodal process from 𝑙-level of SC𝑙𝑝 (6),
𝑚—the number of resources 𝑅, 𝑚𝑙

𝑎
𝑟,ℎ

𝑖,𝑐
∈ {𝑚

𝑙
𝑃
ℎ

𝑖
, Δ},

𝑚
𝑙
𝑎
𝑟,ℎ

𝑖,𝑐
= 𝑚

𝑙
𝑃
ℎ

𝑖
means that the 𝑐th resource 𝑅

𝑐
is

occupied by the ℎth stream of multimodal process
𝑚

𝑙
𝑃
𝑖
, and 𝑚𝑙

𝑎
𝑟,ℎ

𝑖,𝑐
= Δ—the 𝑐th resource 𝑅

𝑐
which

is released by the ℎth stream of multimodal process
𝑚

𝑙
𝑃
𝑖
.

𝑚
𝑙
𝑍

𝑟

=(𝑚
𝑙
𝑧
1

𝑟

, . . . , 𝑚
𝑙
𝑧
𝑐

𝑟

, . . . , 𝑚
𝑙
𝑧
𝑚

𝑟

) and𝑚𝑙
𝑄

𝑟

= (𝑚
𝑙
𝑞
1

𝑟

,

. . . , 𝑚
𝑙
𝑞
𝑘

𝑟
, . . . , 𝑚

𝑙
𝑞
𝑚

𝑟

) are the sequences of semaphores and
indices defined similarly as 𝑍𝑟 and 𝑄𝑟.

In the context of the introduced notions (allocation,
semaphore, indexes) the 𝑋𝑙𝑝 schedule presented in Figure 4
illustrates only the allocation of processes in time. The
particular allocations are denoted by a frame and symbol
“ ⃝” of the state 𝑆𝑟 connected with the given allocation.
Therefore, the cyclic process represented by𝑋𝑙𝑝 schedule can
be described with use of 42 states (S0–S41).

The digraph 𝐺
𝑊

= (𝑉
𝑊
, 𝐸

𝑊
) corresponding to 𝑋𝑙𝑝

schedule from Figure 4 was illustrated in Figure 5. The set of
vertexes 𝑉

𝑊
= {𝑆

0
, . . . , 𝑆

41
} includes all the states that can

be achieved by the system in the course of implementing
processes according to 𝑋𝑙𝑝 schedule. The set of arcs 𝐸

𝑊
⊆

𝑉
𝑊
×𝑉

𝑊
defines the transitions between the states. Transition

of the system from the state 𝑆0 to the state 𝑆1 (denoted
by 𝑆0 → 𝑆

1, and in Figure 5 as ⃝ → ⃝) occurs
according to the transition function 𝛿, whichwas described in
[16].

According to this approach, the digraph 𝐺
𝑊
= (𝑉

𝑊
, 𝐸

𝑊
)

depicting the behavior from Figure 4 is a cycle including 42
vertexes; see Figure 5. Apart from 𝑆𝑟 states, Figure 5 illustrates
also local states 𝑆𝑙𝑟 (12) which only represent the behavior
of local processes. In the discussed case, the number of local
states is the same as the number of 𝑆𝑟 states. Generally, it does
not have to be so, as there are situations when one local state
is an element of numerous 𝑆𝑟 states [14, 15]. The local states
𝑆𝑙

𝑟 as well as the digraph related to them should be perceived
as a projection of 𝑆𝑟 states and 𝐺

𝑊
digraph onto the level of

local processes.
It should be noted that in the discussed example only

one cyclic steady state is reachable, that is, as a result of
the solution (10); that is, one schedule 𝑋𝑙𝑝 was obtained
along with one digraph 𝐺

𝑊
corresponding to it. Generally,

in the given structure SC𝑙𝑝 a lot of cyclic steady states can be
reachable (which depends on the initial phases of dispatching
rules) and therefore, we can consider the cyclic steady state
space P as a set of digraphs that can be reachable in a given
structure of 𝐺

𝑊
digraphs.

The cyclic steady state space can be illustrated as a graph
being the sum of all reachable digraphs: P = (𝑉P, 𝐸P) =

𝐺
𝑊,1

∪ 𝐺
𝑊,2

∪ ⋅ ⋅ ⋅ ∪𝐺
𝑊,𝑙𝑔

(where 𝐺
𝑊,𝑎

∪ 𝐺
𝑊,𝑏

= (𝑉
𝑎
∪

𝑉
𝑏
, 𝐸

𝑎
∪𝐸

𝑏
)) are reachable in a given structure.There are also

situations where in a given structure no cyclic steady states
are reachable; then P = (0, 0). The main reason for the lack
of cyclic behaviors is the possible deadlocks.

The form of the space of states P is strictly depen-
dent upon the form of SC𝑙𝑝 structure. In other words,
the structure determines behaviors reachable in the sys-
tem. Another example of a cyclic behavior is shown in
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)
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r
)

Figure 5: The digraph 𝐺
𝑊
following Gantt’s chart from Figure 4.

Figure 6. It is a cyclic schedule 𝑋𝑙𝑝 reachable in SC struc-
ture (Figure 2) in which the manner of implementing
production routes was changed (routes 𝑚𝑝𝑘

2
= ((𝑅

2
,

𝑅
20
, 𝑅

5
), (𝑅

24
, 𝑅

4
), (𝑅

28
, 𝑅

7
), (𝑅

25
, 𝑅

8
, 𝑅

22
, 𝑅

11
)) and 𝑚𝑝𝑘

3
=

((𝑅
1
, 𝑅

27
, 𝑅

4
), (𝑅

28
, 𝑅

7
), (𝑅

29
, 𝑅

10
)). There are still seven types

of AGVs used for transport (local processes P
1
–P

7
) with

routes remaining unchanged yet different than previously,
when they performed their operations.

This situation can be interpreted as introducing a new
production order into the system, which requires a new
method of processing elements.The presence of cyclic sched-
ule 𝑋𝑙𝑝 (providing a solution to the problem (10)) and 𝐺

𝑊

digraph (Figure 7) related to it mean that such an order can
be implemented.

The presence of two different cyclic steady states leads
to the question of their mutual reachability: Is it possible
to smoothly change the system behavior from 𝐺

𝑊,1
to 𝐺

𝑊,2

(Figure 7)? In other words, is it possible to smoothly (with no
need to stop the system) proceed from implementing the first
production order 𝐺

𝑊,1
to the other 𝐺

𝑊,2
?

3. Multimodal Processes Rescheduling

3.1. Problem Formulation. The question of the possibility
of smoothly changing the cyclic behaviors of the system is
related to the problem of mutual reachability of the two
behavior digraphs 𝐺

𝑊,1
, 𝐺

𝑊,2
. The digraphs presented so far

(Figure 7) are cycles. In general, a digraph may take the form
of the so-called vortex 𝐺

𝑆
, that is, a digraph including a

cycle representing a cyclic steady states 𝐺
𝑊

and a tree 𝐺
𝑇,𝑖

representing transient states leading to cyclic steady states.
An example of two vortexes 𝐺

𝑆,1
, 𝐺

𝑆,2
is shown in Figure 8.

Formally, the digraph of the vortex type is defined as follows:

𝐺
𝑆
= (𝑉

𝑆
, 𝐸

𝑆
) = 𝐺

𝑊
∪ (

𝑙𝑡

⋃

𝑖=1

𝐺
𝑇,𝑖
) , (15)

where⋃𝑙𝑡

𝑖=1
𝐺

𝑇,𝑖
= 𝐺

𝑇,1
∪ 𝐺

𝑇,2
∪ ⋅ ⋅ ⋅ ∪ 𝐺

𝑇,𝑙𝑡
, 𝑙𝑡 is the number of

trees 𝐺
𝑇,𝑖

leading to 𝐺
𝑊
cycle.

In this approach, the problem of mutual reachability of
the behavior digraphs of mutual space of states is defined
as follows: there is a given structure SC𝑙𝑝 and the cyclic
steady state space P = (𝑉P, 𝐸P) resulting from it, which
includes two vortexes 𝐺

𝑆,1
, 𝐺

𝑆,2
that represent two cyclic

steady processes. It is therefore necessary to find answer to
the following question: Are the digraphs 𝐺

𝑊,1
, 𝐺

𝑊,2
(being

subdigraphs of 𝐺
𝑆,1
, 𝐺

𝑆,2
) mutually reachable (Figure 8)? In

the case they are mutually reachable the next question is how
to make a transition between the digraphs?

In other words, the question of mutual reachability of
cyclic behaviors can be treated as the question of the possibil-
ity of direct or indirect transition between the digraphs 𝐺

𝑊,1
,

𝐺
𝑊,2

. An example of such transitions is shown in Figure 8. An
indirect transition should be understood as changing 𝐺

𝑊,1

into 𝐺
𝑊,2

, resulting from the transition of the state 𝑆𝑥 into
transitory path (a path of digraph 𝐺

𝑇,𝑖
) leading to 𝐺

𝑊,2
. The

direct transition means a transition from the state 𝑆𝑥 right
into the cycle 𝐺

𝑊,1
.

3.2. Searching for States with Mutual Allocation

3.2.1. Sufficient Conditions. The possibility of transitions
between cyclic steady states depends on the state 𝑆𝑥(𝑆𝑥),
which is an element of two digraphs: 𝐺

𝑆,1
and 𝐺

𝑆,2
. In other

words, it is necessary that in case of direct transition the
following transitions between states occur:

(i) for all 𝑆𝑘 ∈ 𝑉
𝑊,1

(𝑆𝑘→ ⋅ ⋅ ⋅ → 𝑆
𝑥
→ ⋅ ⋅ ⋅ → 𝑆

𝑘) for
the digraph 𝐺

𝑊,1
,

(ii) for all 𝑆𝑙 ∈ 𝑉
𝑊,2

(𝑆𝑙→ ⋅ ⋅ ⋅ → 𝑆
𝑥
→ ⋅ ⋅ ⋅ → 𝑆

𝑙) for
the digraph 𝐺

𝑊,2
.

In SCCP, transitions of this kind are not acceptable. It
results from the property saying that each state has at least
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Figure 6: AGVs fleet cyclic schedule matching the multiproduct manufacturing for system with changed multimodal routes.

one descendant [16] (a descendant is the consecutive state
after 𝑆𝑥). The presence of state 𝑆𝑥 included simultaneously
into two digraphs (𝐺

𝑊,1
, 𝐺

𝑊,2
) would require the existence of

at least two descendants of the state 𝑆𝑥.
Although there are no mutual states at the level of the

space of states P, the different projections of states upon
lower levels of behavior as well as their components (space
of allocation, semaphores, etc.) may be elements belonging
to numerous digraphs at the same time.

An example of such a situation is shown in Figure 9,
where the idea of amultilevel model of the cyclic steady states
spaceP has been applied. The figure shows the projection of

the space P upon the level of local processes behavior PSL
(the second level in Figure 9) and upon the space of allocation
A (the lowest level in Figure 9). The elements of the spaceA
are the allocations 𝐴𝑟 of the local states 𝑆𝑙𝑟 = (𝐴

𝑟
, 𝑍

𝑟
, 𝑄

𝑟
)

occurring in the space PSL = (𝑉SL, 𝐸SL) (where 𝑆𝑙
𝑟
∈ 𝑉SL),

which at the same time is the projection of the space of states
P.

It is worth mentioning that some allocations of the space
A are simultaneously mutual for several states. For example,
the allocation 𝐴2

∈ A is at the same time an element of
the state 𝑆𝑙3 = (𝐴2

, 𝑍
3
, 𝑄

3
) and the state 𝑆𝑙4 = (𝐴2

, 𝑍
4
, 𝑄

4
).

In practice, it means that in both states the local processes



Mathematical Problems in Engineering 15

Sl41

Sl30

Sl41

Sl30

Sl0

Sl1

Sl9

S0

S1
S20

S41

GW,1

𝒫

SC

S9

42 states

Sl20

𝒫0𝒫0

(a)

S41

Sl41

Sl30

S41

SSl41

Sl30

S

Sl0

Sl1

Sl9

S0

S1

S42

GW,2 S21

SC

𝒫

43 states

S9

(b)

Figure 7: The state space for structures with different multimodal processes routes.

- Admissible state
- Initial state

- Transition Se → Sf

GW,1
GW,2

GS,2

Transient period

Transient period

Sx

Sx

GT,i

Sx

Sx

GS,1

Figure 8: Illustration of the cyclic steady state space composed of
two vortexes.

(representing, e.g., means of transport such as AGVs) are
allocated on the same resources. However, since there are
various access rights (determined by𝑍3,𝑄3 and𝑍4,𝑄4) their
further implantation will be different.

The existence of states of common allocation can be used
for the transitions between various behavior digraphs. The
states 𝑆𝑙3 and 𝑆𝑙4 differ only with the sequence of semaphores
and indexes. Thus, if in the state 𝑆𝑙3 with allocation 𝐴2, the
form of 𝑍3,𝑄3changes into the form of 𝑍4,𝑄4, we will attain
the state 𝑆𝑙4 leading to another cycle.

The modification of the state 𝑆𝑙3 into 𝑆𝑙4 by changing
the form of semaphores and indexes allows for an indirect
transition between cyclic processes of the space P0. The
direct transition is possible as a result of modifying the
semaphores and indexes of the states 𝑆𝑙1 = (𝐴

1
, 𝑍

1
, 𝑄

1
)

and 𝑆𝑙2 = (𝐴
1
, 𝑍

2
, 𝑄

2
) mutually sharing the allocation 𝐴1.

Therefore, the presence of states of mutual allocation implies
the possibility of changing the set of cyclic steady states.
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- Transition Sla → Slb

- Cyclic steady state projection of GW,1 onto the space 𝒫SL

- Cyclic steady state represented by cyclic digraph GW,1
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)

- Transition Sa → Sb
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Figure 9: Illustration of cyclic steady state space projections,PSL andA, for behavior digraphs from Figure 8.

The considered transitions between 𝑆𝑙3 and 𝑆𝑙4 as well as
𝑆𝑙

1 and 𝑆𝑙2 refermainly to digraphs occurring only at the local
level (i.e., space PSL). In case of digraphs 𝐺

𝑆,1
, 𝐺

𝑆,2
of the

spaceP a similar procedure should be followed.These states
are the projections of the corresponding states from the space
P. The state 𝑆𝑙1 is the projection of the state 𝑆1 = (𝑆𝑙1, 𝑚1

𝑆
1

),
which is an element of the digraph 𝐺

𝑊,1
, and the state 𝑆2 =

(𝑆𝑙
2
, 𝑚

1
𝑆
2

) is the projection of the digraph 𝐺
𝑊,2

.
If, among states projecting upon 𝑆𝑙1 and 𝑆𝑙2, there are

states (e.g., states 𝑆𝑙1 and 𝑆𝑙2) with mutual allocation 𝑚1
𝐴

𝑥

of themultimodal processes, the transition between𝐺
𝑊,1

and
𝐺

𝑊,2
(and therefore also between 𝐺

𝑆,1
and 𝐺

𝑆,2
) is possible as

a result of modifications of corresponding semaphores and
indexes (from the formof𝑚1

𝑍
1,𝑚1

𝑄
1 into the formof𝑚1

𝑍
2,

𝑚
1
𝑄

2).

The states 𝑆1 and 𝑆2 are characterized bymutual allocation
of both local andmultimodal processes. Bymeans of modify-
ing semaphores and indexes in the state 𝑆1, a direct transition
from digraph 𝐺

𝑊,1
to digraph 𝐺

𝑊,2
is possible.

In practice, the change of semaphores and indexes related
to themmeans simply the change of the control rules (change
of signaling) of the system, the moment the processes are
allocated properly (compatible with 𝑆1). The solution of this
kind neither stops the implementation of the process (work
of AGVs, technological routes) nor creates the need for
changing their allocation (shift). In case of the modification
of the state 𝑆6 the transition is immediate and noninvasive; it
only requires the change of control.

To sum up the above considerations, we can say that the
transition between the two digraphs𝐺

𝑊,1
and𝐺

𝑊,2
is possible

if they include states characterized by mutual allocation at
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every behavior level. This observation leads to the following
two properties.

Property 1. Digraph 𝐺
𝑊,2

is reachable from the digraph 𝐺
𝑊,1

(which is denoted by 𝐺
𝑊,1

→ 𝐺
𝑊,2

) if there are states 𝑆𝑎 ∈
𝑉
𝑊,1

and 𝑆𝑏 ∈ 𝑉
𝑆,2

(where𝑉
𝑊,1

is the set of states of the digraph
𝐺

𝑊,1
and 𝑉

𝑆,2
is the set of states of the digraph 𝐺

𝑆,2
) sharing

mutual allocation of local and multimodal processes: 𝐴𝑎
=

𝐴
𝑏;𝑚𝑙

𝐴
𝑎

= 𝑚
𝑙
𝐴

𝑏

, for 𝑙 = 1 ⋅ ⋅ ⋅ 𝑙𝑝.

Property 2. Two digraphs 𝐺
𝑊,1

and 𝐺
𝑊,2

are mutually reach-
able (which is denoted by 𝐺

𝑊,1
↔ 𝐺

𝑊,2
) if 𝐺

𝑊,1
→ 𝐺

𝑊,2
and

𝐺
𝑊,2

→ 𝐺
𝑊,1

.

In this approach, the problem of digraphs reachability
calls for an answer to the following question: Are there two
states 𝑆𝑎 ∈ 𝑉

𝑊,1
and 𝑆𝑏 ∈ 𝑉

𝑆,2
, sharing the same allocations

𝐴
𝑎
= 𝐴

𝑏;𝑚𝑙
𝐴

𝑎

= 𝑚
𝑙
𝐴

𝑏

, for 𝑙 = 1 ⋅ ⋅ ⋅ 𝑙𝑝, among states included
into 𝐺

𝑆,1
and 𝐺

𝑆,2
? If such states exist, the transition between

the states is possible as a result ofmodifications of semaphores
and indexes. In this context the direct transition is defined as

⋅ ⋅ ⋅ → 𝑆
𝑎
1 → 𝑆

𝑎
2 → ⋅ ⋅ ⋅ → 𝑆

𝑎
(𝑥−1)

→ (𝑆
𝑎
𝑥  𝑆

𝑏
𝑥) → 𝑆

𝑏
(𝑥+1) → ⋅ ⋅ ⋅

(16)

and the indirect transition as

⋅ ⋅ ⋅ → 𝑆
𝑎
1 → ⋅ ⋅ ⋅ → (𝑆

𝑎
𝑥  𝑆

𝑑
𝑥) → ⋅ ⋅ ⋅

→ 𝑆
𝑑
𝑙𝑑 → 𝑆

𝑏
𝑗 → 𝑆

𝑏
(𝑗+1) ⋅ ⋅ ⋅ ,

(17)

where one has the following: 𝑆𝑎1 , . . . , 𝑆𝑎(𝑥−1) , 𝑆𝑎𝑥 , . . . , 𝑆𝑎𝑙𝑎—
states of digraph 𝐺

𝑊,1
, 𝑆𝑏1 , . . . , 𝑆𝑏(𝑥−1) , 𝑆𝑏𝑥 , . . . , 𝑆𝑏𝑙𝑏—states of

digraph𝐺
𝑊,2

, 𝑆𝑑1 , . . . , 𝑆𝑑𝑥 , 𝑆𝑏(𝑥+1) . . . , 𝑆𝑑𝑙𝑏—states included into
the transitory digraph leading 𝐺

𝑇
to 𝐺

𝑊,2
, 𝑆𝑎1 → 𝑆

𝑎
2—

transition between states with SCCP assumption and transi-
tory function 𝛿 [16], 𝑆𝑎𝑥 , 𝑆𝑏𝑥—states with mutual allocation,
and 𝑆𝑎𝑥  𝑆

𝑏
𝑥—transition from the state 𝑆𝑎𝑥 to 𝑆𝑏𝑥 as a

result of states modification, consisting of a sequence change
of semaphores and indexes from 𝑍

𝑎
𝑥 , 𝑄𝑎

𝑥 to 𝑍𝑏
𝑥 , 𝑄𝑎

𝑥 .

3.2.2. Searching Algorithm. In the situation when digraphs
𝐺

𝑊,1
and 𝐺

𝑊,2
and transitory processes leading to them

are known (in other words, vortexes 𝐺
𝑆,1

and 𝐺
𝑆,2

(15) are
known), determining the states with mutual allocation is not
a complex task. Due to a small number of states (in practice
no more than a few hundred states per vortex), all that has
to be done is to successively compare all potential variants.
An algorithm corresponding to such an approach looks as
Algorithm 1.

In Algorithm 1, one has the following: 𝐺
𝑆,1
= (𝑉

𝑆,1
, 𝐸

𝑆,1
),

𝐺
𝑆,2
= (𝑉

𝑆,2
, 𝐸

𝑆,2
)—input data, vortexes (15), 𝑆𝑎, 𝑆𝑏—states

(15) included in the digraph 𝐺
𝑊,1

, 𝐺
𝑆,2
, and AC—set of pairs

(𝑆
𝑎
, 𝑆

𝑏
) of states with mutual allocation.

The result of Algorithm 1 is the set AC including pairs
of states (𝑆𝑎, 𝑆𝑏) with mutual allocations. The states can be
used to determine the direct and indirect transitions between

digraphs 𝐺
𝑊,1

and 𝐺
𝑊,2

. Therefore, the existence of a non-
empty set ACmeans a positive answer to the posed question.

To make things simple, an assumption can be made that
we take into consideration that direct transitions and the
digraphs have the same number of states (denoted by 𝑙𝑑); thus
computational complexity of Algorithm 1 is expressed by the
function 𝑓(𝑙𝑑) = 𝑙𝑑2.

Algorithm 1 makes it possible to evaluate the mutual
reachability of only two digraphs 𝐺

𝑊,1
and 𝐺

𝑊,2
∈ DC (set

of all cyclic digraphs existing in the space P). In case of
evaluating the mutual reachability of all digraphs from the
set DC, it is necessary to make a search of this kind for a
pair of processes. The computational complexity in such case
amounts to

𝑓 (𝑙𝑑, 𝑑𝑐) =
1

2
(𝑑𝑐

2
− 𝑑𝑐) ⋅ 𝑙𝑑

2
, where 𝑑𝑐 = |DC| . (18)

Owing to polynomial character of the function of com-
putational complexity, the problem of evaluating the mutual
reachability of behavior digraphs is not a difficult one. All the
computational effort is focused on the stage of determining
cyclic digraphs (set DC), that is, solving the problem (10). In
order to do so, methods described in [11, 12, 14–16] can be
applied.

Among the available methods, however, there is a deficit
of those which can help determine transient states leading to
cyclic digraphs (i.e., digraphs 𝐺

𝑇
). Their usability is therefore

limited to evaluating direct transitions (where no information
on transient states (processes) is required).

In order to determine the transient states, the method of
vortex generation can be used. Vortexes determined with use
of this method include cyclic processes as well as all transient
processes leading to them. The example below illustrates
the use of this method for evaluating mutual reachability of
behavior digraphs.

3.3. Numerical Example. Consider two AGVs supporting
multiproduct manufacturing flows and their SCCP models
shown in Figures 2 and 7(b). Let us assume that the two series
manufacturing of three different products follow the routes
distinguished by different colored (green, orange, and blue)
bold lines.

Each workstation can process only unique work-piece
from a unique product kind at a given instance. Successive
work-pieces following the product route of a given product
kind while taking into account local material handling routes
are treated as subsequent streams ofmanufacturing processes
(in a given kind of product manufacturing flow) and are
modeled as streams of multimodal processes. For instance,
see streams of𝑚𝑃

1
,𝑚𝑃

2
, and𝑚𝑃

3
from Figure 2 as follows:

𝑚𝑝
𝑘

1
= ((𝑅

3
, 𝑅

13
, 𝑅

6
) , (𝑅

17
, 𝑅

5
) , (𝑅

21
, 𝑅

8
) , (𝑅

22
, 𝑅

11
)) ,

𝑘 = 1, . . . , 4,

𝑚𝑝
𝑘

2
= ((𝑅

2
, 𝑅

20
, 𝑅

5
) , (𝑅

24
, 𝑅

4
) , (𝑅

28
, 𝑅

7
) , (𝑅

29
, 𝑅

10
)) ,

𝑘 = 1, . . . , 4,
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function StatesCoAll (𝐺
𝑆,1
= (𝑉

𝑆,1
, 𝐸

𝑆,1
) , 𝐺

𝑆,2
= (𝑉

𝑆,2
, 𝐸

𝑆,2
))

AC = 0
for all 𝑆𝑎 ∈ 𝑉

𝑊,1

for all 𝑆𝑏 ∈ 𝑉
𝑆,2

if (𝐴𝑎
= 𝐴

𝑏
) & (𝑚1

𝐴
𝑎

= 𝑚
1
𝐴

𝑏

) &...& (𝑚𝑙𝑝
𝐴

𝑎

= 𝑚
𝑙𝑝
𝐴

𝑏

) then
AC = AC ∪ (𝑆𝑎, 𝑆𝑏)

end
end

end
return AC

end

Algorithm 1

𝑚𝑝
𝑘

3
= ((𝑅

1
, 𝑅

27
, 𝑅

4
) , (𝑅

28
, 𝑅

7
) , (𝑅

25
, 𝑅

8
) , (𝑅

18
, 𝑅

9
) ,

(𝑅
15
, 𝑅

12
)) , 𝑘 = 1, . . . , 4,

(19)

and Figure 7(b) as follows:

𝑚𝑝
𝑘

1
= ((𝑅

3
, 𝑅

13
, 𝑅

6
) , (𝑅

17
, 𝑅

5
) , (𝑅

21
, 𝑅

8
) , (𝑅

18
, 𝑅

9
) ,

(𝑅
15
, 𝑅

12
)) , 𝑘 = 1, . . . , 4,

𝑚𝑝
𝑘

2
= ((𝑅

2
, 𝑅

20
, 𝑅

5
) , (𝑅

24
, 𝑅

4
) , (𝑅

28
, 𝑅

7
) ,

(𝑅
25
, 𝑅

8
, 𝑅

22
, 𝑅

11
)) , 𝑘 = 1, . . . , 3,

𝑚𝑝
𝑘

3
= ((𝑅

1
, 𝑅

27
, 𝑅

4
) , (𝑅

28
, 𝑅

7
) , (𝑅

29
, 𝑅

10
)) , 𝑘 = 1, . . . , 3.

(20)

Both systems use the same fleet of 13 AGVs. A fleet sup-
ports work-pieces movements between workstations along
the givenmanufacturing routes.TheAGVs flows aremodeled
by streams 𝑃1

1
, 𝑃1

2
, 𝑃2

2
, 𝑃3

2
, 𝑃1

3
, 𝑃1

4
, 𝑃2

4
, 𝑃1

5
, 𝑃2

5
, 𝑃1

6
, 𝑃2

6
, 𝑃1

7
, and

𝑃
1

8
of local processes P

1
–P

8
. Each workstation (in general

system resource) can be serviced only by one AGV at the
moment.Thatmeans that both kinds of flow, that is, products
and AGVs flows, are synchronized by a mutual exclusion
protocol.

Given are the two cyclic schedules of multiproduct
manufacturing supported by AVGs (see Figures 4 and 6)
and corresponding to them two cyclic digraphs (Figures 7(a)
and 7(b)). Due to this schedules in first system four work-
pieces 𝑚𝑃1

𝑖
, 𝑚𝑃2

𝑖
, 𝑚𝑃3

𝑖
, 𝑚𝑃4

𝑖
of each product (𝑖 = 1, 2, 3) are

simultaneously processed in one cycle and one work-piece
of each product is outputted at each 80 u.t. In second system
four work-pieces of𝑚𝑃𝑘

1
and three work-pieces of𝑚𝑃𝑘

2
,𝑚𝑃𝑘

3

product are simultaneously processed in one cycle and one
work-piece of each product is outputted at each 96 u.t.

As mentioned before, operation times from the schedules
considered take into account periods required for work-piece
processing as well as material handling operations, that is,
load/unload periods (1 u.t. for the work-piece load and 1 u.t.
for its unload; see Figure 4). Moreover, the assumed time lags
Δ𝑡𝑚 (see (9) and constraints from Table 2) enable to take

into account the work-pieces transportation between work-
stations. In the case considered all time lags are the same and
equal toΔ𝑡𝑚 = 1.Moreover, it is assumed that the input to𝑅

1
,

𝑅
2
, and 𝑅

3
and the output of 𝑅

10
, 𝑅

11
, and 𝑅

12
workstations

are loaded and unloaded by dedicated conveyors.
The operation times 𝑚𝑇 and 𝑇 of considered systems

are defined in Tables 3 and 4. The timing 𝑥𝑘
𝑖,𝑗
, 𝑚𝑥𝑘

𝑖,𝑗
of

commencement of operations following the constraints (8),
(9) are presented in Tables 5 and 6.

The values presented in Tables 3–6 are the results of
solving the problem (10), respectively, for the system from
Figure 2 and Figure 7(b). In order to achieve this objec-
tive, OzMozart constraint programming environment was
applied. The problem solving time in both cases did not
exceed 3 seconds (Intel Core 2 Duo 3GHz, RAM 4GB).

During the analysis of digraphs of the attained sched-
ules, it turned out that it is possible to smoothly change
the behavior (with use of the state 𝑆18) from the one presented
in Figure 4 into the behavior from Figure 7. The transition
was illustrated in Figures 11 and 12. In practice, a transition
of this kind means the possibility of changing the current
production order into a new one with no need to stop the
system.

Therefore, a question may be posed whether an inverse
situation is possible, when from the behavior represented by
digraph 𝐺

𝑊,2
, behavior 𝐺

𝑊,1
is attained (return to 𝐺

𝑊,1
). In

other words, the question is the following: Are the considered
behavior digraphs mutually reachable, 𝐺

𝑊,1
↔ 𝐺

𝑊,2
?

According to Property 2 it is possible if𝐺
𝑊,1

→ 𝐺
𝑊,2

and
𝐺

𝑊,2
→ 𝐺

𝑊,1
.The schedule shown in Figure 10 illustrates the

reachability 𝐺
𝑊,1

→ 𝐺
𝑊,2

. In order to determine whether
𝐺

𝑊,2
→ 𝐺

𝑊,1
is possible, it must be stated (Property 1) if

there are states ofmutual allocations in digraphs𝐺
𝑊,2

and𝐺
𝑆,1

(𝐺
𝑆,1
—digraph including 𝐺

𝑊,1
and transitory path of states

leading to it).
In order to determine these states, Algorithm 1 was

applied. The use of Algorithm 1 depended upon the knowl-
edge of digraph 𝐺

𝑆,1
. It should be emphasized that the solu-

tion of the problem (10) makes it possible to determine
the cyclic schedule and digraph 𝐺

𝑊,1
corresponding to it.

It does not allow, however, determining states belonging to
transitory processes. In the discussed case digraph 𝐺

𝑆,1
is
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Table 3: Times (units) of operations executions of local and multimodal processes from Figure 2.

𝑘 = 1, 2, 3, 4 𝑅
1

𝑅
2

𝑅
3

𝑅
4

𝑅
5

𝑅
6

𝑅
7

𝑅
8

𝑅
9

𝑅
10

𝑅
11

𝑅
12

𝑅
13
÷ 𝑅

33

𝑚𝑡
𝑘

1
— — 77 — 64 77 — 20 — — 20 — 1

𝑚𝑡
𝑘

2
— 77 — 20 10 — 30 — — 30 — — 1

𝑚𝑡
𝑘

3
77 — — 49 — — 20 50 20 — — 10 1

𝑡
1

1
— — 76 — — 2 — — — — — — 1

𝑡
1

2
— — — — 4 18 — 1 1 — — — 1

𝑡
2

2
— — — — 1 1 — 1 1 — — — 1

𝑡
3

2
— — — — 3 1 — 1 1 — — — 1

𝑡
1

3
— — — — — — — — 1 — — 1 1

𝑡
1

4
— — — — — — 4 1 — 1 1 — 1

𝑡
2

4
— — — — — — 1 1 — 1 1 — 1

𝑡
1

5
1 61 — 1 1 — — — — — — — 1

𝑡
2

5
1 1 — 1 1 — — — — — — — 1

𝑡
1

6
— — — 1 — — 1 — — — — — 1

𝑡
2

6
— — — 1 — — 1 — — — — — 1

𝑡
1

7
— — — — — — 1 — — 34 — — 1

𝑡
1

8
1 — — 1 — — — — — — — — 1

Table 4: Times (units) of operations executions of local and multimodal processes from Figure 7(b).

𝑘 = 1, 2, 3, 4 𝑅
1

𝑅
2

𝑅
3

𝑅
4

𝑅
5

𝑅
6

𝑅
7

𝑅
8

𝑅
9

𝑅
10

𝑅
11

𝑅
12

𝑅
13
÷ 𝑅

33

𝑚𝑡
𝑘

1
— — 91 — 64 91 — 20 20 — — 20 1

𝑚𝑡
𝑘

2
— 91 — 20 24 — 68 30 — — 30 — 1

𝑚𝑡
𝑘

3
91 — — 68 — — 20 50 — — — — 1

𝑡
1

1
— — 90 — — 2 — — — — — — 1

𝑡
1

2
— — — — 4 28 — 1 1 — — — 1

𝑡
2

2
— — — — 1 1 — 1 1 — — — 1

𝑡
3

2
— — — — 1 1 — 18 1 — — — 1

𝑡
1

3
— — — — — — — — 1 — — 15 1

𝑡
1

4
— — — — — — 1 1 — 1 1 — 1

𝑡
2

4
— — — — — — 60 1 — 1 1 — 1

𝑡
1

5
1 62 — 1 1 — — — — — — — 1

𝑡
2

5
1 1 — 6 1 — — — — — — — 1

𝑡
1

6
— — — 13 — — 1 — — — — — 1

𝑡
2

6
— — — 66 — — 1 — — — — — 1

𝑡
1

7
— — — — — — 1 — — 81 — — 1

𝑡
1

8
1 — — 1 — — — — — — — — 1

unknown. Yet, the state of cyclic processes can be determined
from digraph 𝐺

𝑊,1
by means of searching for parents of the

states 𝑉
𝑊,1

not belonging to this set. Therefore, next state
function 𝛿 defined in [16] was applied.

Based on the determined states, a search for mutual allo-
cation stateswas carried out. An example of such states are the
states 𝑆19, 𝑆40. A change of cyclic steady states based on these
states (consisting of changing priority rules, semaphores and
indexes) was illustrated in Figures 11 and 12.

As shown in Figure 12 the considered cyclic steady states
are mutually reachable (𝐺

𝑊,1
→ 𝐺

𝑊,2
and 𝐺

𝑊,2
→ 𝐺

𝑊,1
).

In general case, however, mutual reachability is not always
guaranteed. For instance, consider SCCP composed of four
cyclic processes shown in Figure 13(a). The cyclic steady

state space P consists of two vortexes 𝐺
𝑆,1

and 𝐺
𝑆,2
; see

Figure 13(b).There are five different transient periods linking
𝐺

𝑊,1
and 𝐺

𝑊,2
; see orange arcs. There is not, however, any

transient period linking 𝐺
𝑆,2

and 𝐺
𝑆,1
; that is, there are

not any states shared by 𝐺
𝑊,2

and 𝐺
𝑆,1

while following
Property 1. Moreover, both direct mutual reachability and
indirect mutual reachability are not guaranteed in general
case of a cyclic steady state space.

4. Related Work

Many algorithms for the scheduling and routing of AGVs
have been proposed. However, most of the existing results
are applicable to systems with a small number of AGVs,
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Table 5: The timing 𝑥𝑘
𝑖,𝑗
,𝑚𝑥𝑘

𝑖,𝑗
of commencement of operations of local and multimodal processes from Figure 2.

𝑅
1

𝑅
2

𝑅
3

𝑅
4

𝑅
5

𝑅
6

𝑅
7

𝑅
8

𝑅
9

𝑅
10

𝑅
11

𝑅
12

𝑚𝑥
1

1
— — −10 — 146 68 — 211 — — 232 —

𝑚𝑥
1

2
— 55 — 144 133 — 165 — — 190 — —

𝑚𝑥
1

3
9 — — 87 — — 137 158 209 — — 230

𝑥
1

1
— — −9 — — 68 — — — — — —

𝑥
1

2
— — — — 66 47 — −8 −6 — — —

𝑥
2

2
— — — — 45 71 — 48 49 — — —

𝑥
3

2
— — — — 47 −7 — 51 70 — — —

𝑥
1

3
— — — — — — — — 68 — — −10

𝑥
1

4
— — — — — — −7 −2 — 71 0 —

𝑥
2

4
— — — — — — −2 70 — −6 72 —

𝑥
1

5
69 −9 — 57 53 — — — — — — —

𝑥
2

5
−9 53 — 64 62 — — — — — — —

𝑥
1

6
— — — 3 — — 5 — — — — —

𝑥
2

6
— — — 55 — — 57 — — — — —

𝑥
1

7
— — — — — — 34 — — 36 — —

𝑥
1

8
5 — — 7 — — — — — — — —

Table 6: The timing 𝑥𝑘
𝑖,𝑗
,𝑚𝑥𝑘

𝑖,𝑗
of commencement of operations of local and multimodal processes from Figure 7(b).

𝑅
1

𝑅
2

𝑅
3

𝑅
4

𝑅
5

𝑅
6

𝑅
7

𝑅
8

𝑅
9

𝑅
10

𝑅
11

𝑅
12

𝑚𝑥
1

1
— — −10 — 174 82 — 239 260 — — 281

𝑚𝑥
1

2
— 55 — 172 147 — 193 262 — — 293 —

𝑚𝑥
1

3
9 — — 101 — — 170 — — 191 — —

𝑥
1

1
— — −9 — — 82 — — — — — —

𝑥
1

2
— — — — 80 51 — −9 −1 — — —

𝑥
2

2
— — — — 49 85 — 51 53 — — —

𝑥
3

2
— — — — 51 −7 — 53 72 — — —

𝑥
1

3
— — — — — — — — 91 — — −1

𝑥
1

4
— — — — — — −7 −5 — 85 11 —

𝑥
2

4
— — — — — — 13 74 — 11 103 —

𝑥
1

5
78 −10 — 76 53 — — — — — — —

𝑥
2

5
−9 53 — 78 76 — — — — — — —

𝑥
1

6
— — — −9 — — 5 — — — — —

𝑥
2

6
— — — 9 — — 76 — — — — —

𝑥
1

7
— — — — — — 1 — — 3 — —

𝑥
1

8
5 — — 7 — — — — — — — —

offering a low degree of concurrency. With a drastically
increased number of AGVs in recent applications (e.g., in
the order of a hundred in a container handling system), the
combinatorial nature of the fleet scheduling and assignment
problems rapidly increases the complexity. For instance, it
appears clearly through constraints which relate to assigning
a fleet to a route. Suppose that there are 𝑛 fleet and 𝑚
routes, the number of binary decisions variables is𝑚× 𝑛 and
theoretically, there are 2𝑛×𝑚 solutions to be considered. In
fact, according to computational complexity, this problem is
NP-hard [2]. A number of papers are concerned with the fleet
assignment problem [1–3, 8] andmaintenance planning [6, 7,
21]. However, few papers have considered the combination
of fleet assignment and maintenance planning [2, 22]. Most

publications on fleet assignment have been focused on the
assignment of fleets to minimize the fleet operation cost [1, 3,
8]. Some papers on maintenance planning have been focused
on planningmaintenance tasks to minimize the maintenance
cost [6, 7, 21]. Few papers have considered the integration
of fleet assignment and maintenance planning [2, 22]. The
inventory policy with preventive maintenance consideration
ismostly studied for production system [6, 23, 24]. Because of
unpredicted situations, rescheduling is required to deal with
online decisionmaking. Finally, scheduling and rescheduling
fleet assignment and maintenance planning and inventory
policy are implemented as a decision support system [22].

Because most of real-life available manufacturing pro-
cesses manifest their cyclic steady state the alternative
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Figure 10: The indirect transition between schedules from Figures 4 and 6.

approach to AGVs fleet dispatching and scheduling, for
example, following from the SCCP concept [1, 9, 25] can be
considered as well. Many models and methods have been
proposed to solve the cyclic scheduling problem so far. Most
of these are oriented at finding a minimal cycle or maximal
throughputwhile assuming deadlock-free processes flow.The
approaches trying to estimate the cycle time from cyclic
processes structure and the synchronization mechanism
employed (i.e., mutual exclusion instances) are quite unique.

In that context our main contribution is to propose a new
modeling framework enabling to state and answer the fol-
lowing questions: Does there exist a control procedure (e.g.,
a set of dispatching rules and an initial state) guaranteeing
an assumed steady cyclic state subject to SCCP’s structure
constraints? Does an SCCP’s structure exist such that a steady
cyclic state can be achieved?

Is the cyclic steady sate space empty? In the case the space
is not empty the next question is do the cyclic steady states are
mutually reachable?

The last question refers to the problem of multimodal
processes rescheduling. Most of so far proposed approaches
to the rescheduling of processes executed within multimodal
transportation networks environment [17, 26–28] are only
limited to the deadlock-free cases. It should be noted that,
however, the evolutionary algorithms driven approaches

frequently used [26–28] are not effective in cases allowing
deadlocks occurrence.The approach proposed allows finding
deadlock-free transitions between the reachable cyclic steady
states while avoiding the deadlocks in the course of the
transient state generation.

5. Conclusions

Thecomplicated problemwhich integratesAGVsfleet assign-
ment, routing, and scheduling, generating a suboptimal
cyclic schedule for multiproduct manufacturing, is novelty
of this research. Such integrated AGVs dispatching problems
can be seen as a special case of the cyclic blocking flow-
shop one, where the jobs might block either the machine or
the AGV at the processing time. Therefore the main class of
problems of AGVs fleet match-up scheduling with reference
schedule of assumed production flow belong to the NP-hard
ones.

Besides the above mentioned AGVs dispatching/plan-
ning issues the research objective regards a quite large class
of digital and/or logistics networks that share common
properties even though they have huge intrinsic differences.
In other words, besides AGVs that can be treated as a kind
of internal transport, other emerging trends concerning the
logistics (e.g., supply chains management) and city traffic



22 Mathematical Problems in Engineering

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

Cyclic steady state 1Cyclic steady state 2 Transient state

- Execution of process’s mP
j
i operationmP

j
i

- Execution of process’s Pj
i operation

Load time = 1 u.t.Unload time = 1 u.t.
Suspension of process mp

j
i

mP
j
i

mP4
3

mP4
3

mP4
3

mP4
3

mP4
3

mP4
3

mP4
3

mP4
3

mP4
3

mP1
3

mP1
3

mP1
3

mP1
3

mP1
3

mP1
3

mP1
3

mP3
1mP2

1 mP2
1mP1

1 mP1
1mP4

1

mP3
2

mP3
2

mP3
2

mP3
2

mP3
2

mP3
3

mP3
3

mP3
3

mP3
3

mP3
3

mP3
3

mP2
3

mP2
3

mP2
3

mP2
3

mP2
3

mP2
3

mP2
3

mP4
2

mP4
2

mP4
2 mP4

2

mP4
2

mP4
2

mP4
2

mP4
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP1
2

mP2
2

mP2
2

mP2
2

mP2
2

mP2
2

mP2
2

mP2
2

0 50 100 150 200 250 300 350 400 500450 550

⇝(S19 Sd1 ) (Sd54 → S40)

mP3
1

mP3
1

mP3
1

mP3
1

mP3
1

mP3
1

mP3
1

mP3
1

mP2
1

mP2
1

mP2
1

mP2
1

mP1
1

mP1
1

mP1
1

mP1
1

mP1
1

mP4
1

mP4
1

mP4
1

mP4
1

mP4
1

mP4
1

mP4
1

mP4
1

Figure 11: The indirect transition between schedules from Figures 6 and 4.
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(e.g., infrastructure of the public transport) issues can be
modeled. For instance, the relevant multimodal processes
of passengers traveling between destination points in an
environment of local processes encompassing the subway
lines networkmight be considered as well. In other words, the

passenger’s itinerary including different metro lines can be
considered as a plan of a multimodal process routing within
a metro network.

The proposed declarative approach aimed at AGVs fleet
scheduling stated in terms of constraint satisfaction problem
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representation provides a unified method for performance
evaluation of local as well as supported by them multimodal
processes.

In general case, however, there is not any guarantee that
the considered SCCP model of AGVS has a nonempty cyclic
steady states space as well as that in case this space is not
empty, any direct or indirect mutual reachability can be
observed. That means that the decidability of the problem of
the space P reachability and mutual reachability among its
cyclic steady states plays a pivotal role in multimodal pro-
cesses rescheduling.
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