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We present an efficient algorithm based on the robust Chinese remainder theorem (CRT) to perform single frequency
determination from multiple undersampled waveforms. The optimal estimate of common remainder in robust CRT, which plays
an important role in the final frequency estimation, is first discussed. To avoid the exhausted searching in the optimal estimation,
we then provide an improved algorithm with the same performance but less computation. Besides, the sufficient and necessary
condition of the robust estimation was proposed. Numerical examples are also provided to verify the effectiveness of the proposed
algorithm and related conclusions.

1. Introduction

Frequency estimation from noisy sinusoid is a hot research
topic in engineering, which is applied in almost all engi-
neering fields, such as communications, radar, astronomy,
medicine, measurements, and geophysical exploration [1–6].
At present, many of the strategies are based on the Nyquist
sampling theorem, for instance, discrete Fourier transform
(DFT) algorithm [7–9], the least-error squares algorithm [10–
13], and equally spaced samples algorithm [14]. However,
one of the main drawbacks of these methods is that the
sampling frequency is usually proportional to the original
frequency, which requires much higher speed analog-to-
digital convertor. Recently, frequency estimation fromunder-
sampled waveforms has been studied in [15–17]. The basic
idea of thesemethods is to fusemultiple remnant information
provided by multiple sub-Nyquist sampled sequences. Then
the original frequency can be reconstructed by using the
Chinese remainder theorem (CRT) [18–20].Thebiggestmerit
of these methods is that they greatly decrease the rigorous
requirement for hardware; that is, a very high frequency
can be determined by several lower rate sample devices. In
addition, the method is also used in synthetic aperture radar
[21, 22] and wireless sensor network [23].

The problem of frequency determination in undersam-
pled condition is summarized as follows.

Assume that a single frequency signal is modelled as a
complex sinusoid form:

𝑠
0
(𝑡) = 𝐴 exp(𝑗2𝜋𝑓

0
𝑡) , (1)

where 𝑓
0
= 𝑁Hz is an unknown frequency we are interested

in the signal and itmay be high,𝐴 is the signal amplitude, and
𝑗 = √−1. In practical applications, noises are unavoidable
and thus lead to the received signal having the following
expression:

𝑠 (𝑡) = 𝐴 exp(𝑗2𝜋𝑓
0
𝑡) + 𝑤 (𝑡) , (2)

where 𝑤(𝑡) denotes noise.
Let the sampling rates be 𝑀

1
Hz, 𝑀

2
Hz, . . . ,𝑀

𝐿
Hz.

Then we can get the corresponding sampled signal as follows:

𝑠
𝑖
(

𝑛

𝑀
𝑖

) = 𝐴 exp(
𝑗2𝜋𝑁𝑛

𝑀
𝑖

) + 𝑤(

𝑛

𝑀
𝑖

) , 𝑖 = 1, 2, . . . 𝐿.

(3)
If the sampling duration is 𝑇 seconds, then

𝑠
𝑖
(

𝑛

𝑀
𝑖

) = 𝐴 exp(
𝑗2𝜋𝑁𝑛

𝑀
𝑖

) + 𝑤(

𝑛

𝑀
𝑖

) , 0 ≤ 𝑛 < 𝑇𝑀
𝑖
.

(4)
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The𝑀
𝑖
-pointDFTof each of the aforementioned sampled

signals may provide an estimate of the original frequency.
Because 𝑀

𝑖
are much smaller than 𝑁 in practical applica-

tions, the𝑀
𝑖
-point DFT only provides a folded remainder 𝑟

𝑖

of𝑁 modulo𝑀
𝑖
. These remainders may be erroneous when

the signal is contaminated by the additive noise. So, the above
frequency estimation problem is equivalent to determining
the original number 𝑁 from the erroneous remainders 𝑟

1
,

𝑟
2
, . . . , 𝑟

𝐿
.

This problem has been studied in [17] where a fast robust
CRT algorithm is proposed.However, the number of searches
is high and no closed-form solution is provided. It has been
validated that this method has a poorer performance than
the improved closed-form robust CRT (ICRT), which is pro-
posed in [24]. The latter method improved the performance
because of the remainders’ proper choosing. However, the
estimation of common remainder requires searching, which
leads to a high computation complexity. Motivated by this,
we propose a computational efficient algorithmwhich has the
same performance as the ICRT method but with much less
computation.

The remaining of this paper is organized as follows. In
Section 2, we present the CRT and analyse its error sensitivity.
In Section 3, we propose the robust CRT frequency estima-
tion algorithm. Besides, we give a sufficient and necessary
condition of the robust estimation based on the proposed
algorithm. In Section 4, we apply the proposed algorithm for
signal in additive noise with low sample rates. We end with
concluding remarks in Section 5.

2. The Error Sensitivity of CRT

In this section, we first briefly describe the extended CRT
where all the moduli have a common factor larger than 1. We
then briefly describe the error sensitivity of CRT.

For convenience, we denote by ⟨𝑥⟩
𝑀

the remainder of 𝑥
modulo𝑀.

Let 0 < 𝑀
1
< 𝑀
2
< ⋅ ⋅ ⋅ < 𝑀

𝐿
be the moduli, and let 𝑟

1
,

𝑟
2
, . . . , 𝑟

𝐿
be the remainders of the positive integer𝑁; that is,

𝑁 ≡ 𝑟
𝑖
mod𝑀

𝑖
, 𝑖 = 1, 2, . . . , 𝐿, (5)

where 0 ≤ 𝑟
𝑖
< 𝑀
𝑖
. It is not hard to see that the original

number𝑁 can be uniquely reconstructed from its remainders
if and only if𝑁 is less than the least common multiple of the
remainders. In the case when all the moduli are coprime, the
CRT has a simple formula. In this paper, we consider the case
when any paired moduli𝑀

𝑖
have the same greatest common

remainder (gcd)𝑀 > 1 and the remaining integers factorized
by𝑀 are coprime integers Γ

𝑖
; that is,

𝑟
𝑖
= ⟨𝑁⟩𝑀Γ𝑖

, 𝑖 = 1, 2, . . . , 𝐿. (6)

It follows from (6) that

⟨𝑟
𝑖
⟩
𝑀
= ⟨𝑁⟩𝑀

, 𝑖 = 1, 2, . . . , 𝐿. (7)

One can see from (7) that all of the remainder 𝑟
𝑖
moduli𝑀

have the same value, which is called the common remainder,
denoted by 𝑟𝑐.

Let 𝑞
𝑖
= (𝑟
𝑖
− 𝑟
𝑐
)/𝑀, and let 𝑁

0
= (𝑁 − 𝑟

𝑐
)/𝑀. Then we

obtain from (5) that

𝑁
0
≡ 𝑞
𝑖
mod Γ

𝑖
. (8)

According to the CRT, if and only if 0 ≤ 𝑁
0
< Γ = Γ

1
Γ
2
⋅ ⋅ ⋅ Γ
𝐿
,

𝑁
0
can be uniquely reconstructed as

𝑁
0
= ⟨

𝐿

∑

𝑖=1

𝛾
𝑖
𝛾
𝑖
𝑞
𝑖
⟩

Γ

, (9)

where 𝛾
𝑖
= Γ/Γ
𝑖
, 𝛾
𝑖
is the modular multiplicative inverse of 𝛾

𝑖

modulo Γ
𝑖
. Therefore,𝑁 can be uniquely reconstructed by

𝑁 = 𝑀𝑁
0
+ 𝑟
𝑐
. (10)

Now, we consider the case when the remainders have
errors.

Let the 𝑖th erroneous remainder be

𝑟
𝑖
= 𝑟
𝑖
+ Δ𝑟
𝑖
, (11)

where Δ𝑟
𝑖
denotes the error. In order to reconstruct the orig-

inal number 𝑁 from its erroneous remainders 𝑟
1
, 𝑟
2
, . . . , 𝑟

𝐿
,

we need to determine 𝑟𝑐 and 𝑁
0
according to (10). Suppose

that the estimate of the common remainder is 𝑟𝑐. Then 𝑞
𝑖
can

be estimated by

𝑞
𝑖
= [

𝑟
𝑖
− 𝑟
𝑐

𝑀

] = 𝑞
𝑖
+ [

Δ𝑟
𝑖
− Δ𝑟
𝑐

𝑀

] , (12)

where Δ𝑟𝑐 = 𝑟𝑐 − 𝑟𝑐 and [⋅] stands for the rounding integer.
According to (12), if the error of the common remainder

Δ𝑟
𝑐 is constrained by

−𝑀

2

+ Δ𝑟
𝑖
≤ Δ𝑟
𝑐
<

𝑀

2

+ Δ𝑟
𝑖
, (13)

then 𝑞
𝑖
= 𝑞
𝑖
. Consequently, 𝑁

0
can be accurately recon-

structed. It follows from (10) that the estimate of the original
number is

𝑁̂ = 𝑀𝑁
0
+ 𝑟
𝑐
. (14)

Obviously, the estimate error is Δ𝑟𝑐.
Now, we consider condition (13), which leads to the

correct estimate of𝑁
0
. It can be rewritten as

−𝑀

2

+ Δ𝑟
𝑖
+ 𝑟
𝑐
≤ 𝑟
𝑐
<

𝑀

2

+ Δ𝑟
𝑖
+ 𝑟
𝑐
. (15)

Note that the fact that 𝑟𝑐 does not satisfy (15) will lead
to the error estimate of 𝑞

𝑖
by (12). As 𝛾

𝑖
𝛾
𝑖
is usually a large

integer, this may cause a large error of 𝑁
0
. For example, let

𝑁
0
= 51, Γ

1
= 11, Γ

2
= 13, and Γ

3
= 17. Then we have 𝑞

1
= 7,

𝑞
2
= 12, and 𝑞

3
= 0. Suppose that the contaminated data are

𝑞
1
= 6, 𝑞

2
= 12, and 𝑞

3
= 0. Then𝑁

0
can be reconstructed as

2661. However, in the case when all errors are the same, the
error of reconstruction is reduced significantly. Suppose that
the estimate of 𝑞

𝑖
is 𝑞
𝑖
= 𝑞
𝑖
+ Δ𝑞 for 𝑖 = 1, 2, . . . , 𝐿. Then we

have 𝑁̂
0
= 𝑁
0
+ Δ𝑞, which means that the estimate error of

𝑁
0
is Δ𝑞. Therefore, the estimate of the common remainder

𝑟
𝑐 is significant to the estimation.
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3. Robust CRT Frequency
Estimation Algorithm

In this section, we give the optimal estimate of the common
remainder firstly; then we propose the efficient frequency
estimation algorithm. Before introducing our method, we
introduce a kind of circular distance function.

Definition 1. For real numbers 𝑥 and 𝑦, the circular distance
of 𝑥 to 𝑦 for cycle𝑀 is defined as

𝑑 (𝑥, 𝑦 | 𝑀)

Δ

= 𝑥 − 𝑦 − 𝑘
0
𝑀, (16)

where 𝑘
0
= [(𝑥 − 𝑦)/𝑀] and𝑀 ∈ R \ {0}.

Putting

𝑟
𝑐

𝑖
= ⟨𝑟
𝑖
⟩
𝑀
, (17)

thenwe can conclude that 𝑟𝑐
𝑖
may be different from each other

due to errors Δ𝑟
𝑖
. The optimal estimate 𝑟𝑐 is the point which

minimizes the summation of the deviation between 𝑟𝑐
𝑖
and

variable 𝑥, where 𝑥 ∈ [0,𝑀). Based on the circular distance
defined above, we can obtain the summation of deviation as
follows:

𝐷 (𝑥) =

𝐿

∑

𝑖=1

𝑑
2
(𝑟
𝑐

𝑖
, 𝑥 | 𝑀) . (18)

Then, the optimal estimate 𝑟𝑐 can be determined by

𝑟
𝑐
= arg min
0≤𝑥<𝑀

𝐷 (𝑥) . (19)

Next, we give the optimal estimate in the following theorem.

Theorem 2. The optimal estimate 𝑟𝑐 in (19) can be determined
by

𝑟
𝑐
= arg min

𝑥∈Ω

𝐿

∑

𝑖=1

𝑑
2
(𝑟
𝑐

𝑖
, 𝑥 | 𝑀) , (20)

whereΩ = {⟨(1/𝐿)∑𝐿
𝑖=1
𝑟
𝑖
− (𝑀/𝐿)𝑘⟩

𝑀
, 𝑘 = 0, 1, . . . , 𝐿 − 1}.

Proof. According to the definition of the circular distance,
we have

𝑑 (𝑟
𝑐

𝑖
, 𝑥 | 𝑀) = 𝑑 (𝑟

𝑖
, 𝑥 | 𝑀) . (21)

Let 𝑓
𝑖
(𝑥) = 𝑑

2
(𝑟
𝑖
, 𝑥 | 𝑀). One can easily see that 𝑓

𝑖
(𝑥)

is continuous in field of real number. Now, we consider the
differentiability of 𝑓

𝑖
(𝑥) at 𝑥

𝑡
which satisfies

𝑑 (𝑟
𝑖
, 𝑥
𝑡
| 𝑀) =

−𝑀

2

. (22)

For 𝑥 ∈ (𝑥
𝑡
−𝜖, 𝑥
𝑡
), where 𝜖 is a small positive number, we

have 𝑑(𝑟
𝑖
, 𝑥 | 𝑀) = 𝑥

𝑡
−𝑀/2−𝑥. It follows that the left-sided

derivative of 𝑓
𝑖
(𝑥) at 𝑥

𝑡
is𝑀.

For 𝑥 ∈ (𝑥
𝑡
, 𝑥
𝑡
+ 𝜖), we obtain 𝑑(𝑟

𝑖
, 𝑥𝑀) = 𝑥

𝑡
+𝑀/2 − 𝑥.

It follows that the right-sided derivative of 𝑓
𝑖
(𝑥) at 𝑥

𝑡
is −𝑀.

Thus, 𝑓
𝑖
(𝑥) is not differentiable at 𝑥

𝑡
.

Let 𝑓(𝑥) = ∑𝐿
𝑖=1
𝑑
2
(𝑟
𝑖
, 𝑥 | 𝑀). Then we can obtain

𝑓
󸀠

+
(𝑥
𝑡
) − 𝑓
󸀠

−
(𝑥
𝑡
) = −2𝑘𝑀 < 0, (23)

where 𝑘 is the number of remainders satisfying (22). Thus,
𝑓(𝑥) does not have a local minimum value at 𝑥

𝑡
. Note that

𝑓(𝑥) is differentiable at all 𝑥 ∈ R \ {𝑥
𝑡
}, so the minimum

point must satisfy 𝑓󸀠(𝑥) = 0, that is, 𝑟𝑐 in (19), such that

(

𝐿

∑

𝑖=1

𝑑
2
(𝑟
𝑖
, 𝑥 | 𝑀))

󸀠

= 0. (24)

After equating the result, we obtain

𝑥 =

1

𝐿

𝐿

∑

𝑖=1

𝑟
𝑖
−

𝑀

𝐿

𝐿

∑

𝑖=1

𝑘
𝑖
. (25)

Since∑𝐿
𝑖=1
𝑘
𝑖
∈ Z and 𝑟𝑐 ∈ [0,𝑀), it follows that 𝑟𝑐 belongs to

Ω = {⟨

1

𝐿

𝐿

∑

𝑖=1

𝑟
𝑖
−

𝑀

𝐿

𝑘⟩

𝑀

, 𝑘 = 0, 1, . . . , 𝐿 − 1} . (26)

Hence, the optimal estimate 𝑟𝑐 in (19) can be simplified as

𝑟
𝑐
= arg min

𝑥∈Ω

𝐷 (𝑥) . (27)

Combining (26) and (27), we can draw the conclusion.

Theorem 2 tells us that the estimate of common remain-
der belongs to the set Ω. It is not difficult to find that the
cardinality of the set equals the number of the remainders. So,
the number of searches is reduced sharply when compared
with other searching methods. After optimal estimate 𝑟𝑐 is
determined, the original frequency can be reconstructed. For
convenience, we conclude the proposed efficient algorithm in
Algorithm 1.

Based on the proposed algorithm, we have a sufficient
and necessary condition of the robust estimate as shown in
Algorithm 1.

Theorem3. LetΔ𝑟 = (1/𝐿)∑𝐿
𝑖=1
Δ𝑟
𝑖
. Assume that |Δ𝑟| < 𝑀/2

and |Δ𝑟
𝑖
− Δ𝑟| < 𝑀/2. 𝑁 is a real number in the range

[𝑀,𝑀(Γ − 1)). Then

𝑁̂ − 𝑁 = Δ𝑟 (28)

holds if and only if

𝐿
0
= ⟨

𝐿

∑

𝑖=1

𝑞
𝑖
⟩

𝑀

. (29)

Proof. We proof the sufficiency.
From (∗∗), we have

𝑟
𝑐
= ⟨

1

𝐿

𝐿

∑

𝑖=1

𝑟
𝑖
−

𝑀

𝐿

Ł
0
⟩

𝑀

= ⟨𝑟
𝑐
+ Δ𝑟⟩

𝑀
. (30)
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Step 1. From contaminated remainders 𝑟
𝑖
, calculate 𝐿

0
:

𝐿
0
= arg min

𝑘=0,1,...,𝐿−1

𝐿

∑

𝑖=1

𝑑
2
(𝑟
𝑖
,

1

𝐿

𝐿

∑

𝑖=1

𝑟
𝑖
−

𝑀

𝐿

𝑘 | 𝑀) (∗)

Step 2. Calculate 𝑟𝑐:

𝑟
𝑐
= ⟨

1

𝐿

𝐿

∑

𝑖=1

𝑟
𝑖
−

𝑀

𝐿

𝐿
0
⟩

𝑀

. (∗∗)

Step 3. Calculate 𝑞
𝑖
(𝑖 = 1, 2, . . . , 𝐿) by (12).

Step 4. Calculate 𝑁̂
0
:

𝑁̂
0
= ⟨

𝐿

∑

𝑖=1

𝛾
𝑖
𝛾
𝑖
𝑞
𝑖
⟩

𝑀

. (∗∗∗)

Step 5. Calculate 𝑁̂:

𝑁̂ = 𝑀𝑁̂
0
+ 𝑟
𝑐. (∗∗∗∗)

Algorithm 1: Summary of the proposed algorithm.

Since |Δ𝑟| < 𝑀/2 and 0 ≤ 𝑟𝑐 < 𝑀, it follows that

−𝑀

2

≤ 𝑟
𝑐
+ Δ𝑟 <

3𝑀

2

. (31)

We make this into three cases as follows.

Case A. (−𝑀/2 ≤ 𝑟𝑐 + Δ𝑟 < 0).
According to (30), we obtain 𝑟𝑐 = 𝑟𝑐 + Δ𝑟 +𝑀. It follows

from (12) that 𝑞
𝑖
= 𝑞
𝑖
−1 for 𝑖 = 1, 2, . . . , 𝐿. From (9), we have

𝑁̂
0
= ⟨

𝐿

∑

𝑖=1

𝛾
𝑖
𝛾
𝑖
(𝑞
𝑖
− 1)⟩

𝑀

= 𝑁
0
− 1. (32)

Here, we use the conclusion that ⟨∑𝐿
𝑖=1
𝛾
𝑖
𝛾
𝑖
⟩
𝑀
= 1. Conse-

quently,

𝑁̂ = 𝑀(𝑁
0
− 1) + 𝑟

𝑐
= 𝑁 + Δ𝑟. (33)

Case B. (0 ≤ 𝑟𝑐 + Δ𝑟 < 𝑀).
According to (30), we obtain 𝑟𝑐 = 𝑟𝑐 + Δ𝑟. It follows

from (12) that 𝑞
𝑖
= 𝑞
𝑖
. By using CRT, we have 𝑁̂

0
= 𝑁
0
.

Consequently, 𝑁̂ = 𝑀𝑁
0
+ 𝑟
𝑐
= 𝑁 + Δ𝑟.

Case C. (𝑀 ≤ 𝑟𝑐 + Δ𝑟 < 3𝑀/2).
According to (30), we obtain 𝑟𝑐 = 𝑟𝑐 + Δ𝑟 −𝑀. It follows

from (12) that 𝑞
𝑖
= 𝑞
𝑖
+ 1. From (9), we have 𝑁̂

0
= 𝑁
0
+ 1.

Consequently, 𝑁̂ = 𝑁 + Δ𝑟. This completes the proof of the
sufficiency.

We then proof the necessity.
Combination of (10) and (∗∗∗∗) yields

𝑁̂ − 𝑁 = 𝑀(𝑁̂
0
− 𝑁
0
) + (𝑟

𝑐
− 𝑟
𝑐
) = Δ𝑟. (34)

This leads to
󵄨
󵄨
󵄨
󵄨
󵄨
𝑀 (𝑁̂

0
− 𝑁
0
) + (𝑟

𝑐
− 𝑟
𝑐
)

󵄨
󵄨
󵄨
󵄨
󵄨
<

𝑀

2

. (35)

Since −𝑀 < 𝑟𝑐 − 𝑟𝑐 < 𝑀, it follows that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑁̂
0
− 𝑁
0

󵄨
󵄨
󵄨
󵄨
󵄨
<

3

2

. (36)

Note that both of 𝑁̂
0
and 𝑁

0
are integers; we have three

possible cases: 𝑁̂
0
− 𝑁
0
= −1, 𝑁̂

0
= 𝑁
0
, and 𝑁̂

0
− 𝑁
0
= 1.

Case A. (𝑁̂
0
− 𝑁
0
= −1).

By (34), we have 𝑟𝑐−𝑟𝑐−𝑀 = Δ𝑟.That is, 𝑟𝑐 = 𝑟𝑐+Δ𝑟+𝑀.

Case B. (𝑁̂
0
= 𝑁
0
).

By (34), we have 𝑟𝑐 = 𝑟𝑐 + Δ𝑟.

Case C. (𝑁̂
0
− 𝑁
0
= 1).

By (34), we have 𝑟𝑐−𝑟𝑐+𝑀 = Δ𝑟.That is, 𝑟𝑐 = 𝑟𝑐+Δ𝑟−𝑀.
Therefore, we have

𝑟
𝑐
= ⟨𝑟
𝑐
+ Δ𝑟⟩

𝑀
. (37)

Combing (∗∗) and (37), we can draw the conclusion.

4. Simulation Results

In the simulations, the coprime numbers from Γ
1
to Γ
7
are

5, 7, 11, 13, 19, 23, and 29, respectively. Two possibilities of𝑀
are considered: 𝑀 = 100 and 𝑀 = 200. The frequencies
which are to be estimated is taken integers randomly and
uniformly distributed in the range (𝑀Γ/Γ

1
,𝑀Γ) for each𝑀.

The additive noise 𝑤(𝑡) in (4) is additive white Gauss noise.
The sampling frequencies are 𝑀Γ

𝑖
, which are much smaller

than the unknown frequencies. The observation of the time
duration is 1 s, and the number of the trials is 10000 for each
signal-to-noise ratio (SNR).

We compare the proposed method with the ICRT algo-
rithmwhich is themost effective one of the existingmethods.
To assess the performance, we take the trail-fail rate (TFR)
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Figure 1: TFR versus SNR.

as the measurement. In each trial, if the estimate of the
frequency is

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
0
− 𝑓
0

󵄨
󵄨
󵄨
󵄨
󵄨
<

𝑀

2

, (38)

then the trial passed; otherwise, the trail failed.
Figure 1 gives the curve of the TFR on different SNR. It

shows that the probabilities of robust estimation are almost
equal when the two methods have the same 𝑀. That is to
say, the two methods have nearly the same performance. The
figure also shows that the performance of the estimation is
better when𝑀 = 200 than that when𝑀 = 100, which is in
accordance with the theory. From (13) we can conclude that
the larger𝑀 can lead to the larger error tolerance.

Figure 2 presents the curve of the total running time over
the number of remainders. The two methods are carried out
under the same operational conditions. One can see that
our proposed algorithm has nearly equal time no matter 𝐿
is, while the ICRT algorithm has essentially linear running
time.This is because the number of searches for the common
remainder is 𝐿 for the proposed algorithm. However, the
number of searches is𝑀/𝜖 for the ICRT method, where 𝜖 is
the searching step. In this simulation, the searching step is
𝜖 = 1, and𝑀 = 100.

Figure 3 gives the robust estimation probability of the
common remainder for searching methods when 𝜖 is 10,
1, and 0.1, respectively. It shows that the estimate of the
common remainder can achieve an approximation of the
optimal estimate when 𝜖 is small enough. Clearly, decreasing
the searching step can improve the performance at the cost of
increasing the computation amount.

5. Conclusions

In this paper, we have proposed an efficient algorithm based
on the robust CRT to perform single frequency estimation
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Figure 2: Total running time versus remainders number.
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Figure 3: Robust estimation probability of common remainder
versus SNR.

frommultiple undersampledwaveforms.We transformed the
problem into the robust CRT firstly. Then we presented the
optimal estimate of the common remainder and the original
frequency. Based on the proposed algorithm, we presented
the sufficient and necessary condition of the robust estima-
tion.We finally applied the efficient algorithm to estimate the
original frequency from multiple undersampled waveforms.
Compared with the improved robust CRT algorithm, it
has nearly the same performance but less computation.
After using the undersampled waveforms, the sampling rate
reduced sharply.
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