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This paper proposes a damage detection method based on combined data of static and modal tests using particle swarm
optimization (PSO). To improve the performance of PSO, some immune properties such as selection, receptor editing, and
vaccination are introduced into the basic PSO and an improved PSO algorithm is formed. Simulations on three benchmark
functions show that the new algorithm performs better than PSO. The efficiency of the proposed damage detection method is
tested on a clamped beam, and the results demonstrate that it is more efficient than PSO, differential evolution, and an adaptive

real-parameter simulated annealing genetic algorithm.

1. Introduction

A structural system or mechanical component continuously
accumulates damage during their service life. The presence of
damages may reduce the performance of a structure, such as
decreasing the service life, or even progressing to catastrophic
failure. In recent years, the damage assessment of structures
has drawn wide attention from various engineering fields.
Structural damage usually causes a decrease in structural
stiffness, which produces changes in the vibration character-
istics and static displacements of the structure. Major dam-
age detection approaches can be clarified into three major
categories, the static identification methods using static test
data [1, 2], the dynamic identification methods using vibra-
tion test data [3, 4], and the combination methods adopt
both vibration data and static data [5]. The vibration data
of a structure include natural frequencies, mode shapes,
frequency response functions, and modal curvatures. Static
responses generally include static displacements and static
strain.

The usual damage detection methods minimize an objec-
tive function, which is defined in terms of the discrepancies
between the vibration data or static data identified by testing
and those which are computed from the analytical model.

Traditional damage detection methods have some disad-
vantages such as the damage position and damage extent
cannot be detected simultaneously and are not so efficient
in detecting the damage extent and adopt local optimization
methods which usually lead to a local minimum only.

In recent years, evolutionary algorithms have been exten-
sively applied to damage detection and the related optimal
sensor placement problems [6-8]. For example, genetic
algorithm (GA) as a stochastic search algorithm using static
data [1, 2] or vibration data [3, 4] has been applied to damage
detection. Some combination methods using both dynamic
data and static data can be seen in [5, 9]. Damage detection
methods of GA combining with simulated annealing [10] and
artificial neural networks [11] were also proposed. In order
to get more accurate structural parameters and structural
responses for damage detection, parthenogenetic algorithm
approach was proposed for optimal sensor placement [12, 13].
However, the disadvantage of GA is it exhibits a distinguished
drop in efficiency as the number of unknown parameters to
be identified is more than two [14] and premature conver-
gence is likely to happen [15-19].

Addition to GA, some new techniques are proposed for
engineering optimization problems, such as particle swarm
optimization (PSO) [20-22], differential evolution [23, 24],



artificial bee colony (ABC) [25-28], and so on. Among these
optimization algorithms, PSO has obtained the most exten-
sive attention and applications. Although PSO shares many
similarities with genetic algorithms, the standard PSO does
not use genetic operators such as crossover and mutation.
PSO is applied to structural damage detection problems.
Meanwhile, to improve the convergence speed and accu-
racy, some immune mechanisms, such as selection, receptor
editing, and vaccination, are incorporated into PSO and
propose an immunity enhanced particle swarm optimiza-
tion (IEPSO). The algorithm is applied to the benchmark
function optimization and damage detection problems using
combined data. Results show that the performance of PSO
is improved, because the convergence speed is accelerated
and the default, which is easily getting entrapped in a
local optimum when solving complex multimodal prob-
lems, is meliorated. Compared with PSO, DE and an adap-
tive real-parameter simulated annealing genetic algorithm
(ARSAGA), IEPSO is the most efficient optimization method
for damage identification.

This paper is organized as follows. Section 2 presents
the mathematical model for structural damage detection.
Section 3 introduces the original PSO, several immune mech-
anisms and then IEPSO is proposed. Sections 4 and 5 shows
the performance of IEPSO on function optimization and
damage detection, respectively. Finally, conclusions are given
in Section 6.

2. Mathematical Model for Structural Damage
Detection Using Combined Data

The analytical static model for an intact structure in the finite-
element formulation is

Ku = p. ¢))

The characteristic evaluation of a dynamic undamaged
structure can be expressed as

K¢, - w'Mé¢, = 0. 2

In (1), K is the structural stiffness matrix, u is the
displacement vector, and p is the load vector. In (2), M is
the mass matrix, w; is the ith natural frequency, and ¢, is the
corresponding mode shape.

In the context of discretized finite elements, structural
damage can be represented by a decrease in the stiffness of
the individual elements as

K = a k%, (3)

where Kk is the eth element stiffness matrix of the damaged
structure, «, is the stiffness damage factor (SDF) [13] of the
eth element and is a value between 0 and 1. «, is 1 with no
damage and zero with complete damage in the eth element,
respectively.

A uniform damage for the whole element has been
assumed in (3). The SDF allows estimating not only the dam-
age severity but also the damage location since the damage
identification is carried out at the element level.
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In general, a small number of sensors will result in
nonunique solutions. The sparsity of measurement can be
overcome by increasing the number of loading conditions
instead of increasing the number of sensors [29]; So we
adopt several load cases which have been used in [2, 10]. To
combine the static responses (displacements) and dynamic
responses (natural frequencies), the final objective function
can be written as

NL NP _ 2 NF 2
Upn,ij = Uih,ij Wi Je ~ Wih &
73 3 () ) () )
u Wih i

i=1 j=1 myij k=1
(4)

where w;; is a weight factor of the output error at the jth point
due to the ith load case. NP is the number of displacement
points considered and NL is the number of load cases. u,,,;; is
the measured displacement of the jth point due to the ith load
case, and uy, ;; is the theoretically computed counterpart. w,, ;
is the kth measured natural frequency, and wy, ;. is the kth
theoretically computed natural frequency. wy, is a weighting
factor for the output error of the kth natural frequency. NF is
the number of natural frequencies considered.

The first part is defined by the normalized difference
between the measured and theoretical computed displace-
ments. The second part is defined by the normalized dif-
ference between the measured and theoretically computed
natural frequencies. Differences between displacements and
natural frequencies are normalized to get a better representa-
tion of the relative change in response.

To include the uncertainty in the measured data and to
study the sensitivity of IEPSO to noise, uniformly distributed
random noise [2] is added to measurements in the simulated
tests as

u:n,ij = Ui (1+ Be) )
5

“):n,k = Wy (1+ 7€),

where uin’i ; is the measured displacement of the jth point due

to the ith load case with noise; w:n,k is the kth measured natu-
ral frequency with noise; 3 and y are the noise amplitudes; e is
a uniformly distributed random variable in the range [-1, 1].

3. Immunity-Enhanced Particle
Swarm Optimization

3.1. Particle Swarm Optimization. Inspired by a model of
social interactions between independent animals seeking
for food, PSO utilizes swarm intelligence to achieve the
goal of optimization. Instead of using genetic operators to
manipulate the individuals, each individual in PSO flies in
the search space with a velocity which is dynamically adjusted
according to its own flying experience and flying experience
of its companions [20, 21]. Each individual is treated as a
volumeless particle (a point) in the D-dimensional search
space. The ith particle is represented as x; = (x;;, Xj5, - - - » X;p)
in the D-dimensional space, where x;; € [l;,u,], d € [1,D].
The best previous position of the ith particle is recorded
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as p; = (pir»Pir>---»> Pip)- The index of the best particle
among all the particles in the population is represented by
the symbol g. The velocity for particle i is represented as v; =
(V1> Vs> - - - > Ujp), Which is clamped to a maximum velocity
Voax In each time step t, the particles are manipulated
according to the following equations:

Vig = Uig + 1161 (Pig = Xia) + 126 (Pgd - xid) (6)

Xig = Xig T Vig, (7)

where ¢, and ¢, are two positive constants, which control how
far a particle will move in a single iteration. , and r, are
random values in the range [0, 1].

Shiand Eberhart [21] later introduced inertia term w term
by modifying (6) to

Uig = WU + 116 (Pig = Xig) + 126, (Pgd - xid) )

They proposed that suitable selection of w will provide a
balance between global and local explorations, thus requiring
fewer iterations on average to find a sufficiently optimal
solution. As originally developed, w often decrease linearly
from about 0.9 to 0.4 according to the following equation:

Whax ~ Whin X t, (9)

max
tmax

where w,,,, and w,;, are the initial weight and final weight,
respectively, t_ .. is the maximum number of allowable
generations, and t the current generation number.

An explicit maximum velocity or a constriction factor is
usually utilized in PSO algorithms to control the exploration
abilities of particles; however, it cannot prevent them from
going outside the allowable solution space and hence produce
invalid solutions. Four types of boundary conditions, namely,
absorbing, reflecting, invisible, and damping, have been
reported in the literature [30]. The optimization of a 2D array
antenna [31] shows that the damping boundary condition
offers more robust and consistent performance.

As for damage detection problem, generally only few ele-
ments are damaged and most elements are still intact. The
parameter values of these intact elements are always in the
upper bound [9]. In order to avoid oscillating around the
upper boundary and to quickly return to the feasible region
around the lower boundary, a combined boundary condition
is used. This boundary is also convenient to the comparison
of different algorithms. The upper bound adopts damping
bound [30] and the low bound adopts the bound described
in [24], which can be described as follows:

X, = {ld +(lg = Xig) xig <lg
l Ug Xig > Ug (10)

Uy = —rand () - vy,

. X,y <1y or x;; > uy,

where [; and u are the lower and upper bounds of dimension
d, respectively, rand( ) is a random number in the range [0, 1].

3.2. Artificial Immune System. AIS can be defined as abstract
computational systems inspired by theoretical immunology
and observed immune functions, principles, and models,
applied to solve problems [32]. In AIS, an antigen is used
to represent the programming problem to be addressed.
An antibody is set (a repertoire), wherein each member
represents a candidate solution. Affinity is used to represent
the fit of an antibody (a solution candidate) to the antigen
(the problem) [33]. Several immune properties, selection,
receptor editing, and vaccination, can be adopted to improve
the performance of PSO.

3.2.1. Selection. The antibodies present in a population set
contain much information regarding the solution of the
problem. Based on their affinity, the antibodies are selected
to proliferate and produce clones. Traditionally, deterministic
selection rule is adopted to select better antibodies for
proliferation. However, deterministic selection rule selects
only the best antibodies for proliferation, and that may lead
to the premature convergence of the algorithm [34].

To overcome this difficulty, rank-based fitness assignment
and roulette wheel selection rule is adopted. The fitness of an
individual can be calculated as

2(sp—1)(pos—1)

N , )

fitpos =2 —sp +

where N is the population size, pos is the order number of
the individual in the whole population, sp is the selection
pressure, sp € [1.0,2.0], fitpos is the rank-based fitness of the
individual.

3.2.2. Receptor Editing. In AIS, receptor editing allows an
antibody to take large steps, landing in a locale where the
affinity might be lower. However, occasionally the leap will
lead to an antibody on the side where the region is more
promising. From this locale, point mutations followed by
selection can drive the antibody to reach the global optimum.
Receptor editing offers the ability to escape from local optima
[32]. In order to simulate receptor editing, we introduce non-
uniform mutation [35] into PSO.

For each individual x,(t) in a population of generation ¢,
create an offspring x;(¢ + 1) through a non-uniform mutation
as follows: if x;(t) = {x;;,..., X;4> ..., X;p} is a solution and the
element x;; is selected for this mutation, the result is a vector
x;(t +1) = {X;1,..., X5, ..., X;p}, where

if a random & is 0 1)

X.; =
9 xig = At X~ 1)

' Xig + A (6 ug = Xig)

if a random & is 1,
where I; and u, are the lower and upper bounds of the
variable x;;, respectively. The function A(¢, y) returns a value
in the range [0, y] such that A(¢, y) approaches to zero as
t increases. This property allows this operator to search the
space uniformly at early stages, and very locally at later stages.
We use the following function:

Alt,y)=y- (1 - r(H/T)b) , (13)
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Algorithm IEPSO
Begin;

For each individual j € N;

Evaluate individual j

End;
Selection;

Next i;
End;

Initialize the population (generate a random population of N solutions);
Fori = 1 to the maximum number of generations;

Evolving individual j according to (7) and (8);
If (rand () < p,) receptor editing;
If (rand () < p,) vaccination;
If (fit (j) < p;) Update the best position of individual j;
If (fit (j) < p,) Update the best position of the whole population;

Calculate w of each individual according to (9);

ALGORITHM 1: Pseudocodes for IEPSO algorithm.

where r is a uniform random number in the range [0, 1], and
bis a system parameter determining the degree of nonunifor-
mity.

3.2.3. Vaccination. Given an individual x, vaccination means
modifying the genes on some bits in accordance with a
priori knowledge so as to gain a better solution with greater
probability [36]. As for real-parameter optimization prob-
lems, a vaccination means modifying the elements of some
individuals. A vaccine is abstracted from the prior knowledge
of the problem. During the actual operation, a detailed
analysis is firstly carried out on the problem, simultaneously,
as many basic characteristics of the problem as possible ought
to be found. Then, the characteristics are abstracted to be a
vaccine. A vaccine can also be regarded as estimation on some
elements of the optimal individual.

Two types of vaccines are adopted for function optimiza-
tion and damage detection. For the function optimization
problem, the vaccine can be abstracted from the best individ-
uals of the population. If x;(t) = {x;,...,X;g ..., X;p} is an
individual and the element x; is selected for vaccination, the
result is a vector x;(f + 1) = {X;;,.. ., Xigpest> - - - » Xip)> Where
X;gpest Means the dth element of the best individual. For the
damage detection problem, generally only few elements are
damaged and most elements are still intact. The parameter
values of these intact elements are always in the upper bound.
So boundary mutation is adopted as a vaccine for damage

detection problem. If x;(t) = {x;4,...,%;5...,X;p} is an
individual and the element x;; is selected for vaccination, the
result is a vector: x;(t + 1) = {x;1,..., Uz ..., X;p}.

3.3. Immunity-Enhanced Particle Swarm Optimization. In
IEPSO, a population of particles is sampled randomly in
the feasible space. Then the population executes PSO or
its variants, including the update of position and veloc-
ity. After that, it executes receptor editing operator (non-
uniform mutation) according to a certain probability p,,
and vaccination operator according to probability p,. The

new generation is obtained by the selection operator after
the flying of particles and two immune operators (receptor
editing and vaccination). Pseudocodes for IEPSO are shown
in Algorithm 1.

In Algorithm 1, p, is the receptor editing probability;
py is the vaccination probability; p; is the best position of
individual j; p, is the best position of the whole population;
fit(j) is the fitness of individual j.

In the new algorithm, selection and vaccination can im-
prove the convergence speed and receptor editing, helping the
algorithm to avoid premature convergence.

4. Tests on Benchmark Functions

Three nonlinear benchmark functions that are commonly
used in literatures are adopted. Their formulas and variable
ranges are shown in Table 1.

To evaluate the performance of the proposed IEPSO, the
basic PSO and DE are used for comparisons. The version of
DE used in this paper is known as DE/rand/1/bin, or “classic
DE” [23].

The parameters used for IEPSO and PSO are recom-
mended in [21, 22]. The parameter w used is recommended
by Shi and Eberhart [21] with a linearly decreasing, which
changes from 0.9 to 0.4 according to (9). The maximum
velocity V,,,, and minimum velocity V,;, are set at half
value of the upper bound and lower bound, respectively.
The acceleration constants ¢; and ¢, are both 2.0. For DE
algorithm, the parameters are recommended in [23, 24]. The
control parameters are F = 0.9 or 0.5 and Cr = 0.9. The other
parameters for IEPSO are listed in Table 2. The generation
number and population size of PSO and DE are the same as
IEPSO.

The three algorithms are executed in 50 independent
runs. The mean fitness values of the best individual found
during the 50 runs for the three functions are listed in Table 3.
Evolutionary processes for three functions are shown in
Figure 1. From Table 3 and Figure 1, it can be seen that IEPSO
outperforms PSO and DE in most cases. By introducing



Mathematical Problems in Engineering 5
TABLE 1: Benchmark test functions.

Name Formula n Range

Sphere fix) =YL, x 30 [-100, 100]"

Rosenbrock fo(x) =Y (IOO(XHI - xtz)2 +(x; - 1)2) 30 [-30,30]"

Rastrigin f3(x) =YY", (x} - 10cos (2mx;) + 10) 30 [-5.12,5.12]"
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F1GURE 1: Convergence processes of mean best fitness for three benchmark functions.

selection operator and vaccination operator, the convergence
speed is accelerated and by introducing receptor editing
operator, the ability of escaping from a local optimum is
enhanced.

5. Damage Detection Examples

A clamped beam adopted from Wang et al. [9] is used to
verify the efficiency of IEPSO on damage identification. The
initial geometry of the beam is shown in Figure 2. The total

numbers of elements and nodes are 20 and 21, respectively.
There are two applied load cases. The first load case P, = 50 N
and acts at node 11, and the second load case P, = 50 N and
acts at node six. The material properties are E = 70.0 GPa,
p = 2.70 x 10° kg/m’. In the following tests the objective
functions include nineteen node displacements in each load
case and the first 10 natural frequencies. The weight factor in
(13) is chosen as w;; = wj = 1000.

Statistical analysis is a good way to compare different
stochastic algorithms. But the damage detection of a structure
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TABLE 2: Parameter values used in IEPSO. representative ones to yield more clear conclusions because
Functi D values obtained are not much different.
Parameter unction amage
optimization detection
Generation number 2000 100 5.1. Double Damage Occurrence. The first case (case 1) has
. . N C ,
Population size 30 40 two damages in which element 1 has 50% reduction in Ypungs
modulus and element 9 has a severe 875% reduction in
Pr 0.1 0.05 Young’s modulus. That means o; = 0.5 and &y = 0.125 in
by 0.1 0.25 this case.
Sp 18 18 The comparison of logarithmic best fitness values of three
b 5 5 algorithms is shown in Figure 3(a). From this figure, we can

TABLE 3: Mean best fitness values of three functions.

Function DE PSO IEPSO

h 2.06e — 22 4.42e - 13 4.61e — 30
£ 1.56e + 01 6.73e + 01 2.69¢ + 01
fs 1.49¢ + 02 2.82e + 01 7.96¢ — 02

needs a long time. To compare different stochastic algorithms
on these time-consuming problems, usually adopt the best
results obtained from several runs, and this can avoid chanci-
ness in some extent [37, 38]. In this paper each stochastic
algorithm performs three independent runs [14, 26], and the
best results obtained from each algorithm are presented as

see that IEPSO converges the fastest and PSO converges faster
than DE. The convergence processes of SDF of damaged
elements are shown in Figure 3(b). It can be seen that the
SDF of element 1 and element 9 quickly converges to 0.49998
and 0.12504 which are quite close to the theoretical values.
The comparison of SDF of each element between theoretical
values and IEPSO detected values is shown in Figure 4(a).
It can be seen that the detected values are quite close to
the theoretical values and no extra damage is detected.
The comparison of damage detection results using three
algorithms after 100 generations is shown in Figure 4(b). It
can be seen that IEPSO outperforms PSO and DE.

5.2. Triple Tiny Damage Occurrence. A triple damage occur-
rence with different damage extents (case 2) is considered.
In this example, element 2 has 10% reduction in Young’s
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FIGURE 5: Convergence processes in case 3: (a) best fitness; (b) SDFs of damaged elements.

modulus, element 9 has 10% reduction in Youngs modulus,
and element 16 has 15% reduction in Young’s modulus. This
means that o, = 0.9, &y = 0.9, and ;4 = 0.85. It is noted that
all the three damage extents are very tiny, and the difficulty in
damage detection is increased.

The comparison of logarithmic best fitness values of
three algorithms is shown in Figure 5(a). From this figure,
we can see that IEPSO still converge the fastest and PSO
converges faster than DE. The convergence processes of SDF
of damaged elements are shown in Figure 5(b). It can be seen
that the SDF of element 2, element 9, and element 16 quickly
converges to 0.90015, 0.90101, and 0.85091 which are quite
close to the theoretical values. The comparison of SDF of
each element between theoretical values and IEPSO detected
values is shown in Figure 6(a). It can be seen that the detected

values are quite close to the theoretical values and no extra
damage is detected. The comparison of damage detection
results using three algorithms after 100 generations is shown
in Figure 6(b). It can be seen that IEPSO still performs better
than PSO and DE.

Damage detection performance of IEPSO is also com-
pared with ARSAGA [10] in this case and the result is
shown in Table 4. The value in the parenthesis represents
the relative error. The damaged elements and the maximum
errors of different algorithms are shown in bold. It can be
seen that damage detection accuracy of IEPSO is higher than
ARSAGA.

5.3. The Effect of Noise. To include the uncertainty in the
measured data and to study the sensitivity of IEPSO to
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TaBLE 4: Comparison of damage detection results of case one by
ARSAGA and IEPSO.

Stiffness damage factors

Element no.

Exact ARSAGA IEPSO
1 1.0 0.963 (—3.7%) 1.0
2 0.9 0.914 0.9
3 1.0 1.0 1.0
4 1.0 0.984 0.999
5 1.0 0.992 1.0
6 1.0 1.0 1.0
7 1.0 1.0 1.0
8 1.0 0.978 0.999
9 0.9 0.905 0.901
10 1.0 1.0 1.0
1 1.0 1.0 1.0
12 1.0 0.987 1.0
13 1.0 1.0 1.0
14 1.0 0.991 1.0
15 1.0 1.0 1.0
16 0.85 0.852 0.851 (0.12%)
17 1.0 1.0 1.0
18 1.0 1.0 0.999
19 1.0 1.0 1.0
20 1.0 1.0 1.0

noise, different uniformly distributed random noise is added
to measured data in the simulation as described (5). It is
commonly believed that the relative measurement error of
frequency is about 1% [3]. Take case 1 as an example, in the
first test 1% noise is added to both static displacements and
natural frequencies. In the second test 5% noise is added
to static displacements and 2% noise is added to natural
frequencies.

The comparison of SDF of each element between theoret-
ical values and IEPSO detected values under the condition
1% noise is shown in Figure 7(a). It can be seen that the
detected values are still quite close to the true values and a
tiny extra damage is detected in element 19. The comparison
of SDF of each element between theoretical values and IEPSO
detected values under the condition with 5% noise is shown
in Figure 7(b). It can be seen that the two damages can still be
detected under this condition, but several tiny extra damages
are also detected.

It can be seen from these figures that noise decreases
the accuracy of the algorithm. When noise increases, the
misidentifications also increase. This may be because that
large noise increases the uncertainty in theoretical response
data and noise may be taken as damage by the procedure.
From this point, the results detected by the procedure are still
reasonable.

6. Conclusions

In this paper, a new IEPSO algorithm for structural damage
identification is presented. It bases on a particle swarm
optimization algorithm and introduces immune properties
selection, receptor editing, and vaccination into it. Selection
and vaccination can improve the convergence speed and
receptor editing helps the algorithm to avoid premature
convergence.

Boundary conditions for PSO are also discussed in the
paper, and a combined boundary is adopted for damage
detection problems. This boundary condition can avoid oscil-
lating around the upper boundary and can quickly return to
the feasible region around the lower boundary.

The feasibility of the methodology is first demonstrated
through several numerical examples. Three benchmark func-
tions are used to test the performance of IEPSO in complex
function optimization problems. Numerical results show that
IEPSO performs better than PSO and DE in most cases
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FIGURE 7: Comparison of damage detection results in case 1 with
noise: (a) 1% noise is added to both static displacements and natural
frequencies; (b) 5% noise is added to static displacements and 2%
noise is added to natural frequencies.

because its convergence speed is the fastest and converges to
the best fitness value.

The proposed algorithm is then tested on damage detec-
tion problems of a clamped beam. Two damage cases can be
detected quickly and accurately by the proposed algorithm
when noise is free. Comparing with PSO and DE, IEPSO is
more efficient in damage detection problems. The accuracy of
IEPSO is also higher than ARSAGA in case 2. When different
levels of noise are added, the accuracy of the algorithm is
decreased. However, this is still reasonable because noise may
be taken as damages in the beam during the damage detection
process.
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