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An analytical investigation of the nonlinear vibration of a symmetric cross-ply composite laminated piezoelectric rectangular plate
under parametric and external excitations is presented.Themethod of multiple time scale perturbation is applied to solve the non-
linear differential equations describing the systemup to and including the second-order approximation. All possible resonance cases
are extracted at this approximation order.The case of 1 : 1 : 3 primary and internal resonance, whereΩ
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is considered. The stability of the system is investigated using both phase-plane method and frequency response curves. The influ-
ences of the cubic terms onnonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate are studied.
The analytical results given by the method of multiple time scale is verified by comparison with results from numerical integration
of themodal equations. Reliability of the obtained results is verified by comparison between the finite differencemethod (FDM) and
Runge-Kutta method (RKM). It is quite clear that some of the simultaneous resonance cases are undesirable in the design of such
system. Such cases should be avoided as working conditions for the system. Variation of the parameters 𝜇
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leads to multivalued amplitudes and hence to jump phenomena. Some recommendations regarding the different parameters of the
system are reported. Comparison with the available published work is reported.

1. Introduction

Composite laminated plates that are widely used in several
engineering fields such as machinery, shipbuilding, aircraft,
automobiles, robot arm, watercraft-hydropower, and wings
of helicopters are made of the angle-ply composite laminated
plates. Several researchers have focused their attention on
studying the nonlinear dynamics, bifurcations, and chaos of
the composite laminated plates.

Internal resonance has been found in many engineering
problems in which the natural frequencies of the system are
commensurable. Ye et al. [1] investigated the local and global
nonlinear dynamics of a parametrically excited symmetric
cross-ply composite laminated rectangular thin plate under
parametric excitation. The study is focused on the case of 1 : 1
internal resonance and primary parametric resonance. Zhang
[2] dealt with the global bifurcations and chaotic dynamics of

a parametrically excited, simply supported rectangular thin
plate. The method of multiple scales is used to obtain the
averaged equations. The case of 1 : 1 internal resonance and
primary parametric resonance is considered. Guo et al.
[3] studied the nonlinear dynamics of a four-edge simply
supported angle-ply composite laminated rectangular thin
plate excited by both the in-plane and transverse loads. The
asymptotic perturbation method is used to derive the four
averaged equations under 1 : 1 internal resonance. Zhang et al.
[4] investigated the local and global bifurcations of a para-
metrically and externally excited simply supported rectan-
gular thin plate under simultaneous transversal and in-plane
excitations.The studies are focused on the case of 1 : 1 internal
resonance and primary parametric resonance. Tien et al. [5]
applied the averaging method and Melnikov technique to
study local, global bifurcations and chaos of a two-degrees-
of-freedom shallow arch subjected to simple harmonic
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excitation for case of 1 : 2 internal resonances. Sayed and
Mousa [6] investigated the influence of the quadratic and
cubic terms on nonlinear dynamic characteristics of the
angle-ply composite laminated rectangular plate with para-
metric and external excitations. Two cases of the subhar-
monic resonances cases in the presence of 1 : 2 internal reso-
nances are considered.Themethod ofmultiple time scale per-
turbation is applied to solve the nonlinear differential equa-
tions describing the system up to and including the second-
order approximation. Zhang et al. [7] gave further studies on
the nonlinear oscillations and chaotic dynamics of a para-
metrically excited simply supported symmetric cross-ply
laminated composite rectangular thin plate with the geo-
metric nonlinearity and nonlinear damping. Zhang et al. [8]
dealt with the nonlinear vibrations and chaotic dynamics of
a simply supported orthotropic functionally graded mate-
rial (FGM) rectangular plate subjected to the in-plane and
transverse excitations together with thermal loading in the
presence of 1 : 2 : 4 internal resonance, primary parametric
resonance, and subharmonic resonance of order 1/2. Zhang
et al. [9] investigated the bifurcations and chaotic dynamics of
a simply supported symmetric cross-ply composite laminated
piezoelectric rectangular plate subject to the transverse, in-
plane excitations and the excitation loaded by piezoelectric
layers. Zhang and Li [10] analyzed the resonant chaotic
motions of a simply supported rectangular thin plate with
parametrically and externally excitations using exponential
dichotomies and an averaging procedure. Zhang et al. [11]
analyzed the chaotic dynamics of a six-dimensional nonlinear
system which represents the averaged equation of a compos-
ite laminated piezoelectric rectangular plate subjected to the
transverse, in-plane excitations and the excitation loaded by
piezoelectric layers. The case of 1 : 2 : 4 internal resonances is
considered. Zhang and Hao [12] studied the global bifurca-
tions and multipulse chaotic dynamics of the composite lam-
inated piezoelectric rectangular plate by using the improved
extended Melnikov method. The multipulse chaotic motions
of the system are found by using numerical simulation, which
further verifies the result of theoretical analysis. Guo and
Zhang [13] studied the nonlinear oscillations and chaotic
dynamics for a simply supported symmetric cross-ply com-
posite laminated rectangular thin plate with parametric and
forcing excitations. The case of 1 : 2 : 3 internal resonance is
considered. The method of multiple scales is employed to
obtain the six-dimensional averaged equation.The numerical
method is used to investigate the periodic and chaotic
motions of the composite laminated rectangular thin plate.
Eissa and Sayed [14–16] and Sayed [17] investigated the effects
of different active controllers on simple and spring pendulum
at the primary resonance via negative velocity feedback or
its square or cubic. Sayed and Kamel [18, 19] investigated the
effects of different controllers on the vibrating system and the
saturation control to reduce vibrations due to rotor blade flap-
ping motion. The stability of the system is investigated using
both phase-plane method and frequency response curves.
Sayed and Hamed [20] studied the response of a two-degree-
of-freedom systemwith quadratic coupling under parametric
and harmonic excitations. The method of multiple scale
perturbation technique is applied to solve the nonlinear

differential equations and obtain approximate solutions up to
and including the second-order approximations. Amer et al.
[21] investigated the dynamical system of a twin-tail aircraft,
which is described by two coupled second-order nonlin-
ear differential equations having both quadratic and cubic
nonlinearities under different controllers. Best active control
of the system has been achieved via negative accelera-
tion feedback. The stability of the system is investigated
applying both frequency response equations and phase-
plane method. Hamed et al. [22] studied the nonlinear
dynamic behavior of a string-beam coupled system subjected
to external, parametric, and tuned excitations that are pre-
sented.The case of 1 : 1 internal resonance between themodes
of the beam and string, and the primary and combined reson-
ance for the beam is considered. The method of multiple
scales is applied to obtain approximate solutions up to and
including the second-order approximations. All resonance
cases are extracted and investigated. Stability of the system
is studied using frequency response equations and the phase-
plane method. Awrejcewicz et al. [23–25] studied the chaotic
dynamics of continuous mechanical systems such as flexible
plates and shallow shells.The considered problems are solved
by the Bubnov-Galerkin, Ritz method with higher approxi-
mations, and finite difference method. Convergence and val-
idation of those methods are studied. Awrejcewicz et al. [26]
investigated the chaotic vibrations of flexible nonlinear Euler-
Bernoulli beams subjected to harmonic load andwith various
boundary conditions. Reliability of the obtained results is
verified by the finite difference method and finite element
methodwith the Bubnov-Galerkin approximation for various
boundary conditions and various dynamic regimes.

In this paper, the perturbation method and stability
of the composite laminated piezoelectric rectangular plate
under simultaneous transverse and in-plane excitations are
investigated. The method of multiple scales are applied to
obtain the second-order uniform asymptotic solutions. All
possible resonance cases are extracted at this approximation
order. The study is focused on the case of 1 : 1 : 3 internal
resonance and primary resonance.The stability of the system
and the effects of different parameters on system behavior
have been studied using frequency response curves. Stability
is performed of figures by solid and dotted lines. The
analytical results given by the method of multiple time
scale is verified by comparison with results from numerical
integration of the modal equations. It is quite clear that
some of the simultaneous resonance cases are undesirable in
the design of such system. Such cases should be avoided as
working conditions for the system. Some recommendations
regarding the different parameters of the system are reported.
Comparison with the available published work is reported.

2. Mathematical Analysis

Consider a simply supported four edges composite laminated
piezoelectric rectangular plate of lengths 𝑎, 𝑏 and thickness ℎ,
as shown in Figure 1. The composite laminated piezoelectric
rectangular plate is considered as regular symmetric cross-
ply laminates with 𝑛 layers. A Cartesian coordinate system is
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Figure 1: The model of the composite laminated piezoelectric
rectangular plate.

located in the middle surface of the plate. Assume that 𝑢, V,
and 𝑤 represent the displacements of an arbitrary point of
the composite laminated piezoelectric rectangular plate in the
𝑥, 𝑦, and 𝑧 directions, respectively. The in-plane excitations
are loaded along the 𝑦direction at 𝑥 = 0 in the form
𝑞
0
+ 𝑞
𝑥
cosΩ
1
𝑡, and the excitations are loaded along the 𝑥

direction at 𝑦 = 0 in the form 𝑞
1
+ 𝑞
𝑦
cosΩ
2
𝑡. The trans-

verse excitation subjected to the composite laminated piezo-
electric rectangular plate is represented by 𝑞 cosΩ

3
𝑡. The

dynamic electrical loading is expressed as 𝐸
𝑧
cosΩ
4
𝑡. Based

on Reddy’s third-order shear deformation plate theory [27],
the displacement field at an arbitrary point in the composite
laminated plate is expressed as [13]

𝑢 (𝑥, 𝑦, 𝑡) = 𝑢
0
(𝑥, 𝑦, 𝑡) + 𝑧𝜑

𝑥
(𝑥, 𝑦, 𝑡) − 𝑧

3 4

3ℎ2
(𝜑
𝑥
+
𝜕𝑤
0

𝜕𝑥
) ,

(1a)

V (𝑥, 𝑦, 𝑡) = V
0
(𝑥, 𝑦, 𝑡) + 𝑧𝜑

𝑦
(𝑥, 𝑦, 𝑡) − 𝑧

3 4

3ℎ2
(𝜑
𝑦
+
𝜕𝑤
0

𝜕𝑦
) ,

(1b)

𝑤 (𝑥, 𝑦, 𝑡) = 𝑤
0
(𝑥, 𝑦, 𝑡) , (1c)

where 𝑢
0
, V
0
, and 𝑤

0
are the original displacement on the

midplane of the plate in the𝑥,𝑦, and 𝑧directions, respectively.
Let 𝜑
𝑥
and 𝜑

𝑦
represent the midplane rotations of transverse

normal about the 𝑥 and 𝑦 axes, respectively. From the
van Karman-type plate theory and Hamilton’s principle, the
nonlinear governing equations of motion of the composite
laminated piezoelectric rectangular plate are given as follows
[12]:

𝜕𝑁
𝑥𝑥

𝜕𝑥
+

𝜕𝑁
𝑥𝑦

𝜕𝑦
= 𝐼
0
𝑢̈
0
+ 𝐽
1
𝜑̈
𝑥
−
4

3ℎ2
𝐼
3

𝜕𝑤̈
0

𝜕𝑥
, (2a)

𝜕𝑁
𝑥𝑦

𝜕𝑥
+

𝜕𝑁
𝑦𝑦

𝜕𝑦
= 𝐼
0
V̈
0
+ 𝐽
1
𝜑̈
𝑦
−
4

3ℎ2
𝐼
3

𝜕𝑤̈
0

𝜕𝑦
, (2b)

𝜕𝑄
𝑥

𝜕𝑥
+

𝜕𝑄
𝑦

𝜕𝑦
+
𝜕

𝜕𝑥
(𝑁
𝑥𝑥

𝜕𝑤
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𝜕𝑥
+ 𝑁
𝑥𝑦

𝜕𝑤
0

𝜕𝑦
)
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𝜕

𝜕𝑦
(𝑁
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𝜕𝑤
0
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+ 𝑁
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+
4

3ℎ2
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𝜕
2
𝑃
𝑥𝑥

𝜕𝑥2
+ 2

𝜕
2
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𝑥𝑦
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𝜕
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𝜕𝑦2
) + 𝑞

= 𝐼
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0
−
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9ℎ4
𝐼
6
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𝜕
2
𝑤̈
0

𝜕𝑥2
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𝜕
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0

𝜕𝑦2
)

+
4

3ℎ2
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3
(
𝜕𝑢̈
0

𝜕𝑥
+
𝜕V̈
0

𝜕𝑦
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4
(
𝜕𝜑̈
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(2c)

𝜕𝑀
𝑥𝑥

𝜕𝑥
+

𝜕𝑀
𝑥𝑦

𝜕𝑦
− 𝑄
𝑥
= 𝐽
1
𝑢̈
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+ 𝑘
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𝜑̈
𝑥
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3ℎ2
𝐽
4
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𝜕𝑀
𝑥𝑦

𝜕𝑥
+

𝜕𝑀
𝑦𝑦

𝜕𝑦
− 𝑄
𝑦
= 𝐽
1
V̈
0
+ 𝑘
2
𝜑̈
𝑦
−
4

3ℎ2
𝐽
4

𝜕𝑤̈
0

𝜕𝑦
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Theboundary conditions of the simply supported rectangular
composite laminated plate are expressed as follows:

at 𝑥 = 0, 𝑥 = 𝑎 :
𝜕𝑢

𝜕𝑥
= 0,

𝑤 = 𝑢 = 𝜑
𝑥
= 𝜑
𝑦
= 𝑀
𝑥𝑥
= 𝑁
𝑥𝑦
= 𝑄
𝑥
= 0,

(3a)

at 𝑦 = 0, 𝑦 = 𝑏 :
𝜕V

𝜕𝑦
= 0,

𝑤 = V = 𝑁
𝑥𝑦
= 𝑀
𝑦𝑦
= 𝑄
𝑦
= 0,

(3b)

∫

𝑏

0

𝑁
𝑥𝑥

󵄨󵄨󵄨󵄨𝑥=0, 𝑎
𝑑𝑦 = ∫

𝑏

0

(𝑞
0
+ 𝑞
𝑥
cosΩ
1
𝑡) 𝑑𝑦, (3c)

∫

𝑎

0

𝑁
𝑦𝑦

󵄨󵄨󵄨󵄨󵄨𝑦=0, 𝑏
𝑑𝑥 = ∫

𝑎

0

(𝑞
1
+ 𝑞
𝑦
cosΩ
2
𝑡) 𝑑𝑥. (3d)

Applying the Galerkin procedure, we obtain that the dimen-
sionless differential equations of motion for the simply
supported symmetric cross-ply rectangular thin plate are
shown as follows [11, 28]:

𝑢̈
1
+ 𝜇
1
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1
+ 𝜔
2

1
𝑢
1
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3
𝑡,

(4a)
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𝑢̈
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6
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7
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8
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𝑢
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3
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(4b)
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3
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𝑢
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31
cosΩ
1
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2
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4
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1
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2
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2
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1
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3
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3

+ 𝛾
5
𝑢
2

3
𝑢
1
+ 𝛾
6
𝑢
2

3
𝑢
2
+ 𝛾
7
𝑢
3

1
+ 𝛾
8
𝑢
3

2

+ 𝛾
9
𝑢
3

3
+ 𝛾
10
𝑢
1
𝑢
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𝑢
3

= 𝑓
3
cosΩ
3
𝑡,

(4c)

where 𝑢
1
, 𝑢
2
, and 𝑢

3
are the vibration amplitudes of the com-

posite laminated piezoelectric rectangular plate for the first-
order, second-order, and the third-order modes, respectively,
𝜇
1
, 𝜇
2
, and 𝜇

3
are the linear viscous damping coefficients,

𝜔
1
, 𝜔
2
, and 𝜔

3
are the natural frequencies of the rectangular

plate, andΩ
1
,Ω
2
,Ω
3
, andΩ

4
are the excitations frequencies.

𝑓
𝑛1
, 𝑓
𝑛2
, 𝑓
𝑛3
, and 𝑓

𝑛
(𝑛 = 1, 2, 3) are the amplitudes of

parametric and external excitation forces corresponding to
the three nonlinear modes, and 𝛼

𝑖
, 𝛽
𝑖
, and 𝛾

𝑖
(𝑖 = 1, 2, . . . , 10)

are the nonlinear coefficients.The linear viscous damping and
exciting forces are assumed to be

𝜇
𝑛
= 𝜀𝜇
𝑛
, 𝑓
𝑛1
= 𝜀𝑓
𝑛1
, 𝑓

𝑛2
= 𝜀𝑓
𝑛2
,

𝑓
𝑛3
= 𝜀𝑓
𝑛3
, 𝑓
𝑛
= 𝜀
2
𝑓
𝑛
, 𝑛 = 1, 2, 3,

(5)

where 𝜀 is a small perturbation parameter and 0 < 𝜀 ≪ 1.
The external excitation forces 𝑓

𝑛
are of the order 2, and

the linear viscous damping 𝜇
𝑛
, parametric exciting forces𝑓

𝑛1
,

𝑓
𝑛2
, and 𝑓

𝑛3
are of the order 1.

To consider the influence of the cubic terms on non-
linear dynamic characteristics of the composite laminated
piezoelectric rectangular plate, we need to obtain the second-
order approximate solution of (4a), (4b), and (4c). Method
of multiple scales [29–31] is applied to obtain a second-
order approximation for the system. For the second-order
approximation, we introduce three time scales defined by

𝑇
0
= 𝑡, 𝑇

1
= 𝜀𝑡, 𝑇

2
= 𝜀
2
𝑡. (6)

In terms of these scales, the time derivatives become

𝑑

𝑑𝑡
= 𝐷
0
+ 𝜀𝐷
1
+ 𝜀
2
𝐷
2
, (7a)

𝑑
2

𝑑𝑡2
= 𝐷
2

0
+ 2𝜀𝐷

0
𝐷
1
+ 𝜀
2
(𝐷
2

1
+ 2𝐷
0
𝐷
2
) , (7b)

where 𝐷
𝑛
= 𝜕/𝜕𝑇

𝑛
, 𝑛 = 0, 1, 2. We seek a uniform approxi-

mation to the solution of (4a), (4b), and (4c) in the form:

𝑢
𝑛 (𝑡, 𝜀) = 𝜀𝑢𝑛1 (𝑇0, 𝑇1, 𝑇2) + 𝜀

2
𝑢
𝑛2
(𝑇
0
, 𝑇
1
, 𝑇
2
)

+ 𝜀
3
𝑢
𝑛3
(𝑇
0
, 𝑇
1
, 𝑇
2
) + 𝑂 (𝜀

4
) , 𝑛 = 1, 2, 3.

(8)

Terms of 𝑂(𝜀4) and higher orders are neglected. Substituting
(5) and (7a)–(8) into (4a), (4b), and (4c) and equating the
coefficients of like powers of 𝜀, we obtain the following.

Order 𝜀

(𝐷
2

0
+ 𝜔
2

1
) 𝑢
11
= 0, (9a)

(𝐷
2

0
+ 𝜔
2

2
) 𝑢
21
= 0, (9b)

(𝐷
2

0
+ 𝜔
2

3
) 𝑢
31
= 0. (9c)

Order 𝜀2

(𝐷
2

0
+ 𝜔
2

1
) 𝑢
12
= −2𝐷

0
𝐷
1
𝑢
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− 𝜇
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𝐷
0
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cosΩ
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𝑇
0
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𝑇
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,

(10a)
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cosΩ
2
𝑇
0

+𝑓
24
cosΩ
4
𝑇
0
) 𝑢
21
+ 𝑓
2
cosΩ
3
𝑇
0
,

(10b)

(𝐷
2

0
+ 𝜔
2

3
) 𝑢
32
= −2𝐷

0
𝐷
1
𝑢
31
− 𝜇
3
𝐷
0
𝑢
31

− (𝑓
31
cosΩ
1
𝑇
0
+ 𝑓
32
cosΩ
2
𝑇
0

+𝑓
34
cosΩ
4
𝑇
0
) 𝑢
31
+ 𝑓
3
cosΩ
3
𝑇
0
.

(10c)

Order 𝜀3

(𝐷
2

0
+ 𝜔
2

1
) 𝑢
13
= −𝐷
2

1
𝑢
11
− 2𝐷
0
𝐷
2
𝑢
11
− 2𝐷
0
𝐷
1
𝑢
12

− 𝜇
1
(𝐷
0
𝑢
12
+ 𝐷
1
𝑢
11
)

− (𝑓
11
cosΩ
1
𝑇
0
+ 𝑓
12
cosΩ
2
𝑇
0

+ 𝑓
14
cosΩ
4
𝑇
0
) 𝑢
12

− 𝛼
1
𝑢
2

11
𝑢
21
− 𝛼
2
𝑢
2

11
𝑢
31
− 𝛼
3
𝑢
2

21
𝑢
11

− 𝛼
4
𝑢
2

21
𝑢
31
− 𝛼
5
𝑢
2

31
𝑢
11
− 𝛼
6
𝑢
2

31
𝑢
21

− 𝛼
7
𝑢
3

11
− 𝛼
8
𝑢
3

21
− 𝛼
9
𝑢
3

31
− 𝛼
10
𝑢
11
𝑢
21
𝑢
31
,

(11a)
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(𝐷
2

0
+ 𝜔
2

2
) 𝑢
23
= −𝐷
2

1
𝑢
21
− 2𝐷
0
𝐷
2
𝑢
21
− 2𝐷
0
𝐷
1
𝑢
22

− 𝜇
2
(𝐷
0
𝑢
22
+ 𝐷
1
𝑢
21
)

− (𝑓
21
cosΩ
1
𝑇
0
+ 𝑓
22
cosΩ
2
𝑇
0

+𝑓
24
cosΩ
4
𝑇
0
) 𝑢
22

− 𝛽
1
𝑢
2

11
𝑢
21
− 𝛽
2
𝑢
2

11
𝑢
31
− 𝛽
3
𝑢
2

21
𝑢
11

− 𝛽
4
𝑢
2

21
𝑢
31
− 𝛽
5
𝑢
2

31
𝑢
11
− 𝛽
6
𝑢
2

31
𝑢
21

− 𝛽
7
𝑢
3

11
− 𝛽
8
𝑢
3

21
− 𝛽
9
𝑢
3

31
− 𝛽
10
𝑢
11
𝑢
21
𝑢
31
,

(11b)

(𝐷
2

0
+ 𝜔
2

3
) 𝑢
33
= −𝐷
2

1
𝑢
31
− 2𝐷
0
𝐷
2
𝑢
31
− 2𝐷
0
𝐷
1
𝑢
32

− 𝜇
3
(𝐷
0
𝑢
32
+ 𝐷
1
𝑢
31
)

− (𝑓
31
cosΩ
1
𝑇
0
+ 𝑓
32
cosΩ
2
𝑇
0

+𝑓
34
cosΩ
4
𝑇
0
) 𝑢
32

− 𝛾
1
𝑢
2

11
𝑢
21
− 𝛾
2
𝑢
2

11
𝑢
31
− 𝛾
3
𝑢
2

21
𝑢
11

− 𝛾
4
𝑢
2

21
𝑢
31
− 𝛾
5
𝑢
2

31
𝑢
11
− 𝛾
6
𝑢
2

31
𝑢
21

− 𝛾
7
𝑢
3

11
− 𝛾
8
𝑢
3

21
− 𝛾
9
𝑢
3

31
− 𝛾
10
𝑢
11
𝑢
21
𝑢
31
.

(11c)

The general solutions of (9a), (9b), and (9c) can be written in
the form

𝑢
11
= 𝐴
1
(𝑇
1
, 𝑇
2
) exp (𝑖𝜔

1
𝑇
0
) + 𝑐𝑐, (12a)

𝑢
21
= 𝐴
2
(𝑇
1
, 𝑇
2
) exp (𝑖𝜔

2
𝑇
0
) + 𝑐𝑐, (12b)

𝑢
31
= 𝐴
3
(𝑇
1
, 𝑇
2
) exp (𝑖𝜔

3
𝑇
0
) + 𝑐𝑐, (12c)

where𝐴
1
,𝐴
2
, and𝐴

3
are a complex function in𝑇

1
, 𝑇
2
which

can be determined from eliminating the secular terms at the
next approximation and 𝑐𝑐 stands for the complex conjugate
of the preceding terms. Substituting (12a), (12b), and (12c)
into (10a), (10b), and (10c) and eliminating the secular terms,
then the first-order approximations are given by

𝑢
12
= 𝐸
1
exp (𝑖𝜔

1
𝑇
0
) + 𝐸
2
exp (𝑖 (Ω

1
+ 𝜔
1
) 𝑇
0
)

+ 𝐸
3
exp (𝑖 (Ω

1
− 𝜔
1
) 𝑇
0
) + 𝐸
4
exp (𝑖 (Ω

2
+ 𝜔
1
) 𝑇
0
)

+ 𝐸
5
exp (𝑖 (Ω

2
− 𝜔
1
) 𝑇
0
) + 𝐸
6
exp (𝑖 (Ω

4
+ 𝜔
1
) 𝑇
0
)

+ 𝐸
7
exp (𝑖 (Ω

4
− 𝜔
1
) 𝑇
0
) + 𝑐𝑐,

(13a)

𝑢
22
= 𝐸
8
exp (𝑖𝜔

2
𝑇
0
) + 𝐸
9
exp (𝑖 (Ω

1
+ 𝜔
2
) 𝑇
0
)

+ 𝐸
10
exp (𝑖 (Ω

1
− 𝜔
2
) 𝑇
0
) + 𝐸
11
exp (𝑖 (Ω

2
+ 𝜔
2
) 𝑇
0
)

+ 𝐸
12
exp (𝑖 (Ω

2
− 𝜔
2
) 𝑇
0
) + 𝐸
13
exp (𝑖 (Ω

4
+ 𝜔
2
) 𝑇
0
)

+ 𝐸
14
exp (𝑖 (Ω

4
− 𝜔
2
) 𝑇
0
) + 𝑐𝑐,

(13b)

𝑢
32
= 𝐸
15
exp (𝑖𝜔

3
𝑇
0
) + 𝐸
16
exp (𝑖 (Ω

1
+ 𝜔
3
) 𝑇
0
)

+ 𝐸
17
exp (𝑖 (Ω

1
− 𝜔
3
) 𝑇
0
) + 𝐸
18
exp (𝑖 (Ω

2
+ 𝜔
3
) 𝑇
0
)

+ 𝐸
19
exp (𝑖 (Ω

2
− 𝜔
3
) 𝑇
0
) + 𝐸
20
exp (𝑖 (Ω

4
+ 𝜔
3
) 𝑇
0
)

+ 𝐸
21
exp (𝑖 (Ω

4
− 𝜔
3
) 𝑇
0
) + 𝐸
22
exp (𝑖Ω

3
𝑇
0
) + 𝑐𝑐,

(13c)

where 𝐸
𝑖
(𝑖 = 1, 2, . . . , 22) are the complex functions in 𝑇

1

and 𝑇
2
. From (12a)–(13c) into (11a), (11b), and (11c) and elim-

inating the secular terms, the second-order approximation is
given by

𝑢
13
(𝑇
0
, 𝑇
1
, 𝑇
2
) = 𝐻

1
exp (𝑖𝜔

2
𝑇
0
) + 𝐻
2
exp (𝑖𝜔

3
𝑇
0
)

+ 𝐻
3
exp (3𝑖𝜔

1
𝑇
0
) + 𝐻
4
exp (3𝑖𝜔

2
𝑇
0
)

+ 𝐻
5
exp (3𝑖𝜔

3
𝑇
0
)

+ 𝐻
6
exp (𝑖 (𝜔

2
± 2𝜔
1
) 𝑇
0
)

+ 𝐻
7
exp (𝑖 (𝜔

3
± 2𝜔
1
) 𝑇
0
)

+ 𝐻
8
exp (𝑖 (2𝜔

2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
9
exp (𝑖 (2𝜔

3
± 𝜔
1
) 𝑇
0
)

+ 𝐻
10
exp (𝑖 (𝜔

2
± 2𝜔
3
) 𝑇
0
)

+ 𝐻
11
exp (𝑖 (𝜔

3
± 2𝜔
2
) 𝑇
0
)

+ 𝐻
12
exp (𝑖 (𝜔

3
± 𝜔
2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
13
exp (𝑖Ω

3
𝑇
0
)

+ 𝐻
14
exp (𝑖 (Ω

3
± Ω
1
) 𝑇
0
)

+ 𝐻
15
exp (𝑖 (Ω

3
± Ω
2
) 𝑇
0
)

+ 𝐻
16
exp (𝑖 (Ω

3
± Ω
4
) 𝑇
0
)

+ 𝐻
17
exp (𝑖 (Ω

1
± 𝜔
1
) 𝑇
0
)

+ 𝐻
18
exp (𝑖 (Ω

2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
19
exp (𝑖 (Ω

4
± 𝜔
1
) 𝑇
0
)

+ 𝐻
20
exp (𝑖 (2Ω

1
± 𝜔
1
) 𝑇
0
)

+ 𝐻
21
exp (𝑖 (2Ω

2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
22
exp (𝑖 (2Ω

4
± 𝜔
1
) 𝑇
0
)

+ 𝐻
23
exp (𝑖 (Ω

2
± Ω
1
± 𝜔
1
) 𝑇
0
)

+ 𝐻
24
exp (𝑖 (Ω

4
± Ω
1
± 𝜔
1
) 𝑇
0
)

+ 𝐻
25
exp (𝑖 (Ω

4
± Ω
2
± 𝜔
1
) 𝑇
0
) + 𝑐𝑐,

(14a)
𝑢
23
(𝑇
0
, 𝑇
1
, 𝑇
2
) = 𝐻

26
exp (𝑖𝜔

1
𝑇
0
) + 𝐻
27
exp (𝑖𝜔

3
𝑇
0
)

+ 𝐻
28
exp (3𝑖𝜔

1
𝑇
0
) + 𝐻
29
exp (3𝑖𝜔

2
𝑇
0
)
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+ 𝐻
30
exp (3𝑖𝜔

3
𝑇
0
)

+ 𝐻
31
exp (𝑖 (𝜔

2
± 2𝜔
1
) 𝑇
0
)

+ 𝐻
32
exp (𝑖 (2𝜔

2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
33
exp (𝑖 (𝜔

3
± 2𝜔
1
) 𝑇
0
)

+ 𝐻
34
exp (𝑖 (2𝜔

3
± 𝜔
1
) 𝑇
0
)

+ 𝐻
35
exp (𝑖 (𝜔

2
± 2𝜔
3
) 𝑇
0
)

+ 𝐻
36
exp (𝑖 (2𝜔

2
± 𝜔
3
) 𝑇
0
)

+ 𝐻
37
exp (𝑖 (𝜔

3
± 𝜔
2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
38
exp (𝑖Ω

3
𝑇
0
)

+ 𝐻
39
exp (𝑖 (Ω

3
± Ω
1
) 𝑇
0
)

+ 𝐻
40
exp (𝑖 (Ω

3
± Ω
2
) 𝑇
0
)

+ 𝐻
41
exp (𝑖 (Ω

4
± Ω
3
) 𝑇
0
)

+ 𝐻
42
exp (𝑖 (Ω

1
± 𝜔
2
) 𝑇
0
)

+ 𝐻
43
exp (𝑖 (Ω

2
± 𝜔
2
) 𝑇
0
)

+ 𝐻
44
exp (𝑖 (Ω

4
± 𝜔
2
) 𝑇
0
)

+ 𝐻
45
exp (𝑖 (2Ω

1
± 𝜔
2
) 𝑇
0
)

+ 𝐻
46
exp (𝑖 (2Ω

2
± 𝜔
2
) 𝑇
0
)

+ 𝐻
47
exp (𝑖 (2Ω

4
± 𝜔
2
) 𝑇
0
)

+ 𝐻
48
exp (𝑖 (Ω

2
± Ω
1
± 𝜔
2
) 𝑇
0
)

+ 𝐻
49
exp (𝑖 (Ω

4
± Ω
1
± 𝜔
2
) 𝑇
0
)

+ 𝐻
50
exp (𝑖 (Ω

4
± Ω
2
± 𝜔
2
) 𝑇
0
) + 𝑐𝑐,

(14b)
𝑢
33
(𝑇
0
, 𝑇
1
, 𝑇
2
) = 𝐻

51
exp (3𝑖𝜔

3
𝑇
0
) + 𝐻
52
exp (𝑖𝜔

1
𝑇
0
)

+ 𝐻
53
exp (3𝑖𝜔

1
𝑇
0
) + 𝐻
54
exp (𝑖𝜔

2
𝑇
0
)

+ 𝐻
55
exp (3𝑖𝜔

2
𝑇
0
)

+ 𝐻
56
exp (𝑖 (𝜔

2
± 2𝜔
1
) 𝑇
0
)

+ 𝐻
57
exp (𝑖 (2𝜔

2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
58
exp (𝑖 (𝜔

3
± 2𝜔
1
) 𝑇
0
)

+ 𝐻
59
exp (𝑖 (2𝜔

3
± 𝜔
1
) 𝑇
0
)

+ 𝐻
60
exp (𝑖 (𝜔

2
± 2𝜔
3
) 𝑇
0
)

+ 𝐻
61
exp (𝑖 (2𝜔

2
± 𝜔
3
) 𝑇
0
)

+ 𝐻
62
exp (𝑖 (𝜔

3
± 𝜔
2
± 𝜔
1
) 𝑇
0
)

+ 𝐻
63
exp (𝑖Ω

3
𝑇
0
)

+ 𝐻
64
exp (𝑖 (Ω

3
± Ω
1
) 𝑇
0
)

+ 𝐻
65
exp (𝑖 (Ω

3
± Ω
2
) 𝑇
0
)

+ 𝐻
66
exp (𝑖 (Ω

3
± Ω
4
) 𝑇
0
)

+ 𝐻
67
exp (𝑖 (Ω

1
± 𝜔
3
) 𝑇
0
)

+ 𝐻
68
exp (𝑖 (Ω

2
± 𝜔
3
) 𝑇
0
)

+ 𝐻
69
exp (𝑖 (Ω

4
± 𝜔
3
) 𝑇
0
)

+ 𝐻
70
exp (𝑖 (2Ω

1
± 𝜔
3
) 𝑇
0
)

+ 𝐻
71
exp (𝑖 (2Ω

2
± 𝜔
3
) 𝑇
0
)

+ 𝐻
72
exp (𝑖 (2Ω

4
± 𝜔
3
) 𝑇
0
)

+ 𝐻
73
exp (𝑖 (Ω

2
± Ω
1
± 𝜔
3
) 𝑇
0
)

+ 𝐻
74
exp (𝑖 (Ω

4
± Ω
1
± 𝜔
3
) 𝑇
0
)

+ 𝐻
75
exp (𝑖 (Ω

4
± Ω
2
± 𝜔
3
) 𝑇
0
) + 𝑐𝑐,

(14c)

where 𝐻
𝑖
(𝑖 = 1, 2, . . . , 75) are the complex functions in 𝑇

1

and 𝑇
2
. From the above derived solutions, the reported

resonance cases are the following.

(i) Primary resonance:Ω
1
≅ 𝜔
𝑛
,Ω
2
≅ 𝜔
𝑛
,Ω
3
≅ 𝜔
𝑛
,Ω
4
≅

𝜔
𝑛
, and 𝑛 = 1, 2, 3.

(ii) Subharmonic resonance: Ω
1
≅ 2𝜔
𝑛
, Ω
2
≅ 2𝜔
𝑛
, Ω
4
≅

2𝜔
𝑛
, and 𝑛 = 1, 2, 3.

(iii) Internal or secondary resonance: 𝜔
1
≅ 𝜔
2
, 𝜔
2
≅ 𝜔
3
,

𝜔
3
≅ 𝜔
1
, 𝜔
1
≅ 3𝜔
𝑠
, 𝜔
2
≅ 3𝜔
𝑟
, 𝜔
3
≅ 3𝜔
𝑚
, 𝑠 = 2, 3,

𝑟 = 1, 3, and𝑚 = 1, 2.
(iv) Combined resonance: 𝜔

3
± 𝜔
2
≅ 2𝜔
1
, 𝜔
3
± 𝜔
1
≅ 2𝜔
2
,

𝜔
1
±𝜔
2
≅ 2𝜔
3
,𝜔
2
±2𝜔
3
≅ 𝜔
1
,𝜔
3
±2𝜔
2
≅ 𝜔
1
,𝜔
3
±2𝜔
1
≅

𝜔
2
, 𝜔
1
± 2𝜔
3
≅ 𝜔
2
, 𝜔
2
± 2𝜔
1
≅ 𝜔
3
, 𝜔
1
± 2𝜔
2
≅ 𝜔
3
,

Ω
3
± Ω
𝑡
≅ 𝜔
𝑛
, Ω
4
± Ω
𝑚
≅ 2𝜔
𝑛
, Ω
2
± Ω
1
≅ 2𝜔
𝑛
,

𝑡 = 1, 2, 4, 𝑚 = 1, 2, and 𝑛 = 1, 2, 3.
(v) Simultaneous or incident resonance.

Any combination of the previous resonance cases is con-
sidered as simultaneous resonance.

3. Stability Analysis

Thebehavior of such a system can be very complex, especially
when the natural frequencies and the forcing frequency sat-
isfy certain internal and external resonance conditions. The
study is focused on the case of 1 : 1 : 3 primary resonance and
internal resonance, where Ω

3
≅ 𝜔
1
, 𝜔
2
≅ 𝜔
1
, and 𝜔

3
≅ 3𝜔
1
.

To describe how close the frequencies are to the resonance
conditions, we introduce detuning parameters as follows:

Ω
3
= 𝜔
1
+ 𝜎
1
= 𝜔
1
+ 𝜀𝜎̂
1
,

𝜔
2
= 𝜔
1
+ 𝜎
2
= 𝜔
1
+ 𝜀𝜎̂
2
,

𝜔
3
= 3𝜔
1
+ 𝜎
3
= 3𝜔
1
+ 𝜀𝜎̂
3
,

(15)
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where𝜎
1
and𝜎
2
,𝜎
3
are called the external and internal detun-

ing parameters, respectively. Eliminating the secular terms
leads to solvability conditions for the first- and second-order
expansions as follows:

2𝑖𝜔
1
𝐷
1
𝐴
1
= −𝑖𝜇

1
𝜔
1
𝐴
1
+
𝑓
1

2
exp (𝑖𝜎̂

1
𝑇
1
) , (16a)

2𝑖𝜔
2
𝐷
1
𝐴
2
= −𝑖𝜇

2
𝜔
2
𝐴
2
+
𝑓
2

2
exp (𝑖 (𝜎̂

1
− 𝜎̂
2
) 𝑇
1
) , (16b)

2𝑖𝜔
3
𝐷
1
𝐴
3
= −𝑖𝜇

3
𝜔
3
𝐴
3
, (16c)

2𝑖𝜔
1
𝐷
2
𝐴
1

= −𝐷
2

1
𝐴
1
− 𝜇
1
𝐷
1
𝐴
1

− {
𝑓
2

11

2 (Ω
2

1
− 4𝜔
2

1
)
+

𝑓
2

12

2 (Ω
2

2
− 4𝜔
2

1
)
+

𝑓
2

14

2 (Ω
2

4
− 4𝜔
2

1
)
}𝐴
1

− {2𝛼
1
𝐴
1
𝐴
1
+ 2𝛼
6
𝐴
3
𝐴
3
+ 3𝛼
8
𝐴
2
𝐴
2
}𝐴
2
exp (𝑖𝜎̂

2
𝑇
1
)

− 𝛼
1
𝐴
2

1
𝐴
2
exp (−𝑖𝜎̂

2
𝑇
1
) − 𝛼
2
𝐴
2

1
𝐴
3
exp (𝑖𝜎̂

3
𝑇
1
)

− {2𝛼
3
𝐴
2
𝐴
2
+ 2𝛼
5
𝐴
3
𝐴
3
+ 3𝛼
7
𝐴
1
𝐴
1
}𝐴
1

− 𝛼
4
𝐴
2

2
𝐴
3
exp (𝑖 (𝜎̂

3
− 2𝜎̂
2
) 𝑇
1
)

− 𝛼
10
𝐴
1
𝐴
2
𝐴
3
exp (𝑖 (𝜎̂

3
− 𝜎̂
2
) 𝑇
1
) ,

(17a)
2𝑖𝜔
2
𝐷
2
𝐴
2

= −𝐷
2

1
𝐴
2
− 𝜇
2
𝐷
1
𝐴
2

− {
𝑓
2

21

2 (Ω
2

1
− 4𝜔
2

2
)
+

𝑓
2

22

2 (Ω
2

2
− 4𝜔
2

2
)
+

𝑓
2

24

2 (Ω
2

4
− 4𝜔
2

2
)
}𝐴
2

− {2𝛽
3
𝐴
2
𝐴
2
+ 2𝛽
5
𝐴
3
𝐴
3
+ 3𝛽
7
𝐴
1
𝐴
1
}

× 𝐴
1
exp (−𝑖𝜎̂

2
𝑇
1
)

− 𝛽
3
𝐴
2

2
𝐴
1
exp (𝑖𝜎̂

2
𝑇
1
) − 𝛽
1
𝐴
2

1
𝐴
2
exp (−2𝑖𝜎̂

2
𝑇
1
)

− {2𝛽
6
𝐴
3
𝐴
3
+ 2𝛽
1
𝐴
1
𝐴
1
+ 3𝛽
8
𝐴
2
𝐴
2
}𝐴
2

− 𝛽
2
𝐴
2

1
𝐴
3
exp (𝑖 (𝜎̂

3
− 𝜎̂
2
) 𝑇
1
)

− 𝛽
10
𝐴
1
𝐴
2
𝐴
3
exp (𝑖 (𝜎̂

3
− 2𝜎̂
2
) 𝑇
1
)

− 𝛽
4
𝐴
2

2
𝐴
3
exp (𝑖 (𝜎̂

3
− 3𝜎̂
2
) 𝑇
1
) ,

(17b)
2𝑖𝜔
3
𝐷
2
𝐴
3

= −𝐷
2

1
𝐴
3
− 𝜇
3
𝐷
1
𝐴
3

− {
𝑓
2

31

2 (Ω
2

1
− 4𝜔
2

3
)
+

𝑓
2

32

2 (Ω
2

2
− 4𝜔
2

3
)
+

𝑓
2

34

2 (Ω
2

4
− 4𝜔
2

3
)
}𝐴
3

− 𝛾
10
𝐴
1
𝐴
2
𝐴
3
exp (−𝑖𝜎̂

2
𝑇
1
)

− 𝛾
10
𝐴
1
𝐴
2
𝐴
3
exp (𝑖𝜎̂

2
𝑇
1
)

− 𝛾
7
𝐴
3

1
exp (−𝑖𝜎̂

3
𝑇
1
)

− {2𝛾
2
𝐴
1
𝐴
1
+ 2𝛾
4
𝐴
2
𝐴
2
+ 3𝛾
9
𝐴
3
𝐴
3
}𝐴
3

− 𝛾
1
𝐴
2

1
𝐴
2
exp (𝑖 (𝜎̂

2
− 𝜎̂
3
) 𝑇
1
)

− 𝛾
3
𝐴
2

2
𝐴
1
exp (𝑖 (2𝜎̂

2
− 𝜎̂
3
) 𝑇
1
)

− 𝛾
8
𝐴
3

2
exp (𝑖 (3𝜎̂

2
− 𝜎̂
3
) 𝑇
1
) .

(17c)

From (7a), multiplying both sides by 2𝑖𝜔
𝑛
, we get

2𝑖𝜔
𝑛

𝑑𝐴
𝑛

𝑑𝑡
= 𝜀2𝑖𝜔

𝑛
𝐷
1
𝐴
𝑛
+ 𝜀
2
2𝑖𝜔
𝑛
𝐷
2
𝐴
𝑛
,

𝑛 = 1, 2, 3.

(18)

To analyze the solutions of (16a)–(17c), we express 𝐴
𝑛
in the

polar form as follows:

𝐴
𝑛
(𝑇
1
, 𝑇
2
) =

𝑎
𝑛

2
exp (𝑖𝜑

𝑛
) ,

𝑎
𝑛
= 𝜀𝑎
𝑛
, (𝑛 = 1, 2, 3) ,

(19)

where 𝑎
𝑛
and 𝜑

𝑛
are the steady-state amplitudes and phases

of the motion, respectively. Substituting (16a)–(17c) and (19)
into (18) and equating the real and imaginary parts, we obtain
the following equations describing the modulation of the
amplitudes and phases of the response:

̇𝑎
1
= −

𝜇
1

2
𝑎
1
+ {

𝑓
1

2𝜔
1

−
𝜎
1
𝑓
1

4𝜔
2

1

} sin 𝜃
1

+
𝜇
1
𝑓
1

8𝜔
2

1

cos 𝜃
1
−
𝛼
1

8𝜔
1

𝑎
2

1
𝑎
2
sin 𝜃
2

−
𝛼
2

8𝜔
1

𝑎
2

1
𝑎
3
sin 𝜃
3
−
𝛼
4

8𝜔
1

𝑎
2

2
𝑎
3
sin (𝜃
3
− 2𝜃
2
)

−
𝛼
6

4𝜔
1

𝑎
2

3
𝑎
2
sin 𝜃
2
−
3𝛼
8

8𝜔
1

𝑎
3

2
sin 𝜃
2

−
𝛼
10

8𝜔
1

𝑎
1
𝑎
2
𝑎
3
sin (𝜃
3
− 𝜃
2
) ,

𝑎
1
𝜑̇
1
= {−

𝜇
2

1

8𝜔
1

+
Γ
1

2𝜔
1

}𝑎
1
− {

𝑓
1

2𝜔
1

−
𝜎
1
𝑓
1

4𝜔
2

1

} cos 𝜃
1

+
𝜇
1
𝑓
1

8𝜔
2

1

sin 𝜃
1
+
3𝛼
1

8𝜔
1

𝑎
2

1
𝑎
2
cos 𝜃
2
+
𝛼
2

8𝜔
1

𝑎
2

1
𝑎
3
cos 𝜃
3

+
𝛼
3

4𝜔
1

𝑎
1
𝑎
2

2
+
𝛼
4

8𝜔
1

𝑎
2

2
𝑎
3
cos (𝜃

3
− 2𝜃
2
)

+
𝛼
5

4𝜔
1

𝑎
1
𝑎
2

3
+
𝛼
6

4𝜔
1

𝑎
2

3
𝑎
2
cos 𝜃
2
+
3𝛼
7

8𝜔
1

𝑎
3

1
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+
3𝛼
8

8𝜔
1

𝑎
3

2
cos 𝜃
2
+
𝛼
10

8𝜔
1

𝑎
1
𝑎
2
𝑎
3
cos (𝜃

3
− 𝜃
2
) ,

̇𝑎
2
= −

𝜇
2

2
𝑎
2
+ {

𝑓
2

2𝜔
2

−
(𝜎
1
− 𝜎
2
) 𝑓
2

4𝜔
2

2

} sin (𝜃
1
− 𝜃
2
)

+
𝜇
2
𝑓
2

8𝜔
2

2

cos (𝜃
1
− 𝜃
2
) +

𝛽
1

8𝜔
2

𝑎
2

1
𝑎
2
sin 2𝜃

2

−
𝛽
2

8𝜔
2

𝑎
2

1
𝑎
3
sin (𝜃
3
− 𝜃
2
) +

𝛽
3

8𝜔
2

𝑎
2

2
𝑎
1
sin 𝜃
2

−
𝛽
4

8𝜔
2

𝑎
2

2
𝑎
3
sin (𝜃
3
− 3𝜃
2
) +

𝛽
5

4𝜔
2

𝑎
2

3
𝑎
1
sin 𝜃
2

+
3𝛽
7

8𝜔
2

𝑎
3

1
sin 𝜃
2
−
𝛽
10

8𝜔
2

𝑎
1
𝑎
2
𝑎
3
sin (𝜃
3
− 2𝜃
2
) ,

𝑎
2
𝜑̇
2
= {−

𝜇
2

2

8𝜔
2

+
Γ
2

2𝜔
2

}𝑎
2

+ {
(𝜎
1
− 𝜎
2
) 𝑓
2

4𝜔
2

2

−
𝑓
2

2𝜔
2

} cos (𝜃
1
− 𝜃
2
)

+
𝜇
2
𝑓
2

8𝜔
2

2

sin (𝜃
1
− 𝜃
2
) +

𝛽
1

8𝜔
2

𝑎
2

1
𝑎
2
cos 2𝜃

2

+
𝛽
1

4𝜔
2

𝑎
2

1
𝑎
2
+
𝛽
2

8𝜔
2

𝑎
2

1
𝑎
3
cos (𝜃

3
− 𝜃
2
)

+
3𝛽
3

8𝜔
2

𝑎
2

2
𝑎
1
cos 𝜃
2
+
𝛽
4

8𝜔
2

𝑎
2

2
𝑎
3
cos (𝜃

3
− 3𝜃
2
)

+
𝛽
5

4𝜔
2

𝑎
2

3
𝑎
1
cos 𝜃
2
+
𝛽
6

4𝜔
2

𝑎
2

3
𝑎
2
+
3𝛽
7

8𝜔
2

𝑎
3

1
cos 𝜃
2

+
3𝛽
8

8𝜔
2

𝑎
3

2
+
𝛽
10

8𝜔
2

𝑎
1
𝑎
2
𝑎
3
cos (𝜃

3
− 2𝜃
2
) ,

̇𝑎
3
= −

𝜇
3

2
𝑎
3
−
𝛾
1

8𝜔
3

𝑎
2

1
𝑎
2
sin (𝜃
2
− 𝜃
3
)

−
𝛾
3

8𝜔
3

𝑎
2

2
𝑎
1
sin (2𝜃

2
− 𝜃
3
) +

𝛾
7

8𝜔
3

𝑎
3

1
sin 𝜃
3

−
𝛾
8

8𝜔
3

𝑎
3

2
sin (3𝜃

2
− 𝜃
3
) ,

𝑎
3
𝜑̇
3
= {−

𝜇
2

3

8𝜔
3

+
Γ
3

2𝜔
3

}𝑎
3
+
𝛾
1

8𝜔
3

𝑎
2

1
𝑎
2
cos (𝜃

2
− 𝜃
3
)

+
𝛾
2

4𝜔
3

𝑎
2

1
𝑎
3
+
𝛾
3

8𝜔
3

𝑎
2

2
𝑎
1
cos (2𝜃

2
− 𝜃
3
)

+
𝛾
4

4𝜔
3

𝑎
2

2
𝑎
3
+
𝛾
7

8𝜔
3

𝑎
3

1
cos 𝜃
3

+
𝛾
8

8𝜔
3

𝑎
3

2
cos (3𝜃

2
− 𝜃
3
) +

3𝛾
9

8𝜔
3

𝑎
3

3

+
𝛾
10

4𝜔
3

𝑎
1
𝑎
2
𝑎
3
cos 𝜃
2
,

(20)

where

Γ
𝑛
= {

𝑓
2

𝑛1

2 (Ω
2

1
− 4𝜔2
𝑛
)
+

𝑓
2

𝑛2

2 (Ω
2

2
− 4𝜔2
𝑛
)
+

𝑓
2

𝑛4

2 (Ω
2

4
− 4𝜔2
𝑛
)
} ,

𝑛 = 1, 2, 3,

𝜃
1
= 𝜎̂
1
𝑇
1
− 𝜑
1
,

𝜃
2
= 𝜎̂
2
𝑇
1
+ 𝜑
2
− 𝜑
1
,

𝜃
3
= 𝜎̂
3
𝑇
1
+ 𝜑
3
− 3𝜑
1
.

(21)

Steady-state solutions of the system correspond to the fixed
points of (20), which in turn correspond to

𝜑̇
1
= 𝜎
1
,

𝜑̇
2
= 𝜎
1
− 𝜎
2
,

𝜑̇
3
= 3𝜎
1
− 𝜎
3
.

(22)

Hence, the fixed points of (20) are given by

−
𝜇
1

2
𝑎
1
+ {

𝑓
1

2𝜔
1

−
𝜎
1
𝑓
1

4𝜔
2

1

} sin 𝜃
1

+
𝜇
1
𝑓
1

8𝜔
2

1

cos 𝜃
1
−
𝛼
1

8𝜔
1

𝑎
2

1
𝑎
2
sin 𝜃
2

−
𝛼
2

8𝜔
1

𝑎
2

1
𝑎
3
sin 𝜃
3
−
𝛼
4

8𝜔
1

𝑎
2

2
𝑎
3
sin (𝜃
3
− 2𝜃
2
)

−
𝛼
6

4𝜔
1

𝑎
2

3
𝑎
2
sin 𝜃
2
−
3𝛼
8

8𝜔
1

𝑎
3

2
sin 𝜃
2

−
𝛼
10

8𝜔
1

𝑎
1
𝑎
2
𝑎
3
sin (𝜃
3
− 𝜃
2
) = 0,

𝑎
1
𝜎
1
+ {

𝜇
2

1

8𝜔
1

−
Γ
1

2𝜔
1

}𝑎
1

+ {
𝑓
1

2𝜔
1

−
𝜎
1
𝑓
1

4𝜔
2

1

} cos 𝜃
1
−
𝜇
1
𝑓
1

8𝜔
2

1

sin 𝜃
1

−
3𝛼
1

8𝜔
1

𝑎
2

1
𝑎
2
cos 𝜃
2
−
𝛼
2

8𝜔
1

𝑎
2

1
𝑎
3
cos 𝜃
3

−
𝛼
3

4𝜔
1

𝑎
1
𝑎
2

2
−
𝛼
4

8𝜔
1

𝑎
2

2
𝑎
3
cos (𝜃

3
− 2𝜃
2
) −

𝛼
5

4𝜔
1

𝑎
1
𝑎
2

3

−
𝛼
6

4𝜔
1

𝑎
2

3
𝑎
2
cos 𝜃
2
−
3𝛼
7

8𝜔
1

𝑎
3

1
−
3𝛼
8

8𝜔
1

𝑎
3

2
cos 𝜃
2

−
𝛼
10

8𝜔
1

𝑎
1
𝑎
2
𝑎
3
cos (𝜃

3
− 𝜃
2
) = 0,

−
𝜇
2

2
𝑎
2
+ {

𝑓
2

2𝜔
2

−
(𝜎
1
− 𝜎
2
) 𝑓
2

4𝜔
2

2

} sin (𝜃
1
− 𝜃
2
)

+
𝜇
2
𝑓
2

8𝜔
2

2

cos (𝜃
1
− 𝜃
2
)

+
𝛽
1

8𝜔
2

𝑎
2

1
𝑎
2
sin 2𝜃

2
−
𝛽
2

8𝜔
2

𝑎
2

1
𝑎
3
sin (𝜃
3
− 𝜃
2
)
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+
𝛽
3

8𝜔
2

𝑎
2

2
𝑎
1
sin 𝜃
2
−
𝛽
4

8𝜔
2

𝑎
2

2
𝑎
3
sin (𝜃
3
− 3𝜃
2
)

+
𝛽
5

4𝜔
2

𝑎
2

3
𝑎
1
sin 𝜃
2
+
3𝛽
7

8𝜔
2

𝑎
3

1
sin 𝜃
2

−
𝛽
10

8𝜔
2

𝑎
1
𝑎
2
𝑎
3
sin (𝜃
3
− 2𝜃
2
) = 0,

𝑎
2
(𝜎
2
− 𝜎
1
) − {

𝜇
2

2

8𝜔
2

−
Γ
2

2𝜔
2

}𝑎
2

+ {
(𝜎
1
− 𝜎
2
) 𝑓
2

4𝜔
2

2

−
𝑓
2

2𝜔
2

} cos (𝜃
1
− 𝜃
2
)

+
𝜇
2
𝑓
2

8𝜔
2

2

sin (𝜃
1
− 𝜃
2
) +

𝛽
1

8𝜔
2

𝑎
2

1
𝑎
2
cos 2𝜃

2

+
𝛽
1

4𝜔
2

𝑎
2

1
𝑎
2
+
𝛽
2

8𝜔
2

𝑎
2

1
𝑎
3
cos (𝜃

3
− 𝜃
2
)

+
3𝛽
3

8𝜔
2

𝑎
2

2
𝑎
1
cos 𝜃
2
+
𝛽
4

8𝜔
2

𝑎
2

2
𝑎
3
cos (𝜃

3
− 3𝜃
2
)

+
𝛽
5

4𝜔
2

𝑎
2

3
𝑎
1
cos 𝜃
2
+
𝛽
6

4𝜔
2

𝑎
2

3
𝑎
2
+
3𝛽
7

8𝜔
2

𝑎
3

1
cos 𝜃
2

+
3𝛽
8

8𝜔
2

𝑎
3

2
+
𝛽
10

8𝜔
2

𝑎
1
𝑎
2
𝑎
3
cos (𝜃

3
− 2𝜃
2
) = 0,

−
𝜇
3

2
𝑎
3
−
𝛾
1

8𝜔
3

𝑎
2

1
𝑎
2
sin (𝜃
2
− 𝜃
3
) −

𝛾
3

8𝜔
3

𝑎
2

2
𝑎
1
sin (2𝜃

2
− 𝜃
3
)

+
𝛾
7

8𝜔
3

𝑎
3

1
sin 𝜃
3
−
𝛾
8

8𝜔
3
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(23)

There are six possibilities besides the trivial solution as
follows:

(1) 𝑎
1
̸= 0, 𝑎
2
= 0, 𝑎

3
= 0 (single mode),

(2) 𝑎
2
̸= 0, 𝑎
1
= 0, 𝑎

3
= 0 (single mode),

(3) 𝑎
1
̸= 0, 𝑎
2
̸= 0, 𝑎
3
= 0 (two modes),

(4) 𝑎
1
̸= 0, 𝑎
3
̸= 0, 𝑎
2
= 0 (two modes),

(5) 𝑎
2
̸= 0, 𝑎
3
̸= 0, 𝑎
1
= 0 (two modes),

(6) 𝑎
1
̸= 0, 𝑎
2
̸= 0, 𝑎
3
̸= 0 (three modes).

Case 1. In this case, where 𝑎
2
= 0, 𝑎

3
= 0, the frequency

response equation is given by
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(24)

Case 2. In this case, where 𝑎
1
= 0, 𝑎

3
= 0, the frequency

response equation is given by
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Case 3. In this case, where 𝑎
3
= 0, the frequency response

equations are given by
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Case 4. In this case, where 𝑎
2
= 0, the frequency response

equations are given by
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Figure 2: Time response and phase-plane diagrams of the system for nonresonance case.
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Case 5. In this case, where 𝑎
1
= 0, the frequency response

equations are given by
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Case 6. In this case, where 𝑎
1
̸= 0, 𝑎
2
̸= 0, and 𝑎

3
̸= 0, this is the

practical case, the frequency response equations are given by
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Figure 3: Time response and phase-plane diagrams of the system at simultaneous resonance case, Ω
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Figure 4: Comparison between numerical solution (using RKM) and analytical solution (using perturbation method) of the system at
resonance case, Ω
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= [

𝑓
1

2𝜔
1

−
𝜎
1
𝑓
1

4𝜔
2

1

] ,

𝑅
2
= [

𝜇
2

1

4
+
𝜇
4

1

64𝜔
2

1

+
Γ
2

1

4𝜔
2

1

−
Γ
1
𝜇
2

1

8𝜔
2

1

] ,

𝑅
3
= [

3𝛼
7
𝜇
2

1

32𝜔
2

1

−
3𝛼
7
Γ
1

8𝜔
2

1

] ,

𝑅
4
= [

𝛼
2

10

64𝜔
2

1

+
3𝛼
1
𝛼
6

16𝜔
2

1

+
𝛼
2
𝛼
4

32𝜔
2

1

] ,

𝑅
5
= [

3𝛼
6
𝛼
8

16𝜔
2

1

+
𝛼
2

4

64𝜔
2

1

] ,

𝑅
6
= [

3𝛼
1
𝛼
4

32𝜔
2

1

+
3𝛼
2
𝛼
8

32𝜔
2

1

] ,

𝑄
1
= [

𝑓
2

2𝜔
2

−
(𝜎
1
− 𝜎
2
) 𝑓
2

4𝜔
2

2

] ,
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Figure 5: Time response of composite laminated rectangular plate using RKM and FDM.

𝑄
2
= [

𝜇
2

2

4
+
𝜇
4

2

64𝜔
2

2

+
Γ
2

2

4𝜔
2

2

−
Γ
2
𝜇
2

2

8𝜔
2

2

] ,

𝑄
3
= [

3𝛽
8
Γ
2

8𝜔
2

2

−
3𝛽
8
𝜇
2

2

32𝜔
2

2

] ,

𝑄
4
= [

𝛽
2

10

64𝜔
2

2

+
3𝛽
3
𝛽
5

16𝜔
2

2

+
𝛽
2
𝛽
4

32𝜔
2

2

] ,

𝑄
5
= [

𝛽
2

1

64𝜔
2

2

+
9𝛽
3
𝛽
7

32𝜔
2

2

] ,

𝑄
6
= [

𝛽
2

2

64𝜔
2

2

+
3𝛽
5
𝛽
7

16𝜔
2

2

] ,

𝑄
7
= [

3𝛽
2
𝛽
3

32𝜔
2

2

+
3𝛽
4
𝛽
7

32𝜔
2

2

+
𝛽
1
𝛽
10

32𝜔
2

2

] ,

𝑄
8
= [

3𝛽
3
𝛽
10

32𝜔
2

2

+
𝛽
1
𝛽
4

32𝜔
2

2

] ,

𝑄
9
= [

𝛽
2
𝛽
10

32𝜔
2

2

+
𝛽
1
𝛽
5

16𝜔
2

2

] ,

𝑄
10
= [

3𝛽
7
𝛽
10

32𝜔
2

2

+
𝛽
1
𝛽
2

32𝜔
2

2

] ,

𝐾
1
= [

𝜇
2

3

4
+
𝜇
4

3

64𝜔
2

3

+
Γ
2

3

4𝜔
2

3

−
Γ
3
𝜇
2

3

8𝜔
2

3

] ,

𝐾
2
= [

3𝛾
9
Γ
3

8𝜔
2

3

−
3𝛾
9
𝜇
2

3

32𝜔
2

3

] ,

𝐾
3
= [

𝛾
2

1

64𝜔
2

3

+
𝛾
3
𝛾
7

32𝜔
2

3

] ,

𝐾
4
= [

𝛾
2

3

64𝜔
2

3

+
𝛾
1
𝛾
8

32𝜔
2

3

] ,

𝐾
5
= [

𝛾
1
𝛾
3

32𝜔
2

3

+
𝛾
7
𝛾
8

32𝜔
2

3

] .

(30)
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Figure 6: Comparison between analytical prediction using multiple time scale and numerical integration of the first mode.
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Figure 7: Effects of the linear damping 𝜇
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Figure 8: Effects of the natural frequency 𝜔
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Figure 10: Effects of the nonlinear parameter 𝛼
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Figure 11: Effects of the parametric excitation 𝑓
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Figure 12: Comparison between analytical prediction using multiple time scale and numerical integration of the second mode.
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Figure 15: Effects of the natural frequency 𝜔
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Figure 16: Effects of the external excitation 𝑓
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In the frequency response curves, the stable (unstable)
steady-state solutions have been represented by solid (dotted)
lines.

4. Numerical Results and Discussion

To study the behavior of the system, the Runge-Kutta fourth-
order method (RKM) was applied to (4a), (4b), and (4c)

governing the oscillating system. A good criterion of both
stability and dynamic chaos is the phase plane trajectories.
Figure 2 illustrates the response and the phase-plane for the
nonresonant system at some practical values of the equation
parameters: 𝜇

1
= 0.05, 𝜇

2
= 0.05, 𝜇

3
= 0.05, 𝛼

1
= 𝛽
1
= 𝛾
1
=

1.5, 𝛼
2
= 𝛽
2
= 𝛾
2
= 1.9, 𝛼

3
= 𝛽
3
= 𝛾
3
= 0.4, 𝛼

4
= 𝛽
4
= 𝛾
4
=

0.6, 𝛼
5
= 𝛽
5
= 𝛾
5
= 0.6, 𝛼

6
= 𝛽
6
= 𝛾
6
= 0.2, 𝛼

7
= 𝛽
7
= 𝛾
7
=

0.01, 𝛼
8
= 𝛽
8
= 𝛾
8
= 0.01, 𝛼

9
= 𝛽
9
= 𝛾
9
= 0.4, 𝛼

10
= 𝛽
10
=

𝛾
10
= 1.8, Ω

1
= 6.4, Ω

2
= 6.1, Ω

3
= 5.7, Ω

4
= 2, 𝜔

1
= 4.7,



Mathematical Problems in Engineering 17

−2 −1 0 1 2
0

2

4

6

A
m

pl
itu

de
s

𝜎1

a1

a1

a2
a2

a3
a3

Figure 17: Effects of the detuning parameter 𝜎
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Figure 18: Effects of the external excitation force 𝑓
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𝜔
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= 13.1, 𝑓

1
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2
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3
= 20.5, 𝑓
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= 𝑓
21
= 𝑓
31
=

0.1,𝑓
12
= 𝑓
22
= 𝑓
32
= 0.2, and𝑓

14
= 𝑓
24
= 𝑓
34
= 0.5. Figure 3

shows the steady-state amplitudes and phase plane of the
system at simultaneous resonance caseΩ

3
≅ 𝜔
1
,𝜔
2
≅ 𝜔
1
, and

𝜔
3
≅ 3𝜔
1
. It is clear from Figure 3 that the steady-state ampli-

tude of the first, second, and thirdmodes is increased to about

370%, 890%, and 260%, respectively, of its value shown in
Figure 2. Also, it can be seen that the time response of the
system is tuned with multilimit cycle.

It is quite clear that such case is undesirable in the
design of such system because it represents one of the worst
behaviors of the system. Such case should be avoided as
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Figure 19: Effects of the nonlinear parameters (𝛼
1
, 𝛽
1
, and 𝛾

1
coupling terms).

working condition for the system. It is advised for such system
not to have 𝜔

2
= 𝜔
1
or 𝜔
3
= 3𝜔
1
. Figure 4 shows the com-

parison between numerical integration for the system equa-
tion (4a), (4b), and (4c) solid lines and the amplitude-
phase modulating equation (20) dashed lines. We found
that all predictions from analytical solutions dashed lines
are in good agreement with the numerical simulation solid
lines.

4.1. FDM with Approximation O(𝑐2). The infinite equations
(2a)–(2e) will be solved via a finite differencemethod (FDM).
We briefly describe the procedure here. More details are
available in [23, 26].The infinite dimensional equations (2a)–
(2e) can be reduced to the finite dimensional one via the finite
difference method with second-order approximation 𝑂(𝑐2).
Namely, at each mesh node the following system of ordinary

differential equations is obtained:

𝐿
1,𝑐
(𝑁
𝑥𝑥
, 𝑁
𝑥𝑦
) = 𝐼
0
(𝑢̈
0
)
𝑖,𝑗
+ 𝐽
1
( ̈𝜙
𝑥
)
𝑖,𝑗

−
2

3ℎ2𝑐
𝐼
3
((𝑤̈
0
)
𝑖+1,𝑗

− (𝑤̈
0
)
𝑖−1,𝑗

) ,

𝐿
2,𝑐
(𝑁
𝑥𝑦
, 𝑁
𝑦𝑦
) = 𝐼
0
(V̈
0
)
𝑖,𝑗
+ 𝐽
1
( ̈𝜙
𝑦
)
𝑖,𝑗

−
2

3ℎ2𝑐
𝐼
3
((𝑤̈
0
)
𝑖,𝑗+1

− (𝑤̈
0
)
𝑖,𝑗−1

) ,

𝐿
3,𝑐
(𝑄
𝑥
, 𝑄
𝑦
, 𝑁
𝑥𝑥
, 𝑤
0
, 𝑁
𝑥𝑦
)

= 𝐼
0
(𝑤̈
0
)
𝑖,𝑗
−

16

9ℎ4𝑐2
𝐼
6
((𝑤̈
0
)
𝑖+1,𝑗

− 2(𝑤̈
0
)
𝑖,𝑗
+ (𝑤̈
0
)
𝑖+1,𝑗

+(𝑤̈
0
)
𝑖,𝑗+1

−2(𝑤̈
0
)
𝑖,𝑗
+(𝑤̈
0
)
𝑖,𝑗+1

)



Mathematical Problems in Engineering 19

−2 −1 0 1

3

4

5

6

10

5

−1 0 1
0.5

1

1.5

2

2.5

5

10

−2 −1 0 1

0.2

0.6

1

5

10

𝜎1

𝜎1𝜎1

a 2a 1
 

a 3

𝛼2 = 0.1
𝛽2 = 0.1

𝛾2 = 0.1

Figure 20: Effects of the nonlinear parameters (𝛼
2
, 𝛽
2
, and 𝛾

2
coupling terms).

+
4

3ℎ2𝑐2
𝐼
3
((𝑢̈
0
)
𝑖+1,𝑗

− (𝑢̈
0
)
𝑖−1,𝑗

+ (V̈
0
)
𝑖,𝑗+1

− (V̈
0
)
𝑖,𝑗−1

)

+
𝐽
4

2𝑐
(( ̈𝜙
𝑥
)
𝑖+1,𝑗

− ( ̈𝜙
𝑥
)
𝑖−1,𝑗

+ ( ̈𝜙
𝑦
)
𝑖,𝑗+1

− ( ̈𝜙
𝑦
)
𝑖,𝑗−1

) ,

𝐿
4,𝑐
(𝑀
𝑥𝑥
,𝑀
𝑥𝑦
) = 𝐽
1
(𝑢̈
0
)
𝑖,𝑗
+ 𝑘
2
( ̈𝜙
𝑥
)
𝑖,𝑗

−
2𝐽
4

3ℎ2𝑐
((𝑤̈
0
)
𝑖+1,𝑗

− (𝑤̈
0
)
𝑖−1,𝑗

) ,

𝐿
5,𝑐
(𝑀
𝑥𝑦
,𝑀
𝑦𝑦
) = 𝐽
1
(V̈
0
)
𝑖,𝑗
+ 𝑘
2
( ̈𝜙
𝑦
)
𝑖,𝑗

−
2𝐽
4

3ℎ2𝑐
((𝑤̈
0
)
𝑖,𝑗+1

− (𝑤̈
0
)
𝑖,𝑗−1

) ,

(𝑖 = 1, 2, . . . , 𝑛) , (𝑗 = 1, 2, . . . , 𝑛) ,

(31)

where 𝑛 denotes the partition number regarding a spatial
coordinate, 𝑐 is the computational step regarding spatial
coordinate, and 𝐿

1,𝑐
(⋅), 𝐿
2,𝑐
(⋅), 𝐿
3,𝑐
(⋅), 𝐿
4,𝑐
(⋅), and 𝐿

5,𝑐
(⋅) are

the difference operators as follows:

𝐿
1,𝑐
(𝑁
𝑥𝑥
, 𝑁
𝑥𝑦
) =

1

2𝑐
((𝑁
𝑥𝑥
)
𝑖+1,𝑗

− (𝑁
𝑥𝑥
)
𝑖−1,𝑗

+ (𝑁
𝑥𝑦
)
𝑖,𝑗+1

− (𝑁
𝑥𝑦
)
𝑖,𝑗−1

) ,

𝐿
2,𝑐
(𝑁
𝑥𝑦
, 𝑁
𝑦𝑦
) =

1

2𝑐
((𝑁
𝑥𝑦
)
𝑖+1,𝑗

− (𝑁
𝑥𝑦
)
𝑖−1,𝑗

+ (𝑁
𝑦𝑦
)
𝑖,𝑗+1

− (𝑁
𝑦𝑦
)
𝑖,𝑗−1

) ,
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𝐿
3,𝑐
(𝑄
𝑥
, 𝑄
𝑦
, 𝑁
𝑥𝑥
, 𝑤
0
, 𝑁
𝑥𝑦
) =

1

2𝑐
((𝑄
𝑥
)
𝑖+1,𝑗

− (𝑄
𝑥
)
𝑖−1,𝑗

+ (𝑄
𝑦
)
𝑖,𝑗+1

− (𝑄
𝑦
)
𝑖,𝑗−1

)

+ 𝑁
𝑥𝑥
(

(𝑤
0
)
𝑖−1,𝑗

− 2(𝑤
0
)
𝑖,𝑗
+ (𝑤
0
)
𝑖+1,𝑗

𝑐2
) + (

(𝑤
0
)
𝑖+1,𝑗

− (𝑤
0
)
𝑖−1,𝑗

2𝑐
)(

(𝑁
𝑥𝑥
)
𝑖+1,𝑗

− (𝑁
𝑥𝑥
)
𝑖−1,𝑗

2𝑐
)

+ 𝑁
𝑥𝑦
(

((𝑤
0
)
𝑗+1,𝑖+1

− 2(𝑤
0
)
𝑗+1,𝑖−1

) ((𝑤
0
)
𝑗−1,𝑖+1

− 2(𝑤
0
)
𝑗−1,𝑖−1

)

4𝑐2
)

+ (

(𝑤
0
)
𝑖,𝑗+1

− (𝑤
0
)
𝑖,𝑗−1

2𝑐
)(

(𝑁
𝑥𝑦
)
𝑖+1,𝑗

− (𝑁
𝑥𝑦
)
𝑖−1,𝑗

2𝑐
)

+ 𝑁
𝑥𝑦
(

((𝑤
0
)
𝑖+1,𝑗+1

− (𝑤
0
)
𝑖+1,𝑗−1

) − ((𝑤
0
)
𝑖−1,𝑗+1

− (𝑤
0
)
𝑖−1,𝑗−1

)

8𝑐3
)

+ (

(𝑤
0
)
𝑖+1,𝑗

− (𝑤
0
)
𝑖−1,𝑗

2𝑐
)(

(𝑁
𝑦𝑦
)
𝑖,𝑗+1

− (𝑁
𝑦𝑦
)
𝑖,𝑗−1

2𝑐
) + 𝑁

𝑦𝑦
(

(𝑤
0
)
𝑖,𝑗−1

− 2(𝑤
0
)
𝑖,𝑗
+ (𝑤
0
)
𝑖,𝑗+1

𝑐2
)

+ (

(𝑤
0
)
𝑖,𝑗+1

− (𝑤
0
)
𝑖,𝑗−1

2𝑐
)(

(𝑁
𝑦𝑦
)
𝑖,𝑗+1

− (𝑁
𝑦𝑦
)
𝑖,𝑗−1

2𝑐
) +

4

3ℎ2
(

(𝑃
𝑥𝑥
)
𝑖−1,𝑗

− 2(𝑃
𝑥𝑥
)
𝑖,𝑗
+ (𝑃
𝑥𝑥
)
𝑖+1,𝑗

𝑐2
)

+
4

3ℎ2
(2(

((𝑃
𝑥𝑦
)
𝑖+1,𝑗+1

− (𝑃
𝑥𝑦
)
𝑖−1,𝑗+1

) − ((𝑃
𝑥𝑦
)
𝑖+1,𝑗−1

− (𝑃
𝑥𝑦
)
𝑖−1,𝑗−1

)

8𝑐3
)+

(𝑃
𝑦𝑦
)
𝑖,𝑗−1

− 2(𝑃
𝑦𝑦
)
𝑖,𝑗
+ (𝑃
𝑦𝑦
)
𝑖,𝑗+1

𝑐2
)+ 𝑞,

𝐿
4,𝑐
(𝑀
𝑥𝑥
,𝑀
𝑥𝑦
) =

1

2𝑐
((𝑀
𝑥𝑥
)
𝑖+1,𝑗

− (𝑀
𝑥𝑥
)
𝑖−1,𝑗

+ (𝑀
𝑥𝑦
)
𝑖,𝑗+1

− (𝑀
𝑥𝑦
)
𝑖,𝑗−1

) − 𝑄
𝑥
,

𝐿
5,𝑐
(𝑀
𝑥𝑦
,𝑀
𝑦𝑦
) =

1

2𝑐
((𝑀
𝑥𝑦
)
𝑖+1,𝑗

− (𝑀
𝑥𝑦
)
𝑖−1,𝑗

+ (𝑀
𝑦𝑦
)
𝑖,𝑗+1

− (𝑀
𝑦𝑦
)
𝑖,𝑗−1

) − 𝑄
𝑦
.

(32)

The obtained system of (31) with the supplemented boundary
conditions equation and the initial conditions equation is
solved by the fourth-order Runge-Kutta method. Figure 5
shows a comparison between the time responses of the system
equations (4a), (4b), and (4c) using the Runge-Kutta of
fourth-order method and the time response of the problems
(31), using the finite difference method at the same values of
the parameters shown in Figure 2.

4.2. Frequency Response Curves. When the amplitude
achieves a constant nontrivial value, a steady-state vibration
exists. Using the frequency response equations we can assess
the influence of the damping coefficients, the nonlinear para-
meters, and the excitation amplitude on the steady-state
amplitudes. The frequency response equations (24)–(29) are
nonlinear equations in 𝑎

1
, 𝑎
2
, and 𝑎

3
which are solved

numerically.Thenumerical results are shown in Figures 6–25,
and in all figures the region of stability of the nonlinear
solutions is determined by applying the Routh-Hurwitz

criterion.The solid lines stand for the stable solution, and the
dotted lines stand for the unstable solution. From the geo-
metry of the figures, we observe that each curve is continuous
and has stable and unstable solutions.

4.2.1. Response Curve of Case 1. To check the accuracy of
the analytical solution derived by the multiple time scale
in predicting the amplitude of the first mode, we compare
the amplitude of the first mode obtained from frequency
response equation of Case 1 with values obtained from
numerical integration of (4a). Figure 6 shows a comparison
of these outputs for the first mode.The effects of the detuning
parameter 𝜎

1
on the steady-state amplitude of the first mode

for the stability first case, where 𝑎
1
̸= 0, 𝑎
2
= 0, and 𝑎

3
= 0, for

the parameters 𝜇
1
= 0.2, 𝛼

7
= 0.01, 𝜔

1
= 2.3, 𝑓

1
= 4, 𝑓

11
=

0.1, 𝑓
12
= 0.2, 𝑓

14
= 0.5, Ω

1
= 1, Ω

2
= 1.2, and Ω

4
= 1.4, as

shown in Figure 6.
Figures 7–11, show the effects of the damping coeffi-

cient 𝜇
1
, the first mode natural frequency 𝜔

1
, the external
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Figure 21: Effects of the nonlinear parameters (𝛼
8
, 𝛽
8
, and 𝛾

8
coupling terms).

excitation amplitude𝑓
1
, the nonlinear spring stiffness 𝛼

7
, and

the parametric excitation 𝑓
14
. Figures 7 and 8 show that the

steady-state amplitude 𝑎
1
is inversely proportional to 𝜇

1
and

𝜔
1
, and also for decreasing𝜇

1
or𝜔
1
the curve is bending to the

left. It is clear from Figure 9 that the steady-state amplitude
𝑎
1
is increasing for increasing value of external excitation

force 𝑓
1
, and the zone of instability is increased. Figure 10

shows that as the nonlinear spring stiffness 𝛼
7
is increased;

the continuous curve ismoved downwards. Also, the negative
and positive values of 𝛼

7
produce either hard or soft spring,

respectively, as the curve is either bent to the right or to the
left, leading to the appearance of the jump phenomenon.The
region of stability is increased for increasing value of𝛼

7
. From

Figure 11, we observe that for increasing value of parametric
excitation amplitude 𝑓

14
, the steady-state amplitude of the

first mode is increased, and the curve is shifted to the left.

4.2.2. Response Curve of Case 2. Figures 12–16, show the
frequency response curves for the stability of the second case,
where 𝑎

2
̸= 0, 𝑎

1
= 0, and 𝑎

3
= 0. Figure 12 shows a com-

parison of these outputs for the second mode. The effects of
the detuning parameter 𝜎

2
on the steady-state amplitude of

the second mode for the stability second case, where 𝑎
2
̸= 0,

𝑎
1
= 0, 𝑎

3
= 0, for the parameters: 𝜇

2
= 0.2, 𝛽

8
= 0.01,

𝜔
2
= 4, 𝑓

2
= 4, 𝑓

21
= 0.1, 𝑓

22
= 0.2, 𝑓

24
= 0.5, Ω

1
= 1, Ω

2
=

1.2, and Ω
4
= 1.4, as shown in Figure 12. It can be seen from

the figure thatmaximum steady-state amplitude occurs when
𝜔
2
≅ 𝜔
1
. Figure 13 shows that as the nonlinear spring stiffness

𝛽
8
is increased, the continuous curve is moved downwards.

Also, the positive and negative values of 𝛽
8
produce either

soft or hard spring, respectively, as the curve is either bent to
the left or to the right, leading to the appearance of the jump
phenomenon. Figures 14, 15, and 16 show that the steady-
state amplitude 𝑎

2
is inversely proportional to 𝜇

2
, 𝜔
2
and

directly proportional to the external excitation 𝑓
2
. Also, for

decreasing 𝜇
2
, 𝜔
2
the curve is bending to the left.

4.2.3. Response Curve of Case 6. Figures 17, 18, 19, 20, 21,
22, 23, 24, and 25 show that the frequency response curves
for practical case stability, where 𝑎

1
̸= 0, 𝑎
2
̸= 0, and 𝑎

3
̸= 0.
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Figure 17 shows that the effects of the detuning parameter
𝜎
1
on the amplitudes of the three modes. From this figure,

we observe that these modes intersect, and for positive value
of the detuning parameter 𝜎

1
the amplitudes are stable. For

negative value of the detuning parameter 𝜎
1
down to and

including −0.5 the system becomes unstable.
Figure 18 shows that the steady-state amplitudes of the

three modes 𝑎
1
, 𝑎
2
, and 𝑎

3
are directly proportional to

the external excitation force 𝑓
1
. Also, form this figure we

show that the stability region is decreased for increasing 𝑓
1
.

Figures 19–21 show that the steady-state amplitudes and
stability of the threemodes 𝑎

1
, 𝑎
2
, and 𝑎

3
are inversely propor-

tional to the nonlinear parameters (𝛼
1
, 𝛼
2
, 𝛼
8
), (𝛽
1
, 𝛽
2
, 𝛽
8
),

and (𝛾
1
, 𝛾
2
, 𝛾
8
), respectively.

Figures 22–24, show the effects of the nonlinear param-
eters (𝛼

7
, 𝛽
7
, 𝛾
7
), (𝛼
3
, 𝛽
3
, 𝛾
3
), and (𝛼

5
,𝛽
5
, 𝛾
5
) on the steady-

state amplitudes of the three modes. It is clear that the
stability regions are increased for increasing these nonlinear

parameters. For increasing value of linear viscous damping
coefficients, we note that the steady-state amplitudes are
increasing or decreasing for the first, second, and third
modes, respectively, as shown in Figure 25. The region of
stability system is increased for decreasing value of damping
coefficients.

4.3. Comparison Study. In the previous work [11], the chaotic
dynamics of a six-dimensional nonlinear system which
represents the averaged equation of a composite laminated
piezoelectric rectangular plate subjected to the transverse, in-
plane excitations and the excitation loaded by piezoelectric
layers are analyzed. The case of 1 : 2 : 4 internal resonances is
considered.

In our study, the nonlinear analysis and stability of
a composite laminated piezoelectric rectangular thin plate
under simultaneous external and parametric excitation forces
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Figure 23: Effects of the nonlinear parameters (𝛼
3
, 𝛽
3
, and 𝛾
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coupling terms).

are investigated.The second-order approximation is obtained
to consider the influence of the cubic terms on nonlin-
ear dynamic characteristics of the composite laminated
piezoelectric rectangular plate using the multiple scale
method. All possible resonance cases are extracted at this
approximation order. The case of 1 : 1 : 3 internal resonance
and primary resonance is considered. The stability of the
system and the effects of different parameters on system
behavior have been studied using phase plane and frequency
response curves. The analytical results given by the method
of multiple time scale are verified by comparison with results
from numerical integration of the modal equations. Reliabil-
ity of the obtained results is verified by comparison between
the finite difference method (FDM) and Runge-Kutta
method (RKM). Variation of the some parameters leads to
multivalued amplitudes and hence to jump phenomena. It is
quite clear that some of the simultaneous resonance cases are
undesirable in the design of such system. Such cases should
be avoided as working conditions for the system.

5. Conclusions

Multiple time scale perturbation method is applied to deter-
mine second-order approximate solutions for rectangular
symmetric cross-ply laminated composite thin plate sub-
jected to external and parametric excitations. Second-order
approximate solutions are obtained to study the influence
of the cubic terms on nonlinear dynamic characteristics of
the composite laminated piezoelectric rectangular plate. All
possible resonance cases are extracted at this approximation
order. The study is focused on the case of 1 : 1 : 3 primary res-
onance and internal resonance, whereΩ

3
≅ 𝜔
1
, 𝜔
2
≅ 𝜔
1
, and

𝜔
3
≅ 3𝜔
1
.The analytical results given by themethod ofmulti-

ple time scale are verified by comparison with results from
numerical integration of the modal equations. Reliability of
the obtained results is verified by comparison between the
finite difference method (FDM) and Runge-Kutta method
(RKM). The stability of a composite laminated piezoelectric
rectangular thin plate is investigated. The phase-plane
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method and frequency response curves are applied to study
the stability of the system. From the previous study the
following may be concluded.

(1) The simultaneous resonance case Ω
3
≅ 𝜔
1
, 𝜔
2
≅ 𝜔
1
,

and 𝜔
3
≅ 3𝜔

1
is one of the worst case, and they

should be avoided in design of such system.Of course,
the excitation frequencyΩ

3
is out of control. But this

case should be avoided through having 𝜔
2
̸= 𝜔
1
or

𝜔
3
̸= 3𝜔
1
.

(2) A comparison between the solutions obtained numer-
ically with that prediction from the multiple scales
shows an excellent agreement.

(3) Reliability of the obtained results is verified by com-
parison between the finite difference method (FDM)
and Runge-Kutta method (RKM).

(4) Variation of the parameters 𝜇
1
, 𝜇
2
, 𝛼
7
, 𝛽
8
, 𝜔
1
, 𝜔
2
, 𝑓
1
,

𝑓
2
leads tomultivalued amplitudes and hence to jump

phenomena.

(5) For the first and second modes, the steady-state
amplitudes 𝑎

1
and 𝑎
2
are directly proportional to the

excitation amplitude 𝑓
1
and 𝑓

2
and inversely propor-

tional to the linear damping 𝜇
1
and 𝜇

2
, respectively.

(6) The negative and positive values of nonlinear stiffness
𝛼
7
, 𝛽
8
produce either hard or soft spring, respectively,

as the curve is either bent to the right or to the left.
(7) The region of instability increase, which is undesir-

able, for increasing excitation amplitudes 𝑓
1
, 𝑓
2
and

for negative values of nonlinear stiffness 𝛼
7
, 𝛽
8
.

(8) The multivalued solutions are disappeared for
increasing linear damping coefficients 𝜇

1
, 𝜇
2
.

(9) The region of stability increases, which is desirable
for decreasing excitation amplitude 𝑓

1
, nonlinear

parameters (𝛼
1
, 𝛽
1
, 𝛾
1
), (𝛼
2
, 𝛽
2
, 𝛾
2
), and for increasing

nonlinear stiffness (𝛼
7
, 𝛽
7
, 𝛾
7
).

(10) The steady-state amplitudes of the three modes 𝑎
1
,

𝑎
2
, and 𝑎

3
are directly proportional to the exci-

tation amplitude 𝑓
1
and inversely proportional to
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Figure 25: Effects of the linear damping coefficients.

the nonlinear parameters (𝛼
1
, 𝛼
2
, 𝛼
8
), (𝛽
1
, 𝛽
2
, 𝛽
8
), and

(𝛾
1
, 𝛾
2
, 𝛾
8
), respectively.

For further work, we intend to extend our work to explore
the modeling formulation by investigating the role static
loading (in addition to the dynamic component).
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