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For spacecraft attitude tracking system, there exists the chattering phenomenon. In this paper, the spacecraftmotion is decomposed
into three-channel subsystems, and a second-order sliding mode control is proposed. This method has been proved to have good
convergence and robustness. Combined with the proposed sliding surface, the three-channel controllers are designed. The control
performance is confirmed by the simulation results, the approaching process is improved effectively, and a smooth transition is
achieved without overshoot and buffeting.

1. Introduction

Slidingmode variable structure control (SMC) is very suitable
for spacecraft control system design because of its unique
advantages, such as the simple algorithm, no need of the
precise mathematical model for the controlled object, and
the invariability of the control system when the parameter
perturbation exists and the external disturbance conforms
exactly to the matching condition [1].

But classical variable structure control system has a fatal
flaw, namely “chattering” phenomenon, which is the main
obstacle for SMC to promote in the engineering field [2]. In
order to eliminate or suppress the chattering, scholars have
conducted a wide-ranging and in-depth study [3–5]. In the
past, the solution was to use the continuous function instead
of the discontinuous parts, which had played a certain role in
weakening buffeting, but it also greatly reduced the control
performance [6]. A variable structure terminal guidance law
with adaptive quick-reaching law and a filter approach based
on sliding mode observer was developed [7], and the simula-
tion results demonstrated higher accuracy, better robustness,
and easy realization of the designed guidance law. For the
guidance of attacking target on the ground, a new robust non-
linear sliding mode guidance law with terminal angle con-
straint was proposed [8]. Wu et al. introduced some slack
matrices and a delay-dependent sufficient condition to guar-
antee the slidingmode dynamics is generalized, quadratically

stable, and robustly passive [9, 10]. AndWu et al. designed an
integral sliding surface function and an observer to estimate
the system states, which was proved to be attained in a finite
time [11, 12]. An integral-type sliding surface function is
designed for establishing a slidingmode dynamics, which can
be formulated by a switched stochastic system with an exter-
nal disturbance/uncertainty [13]. But the control methods
used are based on a general variable structure control theory,
which is very unfavorable for the normal operation of space-
craft control system due to the existence of the chattering
phenomenon; it could easily lead to system instability. And
in the application of general variable structure control theory,
the controlled object must be a relative degree 1. When the
controlled object relative degree is greater than 1, this theory
cannot be used.

During the flight, the aerodynamic parameters change
intensely, and the coupling between three channels is very
serious, which is caused by the flight speed, dramatically
changed air density, and other disturbances. It brings about
great difficulties because the entire spacecraft control system
presents a strong multivariable coupling, time-varying, non-
linearity and uncertainty. The traditional method of space-
craft control system design is based on the assumption of
small perturbation and the coefficient of frozen [14, 15]. How-
ever, the large angle of aircraft maneuvering is inevitable.
Therefore, it is difficult to reconcile three-channel controller
design based on the classical control theory. BTT control



2 Mathematical Problems in Engineering

technology is a future trend in this field, but it wouldmake the
coupling aggravate [16–18]. In the design of spacecraft control
system, even if the spacecraft is regarded as a particle, the
relativemotion between spacecraft and target is strongly non-
linear [19, 20].

Due to the reasons above, it will encounter enormous dif-
ficulties to use classical control theory to design the spacecraft
control system in future [21, 22]. Therefore, it is necessary to
search a high-level sliding variable structure control method
for the spacecraft control system, which cannot only keep
strong robustness but also can achieve continuous control
[4, 23–26]. Shtessel et al. proposed the second-order sliding
mode variable structure control algorithm, which was proved
to be good robustness and to eliminate effectively the chat-
tering [27–29]. A second-order sliding mode controller is
designed [30] for the aerodynamic missile, which was simple
and effective. The results of the simulation indicated that this
second-order sliding mode controller is robust for the sys-
tems with uncertainties and can effectively reduce the chat-
ting.

However, there are certain limitations to the high-order
sliding mode control algorithm, such as the demanding con-
trolled object and the complexity of algorithm. The paper
conducts a new research on the second-order sliding mode
variable structure control system, and simulation results
show that the method we proposed can effectively eliminate
the chattering phenomenon and have good robustness in the
spacecraft control systems. The research results have injected
new idea for the slidingmode variable structure control algo-
rithmand also have provided a new solution for the spacecraft
control system design.Therefore, the study of this subject has
not only theoretical significance but also has a very impor-
tant application reference value.

In this paper, we are concerned with the chattering phe-
nomenon in the spacecraft attitude tracking system. The
spacecraft motion is decomposed into three-channel subsys-
tems, and a second-order sliding mode control is proposed,
which has good convergence and robustness. Combined with
the proposed sliding surface, the three-channel controllers
are designed. Furthermore, the control performance is con-
firmed by the simulation results, the approaching process
is improved effectively, and a smooth transition is achieved
without overshoot and buffeting. The rest of this paper con-
sists of five sections about reaching condition and controller
design. The spacecraft model is described in Section 2, and a
three-channel decomposition model is proposed. Section 3
proposes a second-order sliding mode. Section 4 designs the
three-channel controller. Section 5 validates control perfor-
mance. Finally, we conclude this paper in Section 6.

2. Spacecraft Model

The spacecraft attitude motion equations introduced in [31]
is considered here. The model are described as follows:
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where the pitch angle 𝜗, the yaw angle 𝜓, and the roll angle 𝛾
are referred to the posture angle. 𝜔

𝑥
, 𝜔
𝑦
, and 𝜔

𝑧
are the angu-

lar velocity of the spacecraft around the shaft 𝑂𝑥, 𝑂𝑦, and
𝑂𝑧. 𝐽
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, 𝐽
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, and 𝐽
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are the moments of inertia, 𝑀

𝑥
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, and
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are the external torques on the body frame.
From (1), we can see that the spacecraft attitude motion

equation is nonlinear. And because of the existence of the
large attitude angle, the coupling between three channels can-
not be ignored.

2.1. Decomposition of Mathematical Model. In order to make
the process of decomposition clear, (1) can be broken down
into three subsystems.

(i) Channel Subsystem of Pitch Angle. The state function for
the channel subsystem of pitch angle can be obtained by
Figure 1.

From Figure 1, we can obtain the following state function:
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where 𝑢
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= 𝑀
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, which is the controller of pitch channel sub-

system.
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regarded as the external interference.

(ii) Channel Subsystem of YawAngle.The state function for the
channel subsystem of yaw angle can be obtained by Figure 2.

FromFigure 2, we can obtain the following state function:
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can be regarded as the external interference.

(iii) Channel Subsystem of Roll Angle. The state function
for the channel subsystem of roll angle can be obtained by
Figure 3.
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Figure 1: The state function for the channel subsystem of pitch angle.

FromFigure 3, we can obtain the following state function:
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where 𝑢
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(6)
can be regarded as the external interference.

The process of deduction regards the coupling between
three channels as the external interference. When the space-
craft carries a maneuver of large angle attitude, the coupling
will be exacerbated, which will affect the work of three
subsystems seriously. Therefore, in the design of controller,
we should make the control system have better robustness.

3. Reaching Condition Design and Proof

The system (2) can be expressed as:
�̇� (𝑡) = 𝐴 (𝑥) + 𝐵 (𝑥) 𝑢 + 𝑓 (𝑥) , (7)
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is the external interference.The phase trajectory of the system
(2) will be significantly affected due to the existence of 𝑓(𝑥).

3.1. Model System Description and Simplification. Assume
that 𝑓(𝑥) = 0, and the system description can be simplified
as

�̇� (𝑡) = 𝐴 (𝑥) + 𝐵 (𝑥) 𝑢. (8)

Designing the sliding mode surface 𝜎 = 𝑥
1
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[32] of second-order sliding mode, we can get the following
function:
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3.2. Reaching Conditions. Define the following reaching con-
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Figure 2: The state function for the channel subsystem of yaw angle.

where 𝑘
1
> 0, 𝑘

2
> 0, 𝜀 > 0, 𝛼 > 1, and sat(⋅) indicates the

saturation function, which is used to eliminate chattering
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−1 𝑠 < −Δ

𝑘 =
1

Δ
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Theorem 1. By satisfying the reaching condition (10), the phase
trajectory of the system (8) can reach the set points Ω = {𝑥 |

̇𝑠(𝑥) = 𝑠(𝑥) = 0} at a limited time and stay at this state.

Proof. Define that ℎ(𝑠) = 𝑘
2
𝑠 + 𝜀|𝑠|

𝛼 sat(𝑠), and we can get
𝑠ℎ(𝑠) > 0. Here, we select the Lyapunov function below
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and 𝑉 > 0. The time derivative of formula (12) can be
obtained as
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Next, we will make some analysis about �̇�.

(i) When ̇𝑠 ̸= 0, �̇� < 0; that is to say that 𝑉 → 0. And in
order to make lim

|𝑠|→+∞
∫
𝑠

0

ℎ(𝑦)𝑑𝑦 = 0, there must
be lim

𝑡→+∞
𝑠 = 0 for an arbitrary initial position of

the system.
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only zero for this function. Therefore, 𝑠 ≡ 0.

According to (i) (ii) above, 𝑠 will be zero in the end, and
the phase trajectory of system (8) will reach the set pointsΩ =

{𝑥 | ̇𝑠(𝑥) = 𝑠(𝑥) = 0} asymptotically and stay at this state.

Explanation. In the reaching condition ̈𝑠 = −𝑘
1
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2
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𝜀|𝑠|
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𝛼 sat(𝑠) gets bigger, but the phase trajectorywill resuilt
in larger chattering in neighborhood of 𝑠 = 0. However, if we
make 𝑘

2
𝑠 + 𝜀|𝑠|

𝛼 sat(𝑠) smaller, the reaching time will become
longer with the decrease of speed. Besides, the reaching speed
will slow down if the coefficient 𝑘

1
is too large, and the

chattering in neighborhood of 𝑠 = 0 will be weakened in this
condition. On the contrary, if the coefficient 𝑘

1
is too small,

the reaching speed will enlarge and the phase trajectory will
result in larger chattering in neighborhood of 𝑠 = 0.
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Figure 3: The state function for the channel subsystem of roll angle.

3.3. Robustness Prove. Combining (9) with (10), we can get
𝑎(𝑥) + 𝑏(𝑥)𝑢 = −𝑘

1
̇𝑠 − 𝑘
2
𝑠 − 𝜀|𝑠|

𝛼 sat(𝑠), and the expression of
controller can hold as

𝑢 = 𝑏
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(𝑥) [−𝑘
1
̇𝑠 − 𝑘
2
𝑠 − 𝜀|𝑠|

𝛼 sat (𝑠) − 𝑎 (𝑥)] . (15)

Here, the equivalent external interference is considered,
namely, 𝑓(𝑥) ̸= 0. Then, we can get

�̇� = 𝑥
2
,

�̈� = 𝑎 (𝑥) + 𝑏 (𝑥) 𝑢 + 𝑓 (𝑥) .

(16)

Thus, by substituting (15) into (16), the sliding mode surface
can be formulated as

̈𝑠 = −𝑘
1
̇𝑠 − 𝑘
2
𝑠 − 𝜀|𝑠|

𝛼 sat (𝑠) + 𝑓 (𝑥) . (17)

Assumption 2. 𝑓(𝑥) is bounded, there exists |𝑓| ≤ 𝑀, 𝑖 =

1, . . . , 𝑚.

Theorem 3. By satisfying the Assumption 2 and 𝜀 > 𝑀 (𝑖 =

1, 2, . . . , 𝑚), the phase trajectory of the system (7) can reach the
set points Ω = {𝑥 | ̇𝑠(𝑥) = 𝑠(𝑥) = 0} under the control law (15)
and stay at this state.

Proof. Define that ℎ(𝑠) = 𝑘
2
𝑠 + 𝜀|𝑠|

𝛼 sat(𝑠) −𝑓, and we can get
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(i) When |𝑠| >
𝛼√𝑀/𝜀, 𝑠ℎ(𝑠) ≥ 0.

(ii) When |𝑠| <
𝛼√𝑀/𝜀, |𝑠|𝛼+1 → 0, 𝛼 → 1, 𝑘

2
> 𝜀.

𝑠ℎ (𝑠) ≥ 𝑘
2
𝑠
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(
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𝜀
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Here, we select the Lyapunov function below

𝑉 = 0.5 ̇𝑠
2

+ ∫
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0

ℎ (𝑦) 𝑑𝑦. (20)

The process of proof is the same as Theorem 1. Then, we can
get the conclusions of �̇� = −𝑘

1
̇𝑠
2 and lim

𝑡→+∞
𝑠 = 0.

From Theorems 1 and 3, formula (17) can be regarded
as the system controller regardless of the equivalent external
interference if only it meets Assumption 2. So, the robustness
of the controller can be reflected. Theoretically, we can make
𝑘
1
and 𝜀 large enough to achieve the better robustness and

dynamic performance. However, in practical system, we will
encounter limited energy of the controller; thus, it is impos-
sible to make 𝑘

1
and 𝜀 infinite.

4. Controller Design

Combined with the proposed second order sliding mode
control law (10), we can get the following controllers.
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4.1. Controller Design of Pitch Channel. Assume that pitch
angle 𝜗 tracks a given angle 𝜗

𝑑
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𝑑
is second-order deriva-
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From the deduction above, we know that 𝑠
𝑧
will converge

to zero in a finite time.That is to say that the pitch angle 𝜗will
be on track for the given angle 𝜗

𝑑
in a limited time.

4.2. Controller Design of Yaw Channel. The process of deduc-
tion is the same as pitch channel. For the system (3), assume
that the yaw angle 𝜓 tracks a given angle 𝜓
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𝑑
, (26)

̈𝑠
𝑦
= �̇�
2𝑦

− �̈�
𝑑
=

cos 𝛾
cos 𝜗𝐽

𝑦

𝑢
𝑦
− �̈�
𝑑
. (27)

Regarding 𝑠
𝑦
as the output of system (3), we select the

reaching condition as follows:

̈𝑠
𝑦
= −𝑘
1𝑦

̇𝑠
𝑦
− 𝑘
2𝑦
𝑠
𝑦
− 𝜀
𝑦
|𝑠|
𝛼 sat (𝑠

𝑦
) , (28)

where 𝑘
1𝑦

> 0, 𝑘
2𝑦

> 0, and 𝜀
𝑦
> 0.

Combining formula (27) with formula (28), we can get

𝑢
𝑦
=
cos 𝜗𝐽

𝑦

cos 𝛾
( ̈𝜗
𝑑
− 𝑘
1𝑦

̇𝑠
𝑦
− 𝑘
2𝑦
𝑠
𝑦
− 𝜀
𝑦
|𝑠|
𝛼 sat (𝑠

𝑦
)) . (29)

Thus, 𝑠
𝑦
will converge to zero in a finite time.That is to say

that the yaw angle 𝜓will be on track for the given angle 𝜓
𝑑
in

a limited time.

4.3. Controller Design of Roll Channel. For the system (5),
assume that the roll angle 𝛾 tracks a given angle 𝛾

𝑑
and 𝛾
𝑑
is

second-order derivative. Meanwhile, the external outside
interference 𝑓

𝑥
is bounded.

Let 𝑥
𝑥
= [𝑥
1𝑥

𝑥
2𝑥
]
𝑇, and we select 𝑠

𝑥
= 𝑒 = 𝑥

1𝑥
− 𝛾
𝑑
.

Then, we can get the following functions:

̇𝑠
𝑥
= 𝑥
2𝑥

− ̇𝛾
𝑑
,

̈𝑠
𝑥
= �̇�
2𝑥

− ̈𝛾
𝑑
=

1

𝐽
𝑥

𝑢
𝑥
− ̈𝛾
𝑑
.

(30)

Regarding 𝑠
𝑥
as the output of system (5), we select the

reaching condition as follows:

̈𝑠
𝑥
= −𝑘
1𝑥

̇𝑠
𝑥
− 𝑘
2𝑥
𝑠
𝑥
− 𝜀
𝑥
|𝑠|
𝛼 sat (𝑠

𝑥
) , (31)

where 𝑘
1𝑥

> 0, 𝑘
2𝑥

> 0, and 𝜀
𝑥
> 0.

And we can get

𝑢
𝑥
= 𝐽
𝑥
( ̈𝛾
𝑑
− 𝑘
1𝑥

̇𝑠
𝑥
− 𝑘
2𝑥
𝑠
𝑥
− 𝜀
𝑥
|𝑠|
𝛼 sat (𝑠

𝑥
)) . (32)

Thus, 𝑠
𝑥
will converge to zero in a finite time. That is to say

that the yaw angle 𝛾 will be on track for the given angle 𝛾
𝑑
in

a limited time.
In the spacecraft control system, we want roll angle to

calm to zero, and in order to achieve target tracking, gener-
ally, we let the pitch angle and yaw angle track a given angle.

5. Simulation Results

In this section, experimental simulations will be carried out
to evaluate the effectiveness of the proposed sliding mode
controller of second order:

[
[
[
[
[
[
[

[

�̇�
1𝑧

�̇�
2𝑧

�̇�
1𝑦

�̇�
2𝑦

�̇�
1𝑥

�̇�
2𝑥

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑥
1𝑧

𝑥
2𝑧

𝑥
1𝑦

𝑥
2𝑦

𝑥
1𝑥

𝑥
2𝑥

]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0
cos𝑥
1𝑥

𝐽
𝑧

0 0

0 0 0

0
cos𝑥
1𝑥

cos𝑥
1𝑧
𝐽
𝑦

0

0 0 0

0 0
1

𝐽
𝑥

]
]
]
]
]
]
]
]
]
]
]
]
]

]

[

[

𝑢
𝑧

𝑢
𝑦

𝑢
𝑥

]

]

+

[
[
[
[
[
[
[

[

0

𝑓
𝑧

0

𝑓
𝑦

0

𝑓
𝑥

]
]
]
]
]
]
]

]

.

(33)

Detailed parameters of this control system are presented as
follows. The initial angles are [𝜗 𝜓 𝛾] = [𝜋/6 𝜋/3 𝜋/4];
the angular accelerations are [ ̇𝜗 �̇� ̇𝛾] = [0.2 0.4 0.5]. And
the desired tracking angles are [𝜗

𝑑
𝜓
𝑑

𝛾
𝑑
] = [𝜋/4 𝜋/6 0].

The related parameters of system are 𝐽
𝑥
= 224 kg ⋅ m2, 𝐽

𝑦
=

284 kg ⋅m2, and 𝐽
𝑧
= 324 kg ⋅m2. The equivalent interference
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𝑓
𝑧
= 𝑓
𝑦
= 𝑓
𝑥
= 3 sin 𝑡. Then, formula (33) can be reduced as

follows:

[
[
[
[
[
[
[

[

�̇�
1𝑧

�̇�
2𝑧

�̇�
1𝑦

�̇�
2𝑦

�̇�
1𝑥

�̇�
2𝑥

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑥
1𝑧

𝑥
2𝑧

𝑥
1𝑦

𝑥
2𝑦

𝑥
1𝑥

𝑥
2𝑥

]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0

cos𝑥
1𝑥

324
0 0

0 0 0

0
cos𝑥
1𝑥

284 cos𝑥
1𝑧

0

0 0 0

0 0
1

224

]
]
]
]
]
]
]
]
]
]
]
]
]

]

[

[

𝑢
𝑧

𝑢
𝑦

𝑢
𝑥

]

]

+

[
[
[
[
[
[
[

[

0

3 sin 𝑡

0

3 sin 𝑡

0

3 sin 𝑡

]
]
]
]
]
]
]

]

.

(34)

The three sliding surface are selected as 𝑠
𝑧
= 𝑥
1𝑧

− 𝜋/4, 𝑠
𝑦
=

𝑥
1𝑦

− 𝜋/6, and 𝑠
𝑥
= 𝑥
1𝑥
. Firstly, we assume that 𝑓

𝑧
= 𝑓
𝑦
=

𝑓
𝑥
= 0, and we can get the following functions:

̇𝑠
𝑧
= 𝑥
2𝑧
, (35)

̈𝑠
𝑧
= �̇�
2𝑧

=
cos𝑥
1𝑥

324
𝑢
𝑧
, (36)

̇𝑠
𝑦
= 𝑥
2𝑧
, (37)

̈𝑠
𝑦
= �̇�
2𝑧

=
cos𝑥
1𝑥

284 cos𝑥
1𝑧

𝑢
𝑦
, (38)

̇𝑠
𝑥
= 𝑥
2𝑥
, (39)

̈𝑠
𝑥
= �̇�
2𝑥

=
1

224
𝑢
𝑥
. (40)

And we select the same reaching conditions:

̈𝑠
𝑧
= −8 ̇𝑠

𝑧
− 5𝑠
𝑧
− 5

𝑠𝑧

𝛼 sat (𝑠

𝑧
) ,

̈𝑠
𝑦
= −8 ̇𝑠

𝑦
− 5𝑠
𝑦
− 5


𝑠
𝑦



𝛼

sat (𝑠
𝑦
) ,

̈𝑠
𝑥
= −8 ̇𝑠

𝑥
− 5𝑠
𝑥
−
𝑠𝑥


𝛼 sat (𝑠

𝑥
) .

(41)

By taking formulas (36), (38), (40), and (41), the control law
of each channel can hold as

𝑢
𝑧
=

324

cos𝑥
1𝑥

(−8 ̇𝑠
𝑧
− 5𝑠
𝑧
− 5

𝑠𝑧

𝛼 sat (𝑠

𝑧
)) ,

𝑢
𝑦
=

284 cos𝑥
1𝑧

cos𝑥
1𝑥

(−8 ̇𝑠
𝑦
− 5𝑠
𝑦
− 5


𝑠
𝑦



𝛼

sat (𝑠
𝑦
)) ,

𝑢
𝑥
= 224 (−8 ̇𝑠

𝑥
− 5𝑠
𝑥
−
𝑠𝑥


𝛼 sat (𝑠

𝑥
)) .

(42)
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Figure 4: The angle tracking of the three subsystems.
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Figure 5: The switching function curve of the three subsystems.

Under the control law (42), the phase trajectory of
three-channel will reach the sliding mode in a finite time.
Simulation diagrams are as shown in Figures 4, 5, and 6.

From Figure 4, we can see that the proposed control law
achieves a better angle tracking, and no overshoot occurs.
From Figure 5, it can be seen that the proposed sliding
surface achieves a smooth transition in the whole process
of approaching, and there is no chattering. By Figure 6, we
can see that chattering of the controllers reduces significantly
during the approaching process under a certain external
interference.
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Figure 6: The control output of the three subsystems.

6. Conclusion

A three-channel model of spacecraft has been analysed in
this paper. By simplifying the model, a second-order sliding
surface was proposed, and its conditions of convergence
and robustness were analyzed. Combined with the proposed
sliding surface, three-channel controllers were designed, res-
pectively.The control performancewas confirmedby the sim-
ulation results, the approaching process was improved effec-
tively, and a smooth transition was achieved without over-
shoot and buffeting. The coupling between the three chan-
nels was fully taken into account in the design of the con-
troller, and it was equivalent to external interference, which
provided a high practical value.
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