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Anovel Chebyshev neural network combinedwithmemristors is proposed to perform the function approximation.The relationship
between memristive conductance and weight update is derived, and the model of a single-input memristive Chebyshev neural
network is established. Corresponding BP algorithm and deriving algorithm are introduced to the memristive Chebyshev neural
networks. Their advantages include less model complexity, easy convergence of the algorithm, and easy circuit implementation.
Through the MATLAB simulation results, we verify the feasibility and effectiveness of the memristive Chebyshev neural networks.

1. Introduction

Many researchers have further studied the approximation
capacity of neural networks. Research indicates that there are
some drawbacks in Back Propagation (BP) neural networks,
such as slow convergence, getting easily into a local mini-
mum, and difficulties in determining the numbers of hidden
neurons. The Radical Basis Function (RBF) neural networks
are superior to BP neural networks in approximation capacity
because their learning rate is fast, but the lack of theoretical
guidance in determining the central position of basis function
makes us set the central position based on experience. We
cannot ensure whether the performance of networks is the
best or not. Especially, there is a dilemma between approx-
imation accuracy and networks complexity when we use
the aforementioned two neural networks to approximate the
nonlinear function.However, theChebyshev neural networks
can solve the bottleneck; their hidden layer neuron activation
functions are a group of Chebyshev orthogonal polynomials.
Nowadays, Chebyshev neural networks are widely used
in complex nonlinear systems [1], chaos systems [2], and
discrete-time nonlinear systems [3]. Their learning rate and
approximation accuracy are better than traditional neural
networks, and they can quickly determine the numbers of
hidden neurons. Meanwhile, Chebyshev neural networks are
widely used in aerospace [4, 5] and chemistry areas [6].

The nanoscale memristor has the potential of information
storage because of the nonvolatility with respect to long
periods of power-down, so it can be used as synapse in
the neural networks. Many researchers in the field of mem-
ristors have suggested that this device has high potential
for implementing artificial synapses. Afifi et al. studied the
realization of STDP learning rules based on the pulsing
neuromorphic networks with memristor cross array [7]. Hu
et al. built a novel chaotic neural work with memristor to
implement associative memory [8]. Wang et al. proposed
a PID controller based on memristive CMAC network [9].
Pershin and di Ventra realized the associative memory based
on memristive neural networks [10]. Sharifi and Banadaki
applied the memristors as memory units to the nonvolatile
RAMs and as synapse to the artificial neural networks [11].
Chabi and Klein put forward a neural network with high
fault tolerance based on a structure of crossbar switches [12].
Cantley et al. built neural networks with synapses made up
from amorphous silicon thin film transistor and memristor,
which realized the Hebb learning rules [13]. Gao et al.
designed cellular neural network, which is applied to image
denoising and edge detection [14]. Kim et al. changed the
synapse weight of artificial neural networks with a pulse-
based programmable memristor [15].

The memristive Chebyshev neural networks have the
following advantages: (a) single-inputmemristive Chebyshev
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neural networks can realize any nonlinear function approx-
imation by only three layers; (b) the number of hidden
neurons in memristive Chebyshev neural networks is signif-
icantly smaller than that in traditional BP neural networks;
(c) we only need to adjust the weight from the hidden layer
to the output layer, which can greatly help in quickening the
convergence of the algorithm; (d) as memristive synapse is
small and passive, the hardware circuits of the memristive
Chebyshev neural networks can be implemented by the VLSI
circuits easily.

In this paper, we establish the correspondence between
memristor conductance and synapse weight through the-
oretical analysis and MATLAB simulations. The nanoscale
memristor is the synapse in Chebyshev neural networks to
realize function approximation by memristive BP algorithm
and memristive deriving algorithm, respectively.

2. Memristive Synapse

Thephysicalmodel of thememristor [16] is shown in Figure 1.
W(t) and 𝐷 represent the thickness of the doped layer
and total oxide films, respectively. 𝑅ON is the value of the
memristor whenW(t) is equal to𝐷, and 𝑅OFF is the value of
the memristor whenW(t) is equal to zero.M(0) is the initial
value of the memristor.

According to the mathematical model of HP memristor,
and the flux-controlled model of memristor, we can obtain
the following equation [17]:
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The derivate of equation (2) is
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Figure 1: The physical model of the memristor of HP [16].

Using calculus, dG(t) is approximately equal to ΔG when
Δ𝑡 approaches to zero, and then we can obtain the following
equation:
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where d𝜑/dt = v(t); the relationship curve between
memristive conductance change and voltage is shown
in Figure 2. It can be seen that memristive conductance
change Δ𝐺 increases along with the increasing of applied
voltage V. If the learning error 𝑒 of neural networks is
regarded as voltage v, the memristive conductance change
can reasonably be described as synapse weight update whose
correspondence can be built.

3. Modeling of the Memristive Chebyshev
Neural Networks

The nth power orthogonal polynomials 𝑇
𝑛
(x) which are

related to the weight function 𝜌(𝑥) = 1/√1 − 𝑥2 are called
Chebyshev polynomials of the first kind [18]. Based on defini-
tion, if the polynomial system {𝑇

𝑛
(𝑥)} (where 𝑛 = 0, 1, 2, . . .)

and the weight function satisfy the following relationship:
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the orthogonal polynomial system {𝑇
𝑛
(𝑥)} can be structured

in the interval of [−1, 1].
In this paper, a model (see Figure 3) of the single-input

memristive Chebyshev neural networks is proposed, which
consists of the input layer, hidden layer, and output layer.The
weights from input layer to hidden layer are set to 1, and the
memristor conductance stores the weights of hidden layer to
output layer. The thresholds of all neurons are set to 0. The
hidden layer has𝑚 neurons, and their transfer functions are a
group of Chebyshev orthogonal polynomial functions 𝑇

𝑛
(x).
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Figure 2: The relation curve of the change of memristive conduc-
tance and voltage.

Namely, the hidden layer of the 𝑛th neuron transfer function
is 𝑇
𝑛−1

(x), where
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4. Realization of Function
Approximation Algorithm

Set memristive Chebyshev neural networks model as follows:
input layer: o = x;
input of hidden layer neuron: net

𝑖
= o;

output of hidden layer neuron: 𝑜
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samples), are assumed as inputs, and the errors of network
output 𝑦 and the target value f (x) are 𝑒
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4.1. Memristive BP Algorithm. In order to establish the
relationship between the memristor and the synapse, we
propose the learning rule for memristive synaptic weight

update. According to (4), we assume the memristive BP
algorithm as follows:
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where 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, Δ𝑡 = 𝜂 is the learning rate, K is
the number of learning, and Γ is the integral of the error e.

The learning algorithm is described as follows.

Step 1. Take any number of hidden neurons n ≥ 3, choose the
initial weights𝑊

𝑖
(0) as initialmemristor conductance, let the

learning rate 0 < 𝜂 < 1, give the small positive number 𝜀, and
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Step 3. Adjust weight,
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Step 4. 𝑡 ← 𝑡 + 1; if t <s, then jump back to Step 2, otherwise
Step 5.

Step 5. If E ≤ 𝜀, then stop the learning; otherwise, 𝐸 = 0, 𝑡 =
1, 𝐾 ← 𝐾 + 1, and jump back to Step 2.

4.2. Memristive Deriving Algorithm. The basic principles of
the memristive deriving algorithm are as follows. Take any
less 𝑛 hidden neurons as the initial cells. After training 𝐾

times, the error e is no longer changed; that is, E(K) = E(𝐾−1)
> 𝜀 (𝜀 is a pretraining given precision index). The network
derives automatically by adding a hidden neuron (𝑛 ← 𝑛+1).
The previous process is repeated until E(K) ≤ 𝜀 when the
hidden neurons stop deriving and learning. Until reaching
target accuracy, the neural network topology is automatically
generated.

The specific algorithm can be described as follows.

Step 1. Take number of hidden neurons 𝑛 = 2, choose
the initial weights 𝑊
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𝑡
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Figure 3: Model of single-input memristive Chebyshev neural networks.

Step 3. Weight update rule is
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Step 4. Calculate

𝐸 (𝐾) =
1
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𝑒
2

𝑡
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If E(K) ≤ 𝜀, stop derivative and learning which illustrate
that neural network topology is automatically generated.
Otherwise, go to Step 5.

Step 5. If E (K) = E (K − 1), the training error of the network
has no longer reduced. We should increase the number of
hidden neurons in order to improve network performance.
Namely, 𝑛 ← 𝑛+1, 𝐾 ← 𝐾+1, and jump to Step 2 to continue
learning.

5. Experimental Results

We use the memristive Chebyshev neural networks to realize
nonlinear function 𝑦 = 𝑥

3 sin𝑥 + sin2𝑥 + cos(3𝑥) approx-
imation through memristive BP algorithm and deriving
algorithm, respectively. We suppose that memristor model
parameters are 𝑅ON = 100Ω, 𝑅OFF = 10000Ω, 𝑀(0) =

1000Ω,𝐷 = 10 nm, 𝜇V = 10
−14m2 s−1 V−1, 𝐺(0) = 1/𝑀(0).

5.1. Memristive BP Algorithm Realizes Function Approxima-
tion. The 1 × 8 × 1 network structure is shown in Figure 3.
The learning rate 𝜂 = 0.02. The number of samples s = 200.
The number of learning is 1000.The target mean square error
E = 1.0 × 10−5. The experimental result is shown in Figure 4.
The relationship between training error and the number of
learning is shown in Figure 4(a).The number of final learning
is 735 when the minimum training error meets the require-
ments of function approximation. The memristive synaptic
weights are constantly updated in the learning process as
shown in Figure 4(b). Figures 4(c) and 4(d) describe the final
memristive weights and the approximation curve of actual
output signal relative to the teacher signal, respectively.

5.2. Memristive Deriving Algorithm Realizes Function Approx-
imation. We adopt the 1 × 2 × 1 initial neural network, with
𝜀 = 1.0 × 10−5 and learning rate 0.02, and the experimental
result is shown in Figure 5. The final network structure is 1 ×
25 × 1, and the time of learning is 420. Figure 5(a) shows the
final memristive synaptic weights in hidden layer. Figure 5(b)
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Figure 4: Simulation results for memristive BP algorithm.

shows the approximation curve of the actual output signal
relative to the teacher signal.

Compared with the memristive BP algorithm, the
memristive deriving algorithm has less learning times (735 −
420 = 315) for its neural network is automatically generated.

6. Conclusions

The HP memristor model is analyzed, and the correspon-
dence between the memristive conductance change and the

synapse weight update in Chebyshev neural networks is
established. Two learning algorithms of memristive synapse
weight update are proposed. The nonlinear function approx-
imation is implemented by memristive BP algorithm and
memristive deriving algorithm, respectively. On the one
hand, thememristive BP networks have fixed structure which
is easily implemented. On the other hand, the memristive
derivative networks have dynamic structure reaching the
optimum solution. Memristive Chebyshev neural networks
are hopeful to be used in aspects of pattern recognition and
data compression.
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