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The synchronization problem of stochastic complex networks withMarkovian switching and time-varying delays is investigated by
using impulsive pinning control scheme. The complex network possesses noise perturbations, Markovian switching, and internal
and outer time-varying delays. Sufficient conditions for synchronization are obtained by employing the Lyapunov-Krasovskii
functional method, Itö’s formula, and the linear matrix inequality (LMI). Numerical examples are also given to demonstrate the
validity of the theoretical results.

1. Introduction and Model Description

Collective behaviors in complex networks and systems have
attracted increasing attention in recent years due to their wide
applications in physics, mathematics, engineering, biology,
and so forth (see [1, 2] and references therein).While complex
networks are ubiquitously found in nature and in themodern
world, such as neural networks, socially interacting animal
species, power networks, wireless sensor networks, Internet,
and the World Wide Web.

In the past few decades, the synchronization problems
in complex networks have attracted increasing attention.
Many synchronization patterns have been studied, including
complete synchronization [3], cluster synchronization [4–6],
phase synchronization [7], and partial synchronization [8].
There are several control methods to guide the dynamics
of a complex network to a desired state, such as adaptive
control [9], feedback control [10], intermittent control [11],
fuzzy control [12], impulsive control [13, 14], and pinning
control [5, 6, 15, 16]. Synchronization of complex networks
holds particular promise for applications to many fields [17–
21].

Synchronization in complex dynamical networks is real-
ized via information exchanges among the interconnect
nodes [22]. The signal traveling along real physical system is

usually perturbed randomly by the environmental elements,
such as noises, the structures of the interconnections, time
delays, and the positions of nodes [9]. One popular model is
the Markovian switching model driven by continuous-time
Markov chains in the sciences and industries (see [23–26] and
references therein). In [23, 24], Mao et al. studied stability
and controllability of stochastic differential delay equations
with Markovian switching, while [25, 26] discussed the
exponential stability of stochastic delayed neural networks.
Liu et al. [26], on the other hand, investigated the syn-
chronization of discrete-time stochastic complex networks
with Markovian jumping and mode-dependent mixed time
delays. In [16], Wang et al. investigated the mean-square
exponential synchronization of stochastic complex networks
with Markovian switching and time-varying delays by using
the pinning control method, which is described as

𝑑𝑥
𝑖 (𝑡)

=
{

{

{

𝑓 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑎
𝑖𝑗 (𝑟 (𝑡)) Σ (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡))
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+

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑏
𝑖𝑗 (𝑟 (𝑡)) Σ (𝑥𝑗 (𝑡 − 𝜏𝑐 (𝑡)) − 𝑥𝑖 (𝑡 − 𝜏𝑐 (𝑡)))

+ 𝑢
𝑖 (𝑡)

}

}

}

𝑑𝑡

+ 𝜎
𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏𝑐 (𝑡)) , 𝑟 (𝑡)) 𝑑𝑤𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑢
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) are the linear state feedback

controllers that are defined by

𝑢
𝑖 (𝑡) = {

−𝜀
𝑖
(𝑥
𝑖 (𝑡) − 𝑠 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑙,

0, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,
(2)

and 𝜀
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑙) are the control gains.

Pinning control has been proved to be effective for
the synchronization of complex dynamical networks with
continuous state coupling [15, 16, 27]. In many systems,
the impulsive effect is a common phenomenon due to
instantaneous perturbations at certain moments [27, 28].
Impulsive control strategies have beenwidely used to stabilize
and synchronize coupled complex dynamical systems, such
as signal processing system, computer networks, automatic
control systems, and telecommunications [13]. In [27], pin-
ning impulsive strategy is proposed for the synchronization
of stochastic dynamical networks with nonlinear coupling.
Zhou et al. studied synchronization in complex delayed
dynamical networks with impulsive effects in [28]. And Zhu
et al., in [29], investigated the exponential stability of a class
of stochastic neural networks with both Markovian jump
parameters and mixed fixed time delays. Can the stochastic
dynamical network with Markovian switching and time-
varying delays be synchronized by impulsive pinning control?
This paper is devoted to solving this problem.

In this paper, we study the synchronization of stochastic
complex networks with Markovian switching by using the
impulse control method. We consider a kind of stochas-
tic complex networks with internal time-varying delayed
couplings, Markovian switching, and Wiener processes. By
applying the Lyapunov-Krasovskii functional method, Itö’s
formula and the linear matrix inequality (LMI), some suf-
ficient conditions for synchronization of these networks are
derived. Numerical examples are finally given to demonstrate
the effectiveness of the proposed impulsive pinning strategy.

Notations. Throughout this paper, R𝑛 will denote the 𝑛-
dimensional Euclidean space and R𝑛×𝑛 the set of all 𝑛 × 𝑛
real matrices. The superscript 𝑇 will denote the transpose of
a matrix or a vector. And Tr(⋅) stands for the trace of the
corresponding matrix. 1

𝑛
= (1, 1, . . . , 1)

𝑇
∈ R𝑛, and 𝐼

𝑛
is

the 𝑛-dimensional identity matrix. For square matrices 𝑀,
the notation 𝑀 > 0 (<0) will mean that 𝑀 is a positive-
definite (negative-definite) matrix. 𝜆max(𝐴) and 𝜆min(𝐴) will
denote the greatest and least eigenvalues of a symmetric
matrix, respectively. 𝑝̌ = max{𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
}, and 𝑝 =

min{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
}.

2. Preliminaries

Let (Ω,F, {F
𝑡
}
𝑡≥0
,P) be a complete probability space with a

filtration {F
𝑡
}
𝑡≥0

that is right continuous withF
0
containing

all the P-null sets. 𝐶([−𝜏, 0];R𝑛) will denote the family of
continuous functions 𝜙 from [−𝜏, 0] to R𝑛 with the uniform
norm ‖𝜙‖

2
= sup

−𝜏≤𝑠≤0
𝜙(𝑠)

𝑇
𝜙(𝑠). And 𝐶

2

F0
([−𝜏, 0];R𝑛)

denotes the family of all F
0
measurable, 𝐶([−𝜏, 0];R𝑛)-

valued stochastic variables 𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} such that
∫
0

−𝜏
E‖𝜉(𝑠)‖

2
𝑑𝑠 ≤ ∞, where E stands for the correspondent

expectation operator with respect to the given probability
measureP.

Consider a complex network consisting of 𝑁 identical
nodes with Markovian switching

𝑑𝑥
𝑖 (𝑡) =

{

{

{

𝑓 (𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
[𝑟(𝑡)]

𝑖𝑗
Σ𝑥

𝑗 (𝑡)

+

𝑁

∑

𝑗=1

𝑏
[𝑟(𝑡)]

𝑖𝑗
Σ𝑥

𝑗
(𝑡 − 𝜏

𝑐 (𝑡))
}

}

}

𝑑𝑡

+ 𝜎
[𝑟(𝑡)]

𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏𝑐 (𝑡))) 𝑑𝑤 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(3)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥

𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))

𝑇
∈ R𝑛 is the state

vector of the 𝑖th node of the network, 𝑓(𝑥
𝑖
(𝑡), 𝑥

𝑖
(𝑡 − 𝜏(𝑡))) =

[𝑓
1
(𝑥
𝑖
(𝑡), 𝑥

𝑖
(𝑡−𝜏(𝑡))), 𝑓

2
(𝑥
𝑖
(𝑡), 𝑥

𝑖
(𝑡−𝜏(𝑡))), . . . , 𝑓

𝑛
(𝑥
𝑖
(𝑡), 𝑥

𝑖
(𝑡−

𝜏(𝑡)))]
𝑇 is a continuous vector-valued function, Σ = diag{󰜚

1
,

󰜚
2
, . . . , 󰜚

𝑛
} is an inner coupling matrix of the networks that

satisfies 󰜚
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛, and 𝑟(𝑡) are the continuous-

time Markov processes that describe the evolution of the
nodes at time 𝑡. Here, 𝐴[𝑟(𝑡)] = [𝑎

[𝑟(𝑡)]

𝑖𝑗
] ∈ R𝑛×𝑛 and 𝐵[𝑟(𝑡)] =

[𝑏
[𝑟(𝑡)]

𝑖𝑗
] ∈ R𝑛×𝑛 are the outer couplingmatrices of the network

at time 𝑡 at nodes 𝑟(𝑡), 𝑡 − 𝜏
𝑐
(𝑡), respectively, such that

𝑎
[𝑟(𝑡)]

𝑖𝑗
≥ 0 for 𝑖 ̸= 𝑗, 𝑎[𝑟(𝑡)]

𝑖𝑖
= −∑

𝑁

𝑗=𝑖,𝑗 ̸= 𝑖
𝑎
[𝑟(𝑡)]

𝑖𝑗
, 𝑏[𝑟(𝑡)]
𝑖𝑗

≥ 0 for
𝑖 ̸= 𝑗 and 𝑏[𝑟(𝑡)]

𝑖𝑖
= −∑

𝑁

𝑗=𝑖,𝑗 ̸= 𝑖
𝑏
[𝑟(𝑡)]

𝑖𝑗
. Figure 1 shows the topology

structures of the switching networks for 5 nodes. 𝜏(𝑡) is the
inner time-varying delay satisfying 𝜏 ≥ 𝜏(𝑡) ≥ 0 and
𝜏
𝑐
(𝑡) is the coupling time-varying delay satisfying 𝜏

𝑐
≥

𝜏
𝑐
(𝑡) ≥ 0. Finally, 𝜎[𝑟(𝑡)]

𝑖
(𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑥(𝑡 − 𝜏

𝑐
(𝑡))) =

𝜎
[𝑟(𝑡)]

𝑖
(𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑥

1
(𝑡 − 𝜏(𝑡)), . . . , 𝑥

𝑛
(𝑡 − 𝜏(𝑡)), 𝑥

1
(𝑡 −

𝜏
𝑐
(𝑡)), . . . , 𝑥

𝑛
(𝑡 − 𝜏

𝑐
(𝑡))) ∈ R𝑛×𝑛 and 𝑤(𝑡) = (𝑤

1
(𝑡),

𝑤
2
(𝑡), . . . , 𝑤

𝑛
(𝑡))

𝑇
∈ R𝑛 is a bounded vector-form Weiner

process, satisfying

E𝑤
𝑗 (𝑡) = 0, E𝑤

2

𝑗
(𝑡) = 1,

E𝑤
𝑗 (𝑡) 𝑤𝑗 (𝑠) = 0 (𝑠 ̸= 𝑡) .

(4)
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Figure 1:The topology structures of the switching networks for 5 nodes; (A1) and (A2) the topology structures of the coupling matrix𝐴1 and
𝐴
2, respectively; (B1) and (B2) the topology structures of the coupling matrix 𝐵1 and 𝐵2, respectively.

Let 𝑟(𝑡), 𝑡 > 0 be a right-continuous Markov chain on a
probability space that takes values in a finite state space 𝑆 =
1, 2, . . . ,𝑀 with a generator Γ = [𝛾

𝑖𝑗
] ∈ R𝑀×𝑀 given by

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
Δ + 𝑜 (Δ) if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
Δ + 𝑜 (Δ) if 𝑖 = 𝑗,

(5)

for some Δ > 0. Here 𝛾
𝑖𝑗
≥ 0 is the transition rate from 𝑖 to 𝑗

if 𝑖 ̸= 𝑗 and 𝛾
𝑖𝑖
= −∑

𝑖 ̸= 𝑗
𝛾
𝑖𝑗
, In this paper,𝐴[𝑟] is assumed to be

symmetric and irreducible, and 𝐵[𝑟] is assumed to be sym-
metric, for 𝑟 = 1, 2, . . . ,𝑀.

The initial conditions associated with (3) are

𝑥
𝑖 (𝑠) = 𝜉𝑖 (𝑠) , − ̌𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁, (6)

where ̌𝜏 = max{𝜏(𝑡), 𝜏
𝑐
(𝑡)}, 𝜉

𝑖
∈ 𝐶

𝑏

F0
([− ̌𝜏, 0],R𝑛) with the

norm ‖𝜉
𝑖
‖
2
= sup

− ̌𝜏≤𝑠≤0
𝜉
𝑖
(𝑠)

𝑇
𝜉
𝑖
(𝑠).

The impulse controllers are defined by

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) = 𝜖

𝑖𝑘
𝑥
𝑖
(𝑡
−

𝑘
) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁,

(7)

where 𝜖i𝑘 are constants, and {𝑡
1
, 𝑡
2
, 𝑡
3
, . . .} is the impulsive

sequence of strictly increasing impulsive instants satisfying
lim

𝑘→∞
𝑡
𝑘
= +∞, and 𝑡

𝑘
− 𝑡

𝑘−1
= 𝑇 for 𝑘 > 1.

In the case that system (3) reaches synchronization, that
is, 𝑥

1
(𝑡) = 𝑥

2
(𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑁
(𝑡) = 𝑠(𝑡), we have the following

synchronized state equation:

𝑑𝑠 (𝑡) = 𝑓 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑡

+ 𝜎 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) .

(8)

In the paper, we would control the system (3) to the
desired trajectory 𝑠(𝑡). Define 𝑒

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡) (𝑖 = 1,

2, . . . , 𝑁) as the synchronization error.Then, according to the
controller (7), the error system is

𝑑𝑒
𝑖 (𝑡) =

{

{

{

𝑓 (𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑎
[𝑟(𝑡)]

𝑖𝑗
Σ𝑒
𝑗 (𝑡) +

𝑁

∑

𝑗=1

𝑏
[𝑟(𝑡)]

𝑖𝑗
Σ𝑒
𝑗
(𝑡 − 𝜏

𝑐 (𝑡))
}

}

}

𝑑𝑡

+ 𝜎
[𝑟(𝑡)]

𝑖
(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏𝑐 (𝑡))) 𝑑𝑤 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁,

Δ𝑒
𝑖
(𝑡
𝑘
) = 𝜖

𝑖𝑘
𝑒
𝑖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁,

(9)

where 𝜎[𝑟(𝑡)]
𝑖

(𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐
(𝑡))) = 𝜎

[𝑟(𝑡)]

𝑖
(𝑥(𝑡), 𝑥(𝑡 −

𝜏(𝑡)), 𝑥(𝑡 − 𝜏
𝑐
(𝑡))) − 𝜎(𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))).

Definition 1 (see [16, 27]). The complex network (3) is said to
be exponentially synchronized in mean square if the trivial
solution of system (9) is such that

𝑁

∑

𝑖=1

E
󵄩󵄩󵄩󵄩𝑒𝑖(𝑡, 𝑡0, 𝜉𝑖)

󵄩󵄩󵄩󵄩
2
≤ 𝐾𝑒

−𝜅𝑡
, (10)

for some 𝐾 > 0 and 𝜅 > 0 under any initial data 𝜉
𝑖
∈

C𝑏

F0
([− ̌𝜏, 0];R𝑛).

Definition 2 (see [9, 11, 16]). A continuous function 𝑓(𝑥, 𝑦) :
R𝑛 ×R𝑛 → R𝑛 is said to belong to the function class QUAD,
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denoted by 𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃) for some given matrix
Σ = diag{󰜚

1
, 󰜚
2
, . . . , 󰜚

𝑛
} if there exists a positive definite

diagonal matrix 𝑃 = diag{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
}, a diagonal matrix

Δ = diag{𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
} and constants 𝜂 > 0, 𝜃 > 0 such that

𝑓(⋅) satisfies the condition

(𝑥 − 𝑦)
𝑇
𝑃 ((𝑓 (𝑥, 𝑧) − 𝑓 (𝑦, 𝑤)) − ΔΣ (𝑥 − 𝑦))

≤ −𝜂(𝑥 − 𝑦)
𝑇
(𝑥 − 𝑦) + 𝜃(𝑧 − 𝑤)

𝑇
(𝑧 − 𝑤)

(11)

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ R𝑛.

The following assumptions are usual and will be used
throughout this paper for establishing the synchronization
conditions [9, 11, 16].

(H1) 𝜏(𝑡) and 𝜏
𝑐
(𝑡) are bounded and continuously differen-

tiable functions such that 0 < 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) < 𝜏 < 1,
0 < 𝜏

𝑐
(𝑡) ≤ 𝜏

𝑐
and ̇𝜏

𝑐
(𝑡) < 𝜏

𝑐
< 1. Let 𝜏̌ = max{𝜏, 𝜏

𝑐
}.

(H2) There exist positive definite constant matrices Υ[𝑟]
𝑖1
,

Υ
[𝑟]

𝑖2
and Υ[𝑟]

𝑖3
for 𝑖 = 1, 2, . . . , 𝑁 and 𝑟 = 1, 2, . . . ,𝑀

such that

Tr [𝜎[𝑟]
𝑖
(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏𝑐 (𝑡)))

𝑇

×𝜎
[𝑟]

𝑖
(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏𝑐 (𝑡)))]

≤

𝑁

∑

𝑗=1

𝑒
𝑗(𝑡)

𝑇
Υ
[𝑟]

𝑖1
𝑒
𝑗 (𝑡)

+

𝑁

∑

𝑗=1

𝑒
𝑗(𝑡 − 𝜏(𝑡))

𝑇
Υ
[𝑟]

𝑖2
𝑒
𝑗 (𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑒
𝑗
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇
Υ
[𝑟]

𝑖3
𝑒
𝑗
(𝑡 − 𝜏

𝑐 (𝑡)) .

(12)

Remark 3. Considering Definition 2 and assumption (H2),
there exists a unique solution of (9) under the initial data
𝜉
𝑖
∈ C𝑏

F0
([−𝜏, 0];R𝑛) (see [23, 24]).

Lemma 4 (see [23, 24]). Consider a stochastic delayed differ-
ential equation with Markovian switching of the form

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡)

(13)

on 𝑡 ≥ 0 with initial value 𝑥
0
= 𝜉 ∈ 𝐶

𝑏

𝐹0
([−𝜏, 0];R𝑛), where

𝑓 : R
𝑛
×R

𝑛
× 𝑆 → R

𝑛
, 𝜎 : R

𝑛
×R

𝑛
× 𝑆 → R

𝑛×𝑚
.

(14)

Let 𝐶2,1(R
+
× R𝑛;R

+
) be the family of all the nonnegative

functions𝑉(𝑡, 𝑥, 𝑟) onR
+
×R𝑛 × 𝑆 that are twice continuously

differentiable in 𝑥 and once differentiable in 𝑡. Let 𝑉 ∈

𝐶
2,1
(R

+
×R𝑛×𝑆;R

+
). Define an operatorL𝑉 fromR𝑛×R

+
× 𝑆

to R𝑛 by

L𝑉 (𝑡, 𝑥, 𝑟) = 𝑉𝑡 (𝑡, 𝑥, 𝑟) + 𝑉𝑥 (𝑡, 𝑥, 𝑟) 𝑓 (𝑥, 𝑟)

+
1

2
Tr [𝜎(𝑥, 𝑟)𝑇𝑉𝑥𝑥𝜎 (𝑥, 𝑟)]

+

𝑀

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝑡, 𝑥, 𝑗) ,

(15)

where 𝑉
𝑡
(𝑡, 𝑥, 𝑟) = 𝜕𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑡, 𝑉

𝑥
(𝑡, 𝑥, 𝑟) = (𝜕𝑉(𝑡, 𝑥,

𝑟)/𝜕𝑥
1
, . . . , 𝜕𝑉(𝑡, 𝑥, 𝑟)/𝜕𝑥

𝑛
), and 𝑉

𝑥𝑥
(𝑡, 𝑥, 𝑟) = (𝜕

2
𝑉(𝑡, 𝑥,

𝑟)/𝜕𝑥
𝑖
𝑥
𝑗
)
𝑛×𝑛

. If 𝑉 ∈ 𝐶
2,1
(R

+
×R𝑛 × 𝑆;R

+
), and then

E𝑉 (𝑡, 𝑥 (𝑡) , 𝑟) = E𝑉 (𝑡
0
, 𝑥 (𝑡

0
) , 𝑟) + E∫

𝑡

𝑡0

L𝑉 (𝑠, 𝑥 (𝑠) , 𝑟) 𝑑𝑠

(16)

for all ∞ > 𝑡 > 𝑡
0
≥ 0, as long as the expectations of the

integrals exist.

3. Main Result

In this section, we will deduce our main results.

Theorem 5. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼

𝑟
and

𝛽
𝑟
such that

[
[
[

[

𝐴
[𝑟]
+ ̌𝛿𝐼

𝑁
− 𝛼

𝑟
𝐼
𝑁

𝐵
[𝑟]

2

𝐵
[𝑟]

2
−𝛽

𝑟
𝐼
𝑁

]
]
]

]

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

̌𝜏 ≤ 𝜃𝑇, ̌𝜏 ≤ (1 − 𝜃) 𝑇, 0 ≤ 𝜏̌ ≤ 1 −
̌𝑞 (𝑏̌ + ̌𝑐)

1 + 𝜃
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0,

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

> Γ̃
−11

𝑀
,

(17)

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞 +
𝑏̌ ̌𝑞

1 − 𝜏
𝑒
𝛾𝜏
+

̌𝑐 ̌𝑞

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐 ,

Γ̃ = diag {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑀
} + Γ,

̌𝑎 = max
𝑟∈𝑆

𝑎
𝑟
, 𝑎

𝑟
=
𝜆max (−2𝜂𝐼𝑛 + 𝑝̌∑

𝑁

𝑖=1
Υ
[𝑟]

𝑖1
+ 2𝛼

𝑟
𝑃Σ)

𝑝̌
,

𝑏̌ = max
𝑟∈𝑆

𝑏
𝑟
, 𝑏

𝑟
=
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

[𝑟]

𝑖2
+ 2𝜃𝐼

𝑁
)

𝑝
,

̌𝑐 = max
𝑟∈𝑆

𝑐
𝑟
, 𝑐

𝑟
=
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

[𝑟]

𝑖3
+ 2𝛽

𝑟
𝑃Σ)

𝑝
, (18)
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then the solutions 𝑒
1
(𝑡), 𝑒

2
(𝑡), . . ., and 𝑒

𝑁
(𝑡) of system (9) are

exponentially stable in mean square. It means that the complex
dynamical network (3) can be exponentially controlled to the
objective trajectory 𝑠(𝑡) under the controllers (7).

Proof. By (44), there exists a sufficiently small constant 𝜃 > 0
such that

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

≥ (1 + 𝜃) Γ̃
−11. (19)

Set (1 + 𝜃)Γ̃−11 = 𝑞 = (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑀
)
𝑇. Then Γ̃𝑞 = (1 + 𝜃)1

𝑀
,

that is,

(𝑏
𝑟
+ 𝑐

𝑟
) 𝑞

𝑟
≤ 1, 𝑎

𝑟
𝑞
𝑟
+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠
= 1 + 𝜃. (20)

For 1 ≤ 𝑟 ≤ 𝑀, define the Lyapunov-Krasovskii function

𝑉 (𝑒 (𝑡) , 𝑟) = 𝑞𝑟
1

2

𝑁

∑

𝑖=1

𝑒
𝑖(𝑡)

𝑇
𝑃𝑒
𝑖 (𝑡) , (21)

and let 𝑒𝑘(𝑡) = (𝑒
1𝑘
(𝑡), 𝑒

2𝑘
(𝑡), . . . , 𝑒

𝑁𝑘
(𝑡))

𝑇, 𝑘 = 1, 2, . . . , 𝑛. For
any 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], 𝑘 = 1, 2, . . ., by Lemma 4, we have

L𝑉 (𝑒 (𝑡) , 𝑟)

= 𝑞
𝑟

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
𝑃{𝑓 (𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) +

𝑁

∑

𝑗=1

𝑎
[𝑟]

𝑖𝑗
Σ𝑒

𝑗
(𝑡)

+

𝑁

∑

𝑗=1

𝑏
[𝑟]

𝑖𝑗
Σ𝑒

𝑗
(𝑡 − 𝜏

𝑐
(𝑡))}

+
1

2
𝑞
𝑟

𝑁

∑

𝑖=1

Tr {𝜎
𝑖
(𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡)), 𝑥(𝑡 − 𝜏

𝑐
(𝑡)), 𝑟)

𝑇

×𝑃𝜎
𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏

𝑐
(𝑡)) , 𝑟) }

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
𝑃𝑒

𝑖
(𝑡)

≤ 𝑞
𝑟
{−𝜂

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
𝑒
𝑖
(𝑡) + 𝜃

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏(𝑡))

𝑇
𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝛿
𝑘
𝑒
𝑘
(𝑡)

𝑇
𝑒
𝑘
(𝑡) +

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘
(𝑡)

𝑇
𝐴
[𝑟]
𝑒
𝑘
(𝑡)

+

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘
(𝑡)

𝑇
𝐵
[𝑟]
𝑒
𝑘
(𝑡 − 𝜏

𝑐
(𝑡))

+
1

2
𝑝̌

𝑁

∑

𝑗=1

[

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
Υ
[𝑟]

𝑗1
𝑒
𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏(𝑡))

𝑇
Υ
[𝑟]

𝑗2
𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

Υ
[𝑟]

𝑗3
𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))]}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
𝑃𝑒

𝑖
(𝑡)

= 𝑞
𝑟
{

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
(−𝜂𝐼

𝑁
+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗1
+ 𝛼

𝑟
𝑃Σ) 𝑒

𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇
(𝜃 +

1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗2
)𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

(
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗3
+ 𝛽

𝑟
𝑃Σ) 𝑒

𝑖
(𝑡 − 𝜏

𝑐
(𝑡))}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
𝑃𝑒

𝑖
(𝑡)

+ 𝑞
𝑟
{

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘
(𝑡)

𝑇
[𝐴

[𝑟]
+ ( ̌𝛿 − 𝛼

𝑟
) 𝐼

𝑁
] 𝑒

𝑘
(𝑡)

+

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘
(𝑡)

𝑇
𝐵
[𝑟]
𝑒
𝑘
(𝑡 − 𝜏

𝑐
(𝑡))

−

𝑛

∑

𝑘=1

𝑝
𝑘
󰜚
𝑘
𝑒
𝑘
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

𝛽
𝑟
𝑒
𝑘
(𝑡 − 𝜏

𝑐
(𝑡))}

≤ 𝑞
𝑟
{

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
(−𝜂𝐼

𝑁
+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗1
+ 𝛼

𝑟
𝑃Σ) 𝑒

𝑖
(𝑡)

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏 (𝑡))

𝑇
(𝜃𝐼

𝑁
+
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗2
)𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡 − 𝜏

𝑐
(𝑡))

𝑇

(
1

2
𝑝̌

𝑁

∑

𝑗=1

Υ
[𝑟]

𝑗3
+ 𝛽

𝑟
𝑃Σ) 𝑒

𝑖
(𝑡 − 𝜏

𝑐
(𝑡))}

+

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠

1

2

𝑁

∑

𝑖=1

𝑒
𝑖
(𝑡)

𝑇
𝑃𝑒

𝑖
(𝑡) .

(22)

Let

𝐸 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑖(𝑡)

𝑇
𝑃𝑒
𝑖 (𝑡) ; (23)

then we have

L𝑉 (𝑡) ≤ 𝑎𝑟𝑞𝑟𝐸 (𝑡) + 𝑏𝑟𝑞𝑟𝐸 (𝑡 − 𝜏 (𝑡))

+ 𝑐
𝑟
𝑞
𝑟
𝐸 (𝑡 − 𝜏

𝑐 (𝑡)) +

𝑀

∑

𝑠=1

𝛾
𝑟𝑠
𝑞
𝑠
𝐸 (𝑡) ,

(24)

and by (20), we have

L𝑉 (𝑡) ≤ (1 + 𝜃) 𝐸 (𝑡) + 𝑏̌ ̌𝑞𝐸 (𝑡 − 𝜏 (𝑡)) + ̌𝑐 ̌𝑞𝐸 (𝑡 − 𝜏
𝑐 (𝑡)) .

(25)

Define

𝑊(𝑡) = 𝑒
𝛾𝑡
𝑉 (𝑡) . (26)
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Use (25) to compute the operator

L𝑊(𝑡) = 𝑒
𝛾𝑡
[𝛾𝑉 (𝑡) +L𝑉 (𝑡)]

≤ 𝑒
𝛾𝑡
[𝛾 ̌𝑞𝐸 (𝑡) + (1 + 𝜃) 𝐸 (𝑡)

+ 𝑏̌ ̌𝑞𝐸 (𝑡 − 𝜏 (𝑡)) + ̌𝑐 ̌𝑞𝐸 (𝑡 − 𝜏
𝑐 (𝑡))] .

(27)

The generalized Itô’s formula gives

𝑒
𝛾𝑡
E𝑉 (𝑡) = 𝑒

𝛾𝑡0E𝑉 (𝑡
0
) + E∫

𝑡

𝑡0

L𝑊(𝑠) 𝑑𝑠, (28)

for any 𝑡
𝑘
> 𝑡 > 𝑡

0
> 𝑡

𝑘−1
≥ 0. Hence we have

𝑒
𝛾𝑡
E𝑉 (𝑡) ≤ 𝑒

𝛾𝑡0E𝑉 (𝑡
0
)

+ E∫
𝑡

𝑡0

𝑒
𝛾𝑠
[𝛾 ̌𝑞𝐸 (𝑠) + (1 + 𝜃) 𝐸 (𝑠)

+ 𝑏̌ ̌𝑞𝐸 (𝑠 − 𝜏 (𝑠))

+ ̌𝑐 ̌𝑞𝐸 (𝑠 − 𝜏
𝑐 (𝑠))] 𝑑𝑠

≤ ̌𝑞𝑒
𝛾𝑡0E𝐸 (𝑡

0
) + (𝛾 ̌𝑞 + 1 + 𝜃)

× ∫

𝑡

𝑡0

𝑒
𝛾𝑠
E𝐸 (𝑠) 𝑑𝑠

+ 𝑏̌ ̌𝑞𝑒
𝛾𝜏
∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

+ ̌𝑐 ̌𝑞𝑒
𝛾𝜏𝑐 ∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏𝑐(𝑠))E𝐸 (𝑠 − 𝜏

𝑐 (𝑠)) 𝑑𝑠.

(29)

By changing variable 𝑠 − 𝜏(𝑠) = 𝑢, we have

∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏(𝑠))

E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠

= ∫

𝑡−𝜏(𝑡)

𝑡0−𝜏(𝑡0)
𝑒
𝛾𝑢
E𝐸 (𝑢)

𝑑𝑢

1 − ̇𝜏 (𝑡)

≤
1

1 − 𝜏
∫

𝑡

𝑡0−𝜏

𝑒
𝛾𝑢
E𝐸 (𝑢) 𝑑𝑢.

(30)

Similarly, we have

∫

𝑡

𝑡0

𝑒
𝛾(𝑠−𝜏𝑐(𝑠))E𝐸 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠 ≤

1

1 − 𝜏
𝑐

∫

𝑡

𝑡0−𝜏𝑐

𝑒
𝛾𝑢
E𝐸 (𝑢) 𝑑𝑢.

(31)

Substituting (30) and (31) into (29), we get

𝑒
𝛾𝑡
E𝑉 (𝑡) ≤ 𝑞𝑟𝑒

𝛾𝑡0E𝑉 (𝑡
0
) + 𝜑∫

𝑡

𝑡0− ̌𝜏

𝑒
𝛾𝑢
E𝐸 (𝑢) 𝑑𝑢. (32)

By using Gronwall inequality, we have

E𝐸 (𝑡) ≤
̌𝑞

𝑞
E𝐸 (𝑡

0
) 𝑒
𝜑(𝑡−𝑡0+ ̌𝜏)+𝛾(𝑡0−𝑡). (33)

On the other hand, from the construction of 𝐸(𝑡), we have

𝐸 (𝑡
𝑘
) ≤ (1 + 𝜖

𝑘
)
2
𝐸 (𝑡

−

𝑘
) , (34)

where |1 + 𝜖
𝑘
| = max

𝑖=1,2,...,𝑁
|1 + 𝜖

𝑖𝑘
|.

According to (33)-(34), let 𝑘 = ⌊(𝑡 − 𝑡
0
)/𝑇⌋, for any 𝑡 ∈

[𝑡
𝑘−1
, 𝑡
𝑘
), and we get

E𝑉 (𝑡) ≤
̌𝑞

𝑞
E𝐸 (𝑡

𝑘
) 𝑒
𝜑(𝑡−𝑡𝑘+ ̌𝜏)+𝛾(𝑡𝑘−𝑡)

≤
̌𝑞

𝑞
E𝑉 (𝑡

−

𝑘−1
) 𝑒
𝜑(𝑡−𝑡𝑘−1+ ̌𝜏)+𝛾(𝑡𝑘−𝑡)+2 ln |1+𝜖𝑘−1|

≤ ⋅ ⋅ ⋅ ≤ (
̌𝑞

𝑞
)

𝑘−1

E𝐸 (0) 𝑒
𝜑(𝑡+𝑘 ̌𝜏)−𝛾𝑡+∑

𝑘−1

V=1 2 ln |1+𝜖V|.

(35)

Let |1 + 𝜖| = maxV∈𝑍+ |1 + 𝜖V|, and we have

E𝐸 (𝑡) ≤ E𝐸 (0) 𝑒
𝜑(𝑡+𝑘 ̌𝜏)−𝛾𝑡+2(𝑘−1) ln( ̌𝑞/𝑞)|1+𝜖|

. (36)

Using condition (43) of Theorem 5, there exist a number
𝜂 such that E𝐸(𝑡) ≤ E𝐸(𝑡

0
)𝑒
−𝜂𝑡. Hence, E‖𝑒

𝑖
(𝑡)‖ ≤ (𝐸(𝑡

0
)/

𝑝̌)
1/2
𝑒
−(𝜂/2)(𝑡−𝑡0). The proof of Theorem 5 is completed.

Remark 6. The stochastic networks studied before are with-
out topological switch, and the time delays are always
assumed to be fixed. However, for the sake of applications
in the real work, these two points above should be taken
into consideration. Of course, it will enhance the difficulties
of the investigations on this network. For example, if the
network has Markovian switching topology, the structure of
the network is fast varying and the Lyapunov function is
hard to be determined. By using the Lyapunov-Krasovskii
functional, Itö’s formula, and LMI, the exponential stability
criterion of the pinning impulsive controlled Markovian
switching stochastic dynamical network with time-varying
delays was obtained. This also showed that the impulsive
pinning control is a kind of cheap control strategy for guiding
complex dynamical networks to the objective trajectory.

To makeTheorem 5 more applicative, we give the follow-
ing corollaries.

When complex dynamic networks (3) are considered
without coupled delay time (𝐵[𝑟(𝑡)] = 𝐵), we can get the fol-
lowing corollary.

Corollary 7. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼

𝑟
and

𝛽
𝑟
such that

𝐴
[𝑟]
+ ̌𝛿𝐼

𝑁
− 𝛼

𝑟
𝐼
𝑁
≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

𝜏 ≤ 𝜃𝑇, 𝜏 ≤ (1 − 𝜃) 𝑇, 0 ≤ 𝜏 ≤ 1 −
̌𝑞𝑏̌

1 + 𝜃
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞
|1 + 𝜖| − 𝛾𝑇 < 0,

(
1

𝑏
1

,
1

𝑏
2

, . . . ,
1

𝑏
𝑀

)

𝑇

> Γ̃
−11

𝑀
,

(37)
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where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞 +
𝑏̌ ̌𝑞

1 − 𝜏
𝑒
𝛾𝜏
,

Γ̃ = diag {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑀
} + Γ,

̌𝑎 = max
𝑟∈𝑆

𝑎
𝑟
, 𝑎

𝑟
=
𝜆max (−2𝜂𝐼𝑛 + 𝑝̌∑

𝑁

𝑖=1
Υ
[𝑟]

𝑖1
+ 2𝛼

𝑟
𝑃Σ)

𝑝̌
,

𝑏̌ = max
𝑟∈𝑆

𝑏
𝑟
, 𝑏

𝑟
=
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

[𝑟]

𝑖2
+ 2𝜃𝐼

𝑁
)

𝑝
,

(38)

then the solutions 𝑒
1
(𝑡), 𝑒

2
(𝑡), . . . , and 𝑒

𝑁
(𝑡) of system (9) are

exponentially stable in mean square.

In another case, when we consider the system (3) without
Markov switching, that is, 𝐴[𝑟(𝑡)] = 𝐴, 𝐵[𝑟(𝑡)] = 𝐵, and 𝜎[𝑟(𝑡)]

𝑖

(𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏
𝑐
(𝑡))) = 𝜎

𝑖
(𝑒(𝑡), 𝑒(𝑡 − 𝜏(𝑡)), 𝑒(𝑡 − 𝜏

𝑐
(𝑡))),

we can get another corollary.

Corollary 8. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD((𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼 and
𝛽 such that

[
[

[

𝐴 + ̌𝛿𝐼
𝑁
− 𝛼𝐼

𝑁

𝐵

2
𝐵

2
−𝛽𝐼

𝑁

]
]

]

≤ 0,

̌𝜏 ≤ 𝜃𝑇, ̌𝜏 ≤ (1 − 𝜃) 𝑇, 0 ≤ 𝜏̌ ≤ 1 −
𝑏 + 𝑐

𝑎
,

𝜑 ( ̌𝜏 + 𝑇) + 2 ln 󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0,

𝑏 + 𝑐 < 𝑎,

(39)

where

𝜑 = 𝑎 + 𝛾 +
𝑏

1 − 𝜏
𝑒
𝛾𝜏
+

𝑐

1 − 𝜏
𝑐

𝑒
𝛾𝜏𝑐 ,

𝑎 =
𝜆max (−2𝜂𝐼𝑛 + 𝑝̌∑

𝑁

𝑖=1
Υ
𝑖1
+ 2𝛼𝑃Σ)

𝑝̌
,

𝑏 =
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

𝑖2
+ 2𝜃𝐼

𝑁
)

𝑝
,

𝑐 =
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

𝑖3
+ 2𝛽

𝑟
𝑃Σ)

𝑝
,

(40)

then the solutions 𝑒
1
(𝑡), 𝑒

2
(𝑡), . . . , and 𝑒

𝑁
(𝑡) of system (9) are

exponentially stable in mean square.

Furthermore, when we address the system (3) with fixed
time delays, that is, 𝜏(𝑡) = 𝜏, 𝜏

𝑐
(𝑡) = 𝜏

𝑐
, the following corollary

also can be obtained.

Corollary 9. Let assumptions (H1) and (H2) be true and let
𝑓 ∈ QUAD(𝑃, Δ, 𝜂, 𝜃). If there exist positive constants 𝛼

𝑟
and

𝛽
𝑟
such that

[
[
[

[

𝐴
[𝑟]
+ ̌𝛿𝐼

𝑁
− 𝛼

𝑟
𝐼
𝑁

𝐵
[𝑟]

2

𝐵
[𝑟]

2
−𝛽

𝑟
𝐼
𝑁

]
]
]

]

≤ 0, for 𝑟 = 1, 2, . . . ,𝑀,

(41)

̌𝜏 ≤ 𝜃𝑇, ̌𝜏 ≤ (1 − 𝜃) 𝑇, (42)

𝜑 ( ̌𝜏 + 𝑇) + 2 ln
̌𝑞

𝑞

󵄨󵄨󵄨󵄨1 + 𝜖V
󵄨󵄨󵄨󵄨 − 𝛾𝑇 < 0, (43)

(
1

𝑏
1
+ 𝑐

1

,
1

𝑏
2
+ 𝑐

2

, . . . ,
1

𝑏
𝑀
+ 𝑐

𝑀

)

𝑇

> Γ̃
−11

𝑀
, (44)

where

𝜑 = 1 + 𝜃 + 𝛾 ̌𝑞 + 𝑏̌ ̌𝑞𝑒
𝛾𝜏
+ ̌𝑐 ̌𝑞𝑒

𝛾𝜏𝑐 ,

Γ̃ = diag {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑀
} + Γ,

̌𝑎 = max
𝑟∈𝑆

𝑎
𝑟
, 𝑎

𝑟
=
𝜆max (−2𝜂𝐼𝑛 + 𝑝̌∑

𝑁

𝑖=1
Υ
[𝑟]

𝑖1
+ 2𝛼

𝑟
𝑃Σ)

𝑝̌
,

𝑏̌ = max
𝑟∈𝑆

𝑏
𝑟
, 𝑏

𝑟
=
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

[𝑟]

𝑖2
+ 2𝜃𝐼

𝑁
)

𝑝
,

̌𝑐 = max
𝑟∈𝑆

𝑐
𝑟
, 𝑐

𝑟
=
𝜆max (∑

𝑁

𝑖=1
𝑃Υ

[𝑟]

𝑖3
+ 2𝛽

𝑟
𝑃Σ)

𝑝
,

(45)

then the solutions 𝑒
1
(𝑡), 𝑒

2
(𝑡), . . . , and 𝑒

𝑁
(𝑡) of system (9) are

exponentially stable in mean square.

Remark 10. In [29], the exponential stability of a class of
stochastic neural networks with both Markovian jump
parameters and mixed fixed time delays were investigated.
Therefore, we could see our results as a further research about
the stochastic dynamic network of [29].

4. Numerical Simulation

In this section, we present some numerical simulation results
that validate the theorem in the previous section.

Consider the chaotic delayed neural network

𝑑𝑠 (𝑡) = {−𝐶𝑠 (𝑡) + 𝐴𝑓 (𝑠 (𝑡)) + 𝐵𝑔 (𝑠 (𝑡 − 𝜏 (𝑡)))} 𝑑𝑡

+ 𝜎 (𝑠 (𝑡) , 𝑠 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(46)

where 𝑓(𝑠) = 𝑔(𝑠) = tanh(𝑠), 𝜏(𝑡) = 1, 𝜎(𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))) =
diag{𝑠

1
(𝑡), 𝑠

2
(𝑡)},

𝐶 = [
1 0

0 1
] , 𝐴 = [

2 −0.1

−5 4.5
] ,

𝐵 = [
−1.5 −0.1

−0.2 −4
] .

(47)
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Figure 2: The trajectories of the state variables of 𝑥
𝑖1
and 𝑥

𝑖2
(𝑖 = 1, 2, . . . , 5) in system (48) by impulse control.
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Figure 3: The time evolution of 𝑒
𝑖1
and 𝑒

𝑖2
(𝑖 = 1, 2, . . . , 5) in system (48) by impulse control.

Taking𝑃 = diag{1, 2} andΔ = diag{5, 11, 5}, we have 𝜂 = 0.15
and 𝜃 = 3.25 so that condition (11) is satisfied. Thus

𝑑𝑥
𝑖 (𝑡) =

{

{

{

𝑓 (𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) +

5

∑

𝑗=1

𝑎
[𝑟]

𝑖𝑗
Σ𝑥

𝑗 (𝑡)

+

5

∑

𝑗=1

𝑏
[𝑟]

𝑖𝑗
Σ𝑥

𝑗
(𝑡 − 𝜏

𝑐 (𝑡))
}

}

}

𝑑𝑡

+ 𝜎
[𝑟]

𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏𝑐 (𝑡))) 𝑑𝑤𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 5, 𝑟 = 1, 2,

(48)

and Γ = [ −3 3

2 −2
], 𝜏

𝑐
(𝑡) = 0.1(𝑒

𝑡
/(1 + 𝑒

𝑡
)),

𝜎
[1]

𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏𝑐 (𝑡)))

= 0.1 diag {𝑥
𝑖1 (𝑡) , 𝑥𝑖2 (𝑡)} ,

𝜎
[2]

𝑖
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑥 (𝑡 − 𝜏𝑐 (𝑡)))

= 0.1 diag {𝑥
𝑖1 (𝑡 − 𝜏 (𝑡)) , 𝑥𝑖2 (𝑡 − 𝜏 (𝑡))} .

(49)

Computations then yield 𝜏 = 1, 𝜏 = 0, 𝜏
𝑐
= 0.1, 𝜏

𝑐
= 0.1

and Υ
𝑖𝑗
= 0.1𝐼

2
for 𝑖 = 1, 2, . . . , 𝑁. Then the solutions of

inequalities (41)–(44) are (by using the Matlab LMI toolbox)
𝛼
1
= 2.500, 𝛽

1
= 0.001, 𝑎

1
= 4.305, 𝑏

1
= 5.055, 𝑐

1
= 0.109;

𝛼
2
= 4.006,𝛽

2
= 0.009, 𝑎

2
= 5.105, 𝑏

2
= 5.030, and 𝑐

2
= 0.065.

The initial conditions for this simulation are 𝑥
𝑖𝑗
(𝑡
0
)which

are constants, for 𝑖 = 1, 2, . . . , 5, 𝑗 = 1, 2 and the trajectories
of the impulse control gains are shown in Figure 2. Figure 3
shows the time evolution of the synchronization errors with
impulse control.

5. Conclusion

In this paper, we investigated the synchronization problem
for stochastic complex networks with Markovian switching
and nondelayed and time-varying delayed hybrid couplings.
We achieved synchronization by applying an impulse control
scheme to a small fraction of the nodes and derived sufficient
conditions for stability of synchronization. Finally, we consid-
ered some numerical examples that illustrate the theoretical
analysis.
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