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Considering the load frequency control (LFC) of large-scale power system, a robust distributedmodel predictive control (RDMPC)
is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints
(GRC) is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem
is formulated as convex optimization problem with linear matrix inequalities (LMI) that can be solved efficiently. It minimizes an
upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness
in the presence of power system dynamic uncertainties.

1. Introduction

The load frequency control (LFC) has long been a much
concerned research interest for power system engineers over
the past forty years [1]. In modern power system, undesirable
frequency and scheduled tie-line power changes in multiarea
power system are a direct result of the imbalance between
generated power and system demand plus associated system
losses. The main objectives of the LFC are to keep the system
frequency at the scheduled value and regulate the generator
units to make the area control error tend to zero under the
continuous adjustment of active power, so that the generation
of the entire system and the load power well match.

In a practical power system, there exist different kinds
of uncertainties, such as changes in parameter. And each
control area contains various disturbances due to increased
complexity, system modeling errors, and changing power
system structure. Thus the robustness must be taken into
theoretical consideration in the LFC design procedure to
promise high power quality. A fixed controller based on
classical theory is not very suitable for the LFC problem. It
is necessary that a flexible controller should be developed
[2–4]. Robust LFC was early designed based on the Riccati

equation approach [5], which is simple and effective and can
ensure the overall system to be asymptotically stable for all
admissible uncertainties. Motivated by the large uncertainty
in dynamic models of power system components and their
interconnections, paper [6] proposes a physically motivated
passivity objective as a means to achieve effective closed-loop
control. Recently, robust LFC can be realized using linear
matrix inequalities [7], fuzzy logic [8], neural networks [9],
and genetic algorithms [10].

Model predictive control (MPC) has been an attracting
method for power systemLFC,which can perform an optimi-
zation procedure to calculate optimal control actions within
the realistic power system constrains. In LFC research, there
is the practical limit on the rate of change in the generating
power, called the generation rate constraints (GRC), which
can result in the LFC to be a constraint optimal problem.
Traditional MPC is unable to explicitly incorporate plant
uncertainty. Thus, robust MPC has been well developed
recently [11, 12].

Most existing MPCs assume that all subsystems are
identical, which is not the case of actual power systems. Sub-
sequently, a number of decentralized/distributed load fre-
quency controllers were developed to eliminate the above
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drawback. In [13], the distributed model predictive control
(DMPC) is used in LFC, which offers an effective means
of achieving the desired controller coordination and per-
formance improvements. A decentralized MPC framework
for multiarea power system has been presented in [14].
Accordingly, the robustness of DMPC strategies to model
errors has been identified as a key factor for the successful
application of DMPC [15].

In this paper, a robust distributed MPC (RDMPC)
strategy for load frequency control in interconnected power
system is presented. The entire power system is composed
of several subareas and the problem is formulated as convex
optimization problem with linear matrix inequalities (LMI)
that can be solved efficiently using the algorithm.Themethod
shows good dynamic response and robustness in the presence
of power system model dynamic uncertainties.

2. Mathematical Model of Power System

The interconnected power system consists of at least two
control areas connected by tie lines. Usually the subsystem
contains thermal power system, hydro power system, nuclear
power system, and renewable power system, inwhich thermal
power system and hydro power system generally participate
in load frequency control. Figures 1 and 2 show, respectively,
the structures of thermal power plant and hydro power plant
in power system LFC. The original model has been given in
[16]. Comparing to [16], the model in this article contains
the reheater part, which is quite common in modern thermal
power plant. Each control area has its own controller. The
variables and parameters are given in Table 1.

When load change happens in one area, all the intercon-
nected areas will be affected, and the controllers act to adjust
the frequency deviation and tie-line active power to return
to steady state. The LFC using RDMPC will be applied to the
whole control areas.

The time-varying linearized mathematical model of ther-
mal andhydro plant used in interconnected power systemcan
be described as

ẋ
𝑖 (
𝑡) = A

𝑖𝑖 (
𝑡) x𝑖 (𝑡)

+ ∑

𝑗
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(1)

where 𝑖 represents the control area; x
𝑖
∈ R𝑛𝑖 , u

𝑖
∈ R𝑚𝑖 , and

d
𝑖
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neighbor system.
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In Figure 1, the state variable in the thermal power system
is

x
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(4)

while the state variable in the hydro power system is

x
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(5)

The control signal and disturbance in both the thermal
power system and the hydro power system are as follows:

u
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𝑡) , d
𝑖 (
𝑡) = Δ𝑃𝑑𝑖 (

𝑡) . (6)
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while the state, control, and disturbance matrix in hydro
power system are
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Figure 1: The block diagram of thermal power plant in area 𝑖.
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Figure 2: The block diagram of hydro power plant in area 𝑖.

where 𝛼 = 𝑇

𝑅𝑖
/𝑇

1𝑖
𝑇

2𝑖
𝑅

𝑖
, 𝛽 = (𝑇

𝑅𝑖
− 𝑇

1𝑖
)/𝑇

1𝑖
𝑇

2𝑖
, 𝜅 = (𝑇

2𝑖
+

𝑇

𝑊𝑖
)/𝑇

2𝑖
𝑇

𝑊𝑖
.

Here 𝐴
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have 5 × 5 dimensions. All their elements are

equal to zero, except for the element at position (1, 2), which
is equal to −𝑇

𝑠𝑖𝑗
.

For the whole power system, the state-space equation is
as follows:
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This is a general continuous-time linear system with
added disturbance. 𝑀 is the number of control areas of the
interconnected power system.After using the zero-order hold
(ZOH) discretization method, each control area’s distributed
discrete-time linear model is expressed as follows:
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From (11), the polytopic model of each control area is
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Table 1: Variables and parameters used in thermal and hydro power plant.

Parameter/variable Description Unit
Δ𝑓 (𝑡) Frequency deviation Hz
Δ𝑃

𝑔
(𝑡) Generator output power deviation p.u.MW

Δ𝑋

𝑔
(𝑡) Governor valve position deviation p.u.

Δ𝑃

𝑟
(𝑡) Reheater output deviation p.u.

Δ𝑋

𝑔ℎ
(𝑡) Governor valve servomotor position deviation p.u.

Δ𝑃tie (𝑡) Tie-line active power deviation p.u.MW
Δ𝑃

𝑑
(𝑡) Load disturbance p.u.MW

Δ𝛿 (𝑡) Rotor angle deviation rad
𝐾

𝑃
Power system gain Hz/p.u.MW

𝐾

𝑟
Reheater gain p.u.

𝑇

𝑃
Power system time constant s

𝑇

𝑊
Water starting time s

𝑇

1
, 𝑇

2
, 𝑇

𝑅
Hydrogovernor time constants s

𝑇

𝐺
Thermal governor time constant s

𝑇

𝑇
Turbine time constant s

𝑇

𝑟
Reheater time constant s

𝑇

𝑠
Interconnection gain between CAs p.u.MW

𝐵 Frequency bias factor p.u.MW/Hz
𝑅 Speed droop due to governor action Hz/p.u.MW
ACE Area control error p.u.MW

̃

𝐴

𝑖𝑖
(𝑘), ̃𝐵

𝑖𝑖
(𝑘), ̃𝐴

𝑖𝑗
(𝑘), ̃𝐵

𝑖𝑗
(𝑘), and ̃

𝐶

𝑖𝑖
are the relative

matrices in the discrete-time model (11). Ω is the model
parameter uncertainty set. 𝛽

ℓ
’s are used to represent a convex

combination of the model vertices since the convex hull
(the polytope) is the extreme model vertices. Each vertex ℓ
corresponds to a linear model. The states are assumed to be
available.

3. Robust Distributed Model Predictive
Control Algorithm

Considering the distributed discrete-time power system
model (11), the min-max problem to be solved for each
subsystem is expressed as
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where 𝑥
𝑖
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𝑖
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based on data at time 𝑘. 𝑆
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, and 𝑅
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The maximization is to choose time-varying model
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𝑖
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situation will be minimized on the current and the future
horizons.

To solve the optimal problem (13), it is necessary to find
an upper bound of the object function (15). Considering the
quadratic function
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For 𝑙 = 0, 1, . . . ,∞, the accumulation of (17) is

𝑉

𝑖 (
𝑥 (𝑘 | 𝑘)) ≥ 𝐽𝑖 (

𝑘) . (18)
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So the upper bound of object function can be proved to
be

max
[
𝐴𝑖𝑖(𝑘+𝑙)𝐵𝑖𝑖(𝑘+𝑙)⋅⋅⋅𝐴𝑖𝑗(𝑘+𝑙)𝐵𝑖𝑗(𝑘+𝑙)⋅⋅⋅ ], 𝑙≥0

𝐽

𝑖 (
𝑘) ≤ 𝑉𝑖 (

𝑥 (𝑘 | 𝑘)) . (19)

A state-feedback law is sought for each subsystem 𝑖 as
follows:

𝑢

𝑖 (
𝑘 + 𝑙 | 𝑘) = 𝑓𝑖𝑖

𝑥

𝑖 (
𝑘 + 𝑙 | 𝑘) +

𝑀

∑

𝑗 ̸= 𝑖

𝑓

𝑖𝑗
𝑥

𝑗 (
𝑘 + 𝑙 | 𝑘)

= 𝑓

𝑖
𝑥 (𝑘 + 𝑙 | 𝑘) ,

(20)

where 𝑓
𝑖
= [𝑓𝑖1

𝑓

𝑖2
⋅ ⋅ ⋅ 𝑓

𝑖𝑀].
When solving optimization problem of the subsystem 𝑖,

the state-feedback law of the neighboring subsystem 𝑗 (𝑗 ̸= 𝑖)

is expressed as

𝑢

𝑗 (
𝑘 + 𝑙 | 𝑘) = 𝑓

∗

𝑗𝑗
𝑥

𝑗 (
𝑘 + 𝑙 | 𝑘) +

𝑀

∑

𝑗 ̸= 𝑠

𝑓

∗

𝑗𝑠
𝑥

𝑠 (
𝑘 + 𝑙 | 𝑘)

= 𝑓

∗

𝑗
𝑥 (𝑘 + 𝑙 | 𝑘) ,

(21)

where 𝑓∗
𝑗
= [𝑓

∗

𝑗1
𝑓

∗

𝑗2
⋅ ⋅ ⋅ 𝑓

∗

𝑗𝑀
].

The RDMPC algorithm will be redefined using state-
feedback law (20) to minimize the upper bound

min
𝑢𝑖(𝑘+𝑙|𝑘)

𝑉

𝑖 (
𝑥 (𝑘 | 𝑘)) = min

𝑓𝑖

𝑥

󸀠
(𝑘 | 𝑘) 𝑃𝑖

𝑥 (𝑘 | 𝑘) , 𝑃

𝑖
> 0.

(22)

For the whole power system, the expression of 𝑥 is

𝑥 (𝑘 + 1) =

[

[

[

[

[

𝑥

1 (
𝑘 + 1)

𝑥

2 (
𝑘 + 1)

...
𝑥

𝑀 (
𝑘 + 1)

]

]

]

]

]

=

[

[

[

[

[

̃

𝐴

11 (
𝑘)

̃

𝐴

12 (
𝑘) ⋅ ⋅ ⋅

̃

𝐴

1𝑀 (
𝑘)

̃

𝐴

21 (
𝑘)

̃

𝐴

22 (
𝑘) ⋅ ⋅ ⋅

̃

𝐴

2𝑀 (
𝑘)

...
...

...
̃

𝐴

𝑀1 (
𝑘)

̃

𝐴

𝑀2 (
𝑘) ⋅ ⋅ ⋅

̃

𝐴

𝑀𝑀 (
𝑘)

]

]

]

]

]

[

[

[

[

[

𝑥

1 (
𝑘)

𝑥

2 (
𝑘)

...
𝑥

𝑀 (
𝑘)

]

]

]

]

]

+

[

[

[

[

[

̃

𝐵

11 (
𝑘)

̃

𝐵

21 (
𝑘)

...
̃

𝐵

𝑀1 (
𝑘)

]

]

]

]

]

𝑢

1 (
𝑘) +

[

[

[

[

[

̃

𝐵

12 (
𝑘)

̃

𝐵

22 (
𝑘)

...
̃

𝐵

𝑀2 (
𝑘)

]

]

]

]

]

𝑢

2 (
𝑘)

+ ⋅ ⋅ ⋅ +

[

[

[

[

[

̃

𝐵

1𝑀 (
𝑘)

̃

𝐵

2𝑀 (
𝑘)

...
̃

𝐵

𝑀𝑀 (
𝑘)

]

]

]

]

]

𝑢

𝑀 (
𝑘) .

(23)

Define

𝐴 (𝑘) =

[

[

[

[

[

̃

𝐴

11 (
𝑘)

̃

𝐴

12 (
𝑘) ⋅ ⋅ ⋅

̃

𝐴

1𝑀 (
𝑘)

̃

𝐴

21 (
𝑘)

̃

𝐴

22 (
𝑘) ⋅ ⋅ ⋅

̃

𝐴

2𝑀 (
𝑘)

...
...

...
̃

𝐴

𝑀1 (
𝑘)

̃

𝐴

𝑀2 (
𝑘) ⋅ ⋅ ⋅

̃

𝐴

𝑀𝑀 (
𝑘)

]

]

]

]

]

, (24)

𝐵

𝑖 (
𝑘) =

[

[

[

[

[

̃

𝐵

1𝑖 (
𝑘)

̃

𝐵

2𝑖 (
𝑘)

...
̃

𝐵

𝑀𝑖 (
𝑘)

]

]

]

]

]

. (25)

Using (20) and (21), the state (23) can be simplified as

𝑥 (𝑘 + 1) = [𝐴 (𝑘) + 𝐵𝑖 (
𝑘) 𝑓𝑖

] 𝑥 (𝑘) (26)

in which 𝐴(𝑘) = 𝐴(𝑘) + ∑𝑀
𝑗 ̸= 𝑖

𝐵

𝑗
(𝑘)𝑓

∗

𝑗
.

The robust stability constraint in (17) becomes

[𝐴

(ℓ)

(𝑘 + 𝑙) + 𝐵

(ℓ)

𝑖
(𝑘 + 𝑙) 𝑓𝑖

]

󸀠

× 𝑃

𝑖
[𝐴

(ℓ)

(𝑘 + 𝑙) + 𝐵

(ℓ)

𝑖
(𝑘 + 𝑙) 𝑓𝑖

] − 𝑃

𝑖

≤ −(𝑆

𝑖
+

𝑀

∑

𝑗 ̸= 𝑖

𝑓

∗󸀠

𝑗
𝑅

𝑗
𝑓

∗

𝑗
+ 𝑓

󸀠

𝑖
𝑅

𝑖
𝑓

𝑖
) ,

(27)

where

𝑆

𝑖
=

[

[

[

[

𝑆

1

𝑆

2

d
𝑆

𝑀

]

]

]

]

. (28)

By defining an upper bound,

𝐽

𝑖 (
𝑘) ≤ 𝑉𝑖 (

𝑥 (𝑘 | 𝑘)) ≤ 𝛾𝑖
. (29)

The optimal problem (22) is equivalent to

min
𝛾𝑖 ,𝑃𝑖

𝛾

𝑖

s.t. 𝑥

󸀠
(𝑘 | 𝑘) 𝑃𝑖

𝑥 (𝑘 | 𝑘) ≤ 𝛾𝑖
.

(30)

Substituting 𝑃
𝑖
= 𝛾

𝑖
𝑄

−1

𝑖
> 0, 𝑌

𝑖
= 𝑓

𝑖
𝑄

𝑖
, with the input

constraints given in (13) and the stability constraint (27),
followed by a Schur complement decomposition, the min-
imization of 𝐽

𝑖
(𝑘) can be replaced by the minimization
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problem (30) as in the following linearminimization problem
with LMI constraints:

min
𝛾𝑖,𝑃𝑖 ,𝑄𝑖

𝛾

𝑖

s.t. [

1 𝑥

󸀠
(𝑘 | 𝑘)

𝑥 (𝑘 | 𝑘) 𝑄

𝑖

] ≥ 0,

[

[

[

[

[

[

[

𝑄

𝑖
𝑄

𝑖
𝐴

󸀠(ℓ)

+ 𝑌

󸀠

𝑖
𝐵

󸀠(ℓ)

𝑖
𝑄

𝑖
𝑆

1/2

𝑖
𝑌

𝑖
𝑅

1/2

𝑖

𝐴

(ℓ)

𝑄

𝑖
+ 𝐵

(ℓ)

𝑖
𝑌

𝑖
𝑄

𝑖
0 0

𝑆

1/2

𝑖
𝑄

𝑖
0 𝛾

𝑖
𝐼 0

𝑅

1/2

𝑖
𝑌

𝑖
0 0 𝛾

𝑖
𝐼

]

]

]

]

]

]

]

≥ 0

ℓ = 1, 2, . . . , 𝐿,

[

(𝑢

max
𝑖
)

2
𝐼 𝑌

𝑖

𝑌

󸀠

𝑖
𝑄

𝑖

] ≥ 0.

(31)

For the constraints on power system state

max
[
𝐴𝑖𝑖(𝑘+𝑙)𝐵𝑖𝑖(𝑘+𝑙)⋅⋅⋅𝐴𝑖𝑗(𝑘+𝑙)𝐵𝑖𝑗(𝑘+𝑙)⋅⋅⋅ ]∈Ω, 𝑙≥0

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖 (
𝑘 + 𝑙 | 𝑘)

󵄩

󵄩

󵄩

󵄩2
≤ 𝑦

𝑖,max.

(32)

Transform it to LMI form as

[

[

𝑄

𝑖
(𝐴

(ℓ)

𝑄

𝑖
+ 𝐵

(ℓ)

𝑖
𝑌

𝑖
)

󸀠

̃

𝐶

󸀠

𝑖𝑖

̃

𝐶

𝑖𝑖
(𝐴

(ℓ)

𝑄

𝑖
+ 𝐵

(ℓ)

𝑖
𝑌

𝑖
) 𝑦

2

𝑖,max𝐼

]

]

≥ 0

ℓ = 1, 2, . . . , 𝐿.

(33)

4. The Simulation

Two examples are considered to demonstrate the effective-
ness of the proposed RDMPC. In the first one, the RDMPC
is utilized in a two-control area thermal power system, while
in the second one, a three-area thermal-hydro power system
is considered.

Case 1 (a two-control area thermal power system). A two-
control area thermal power system is shown in Figure 3. The
parameters used in the simulation is as follows:

𝐾

𝑃1
= 120Hz/p.u.MW; 𝐾

𝑃2
= 75Hz/p.u.MW;

𝑇

𝑃1
= 20 s; 𝑇

𝑃2
= 15 s; 𝐾

𝑟1
= 𝐾

𝑟2
= 0.5Hz/p.u.MW;

𝑅

1
= 2.4Hz/p.u.MW; 𝑅

2
= 3Hz/p.u.MW;

𝐵

1
= 0.425 p.u.MW/Hz; 𝐵

2
= 0.347 p.u.MW/Hz;

𝑇

𝐺1
= 0.08 s; 𝑇

𝐺2
= 0.2 s; 𝑇

𝑇1
= 𝑇

𝑇2
= 0.3 s;

𝑇

𝑠12
= 0.545 p.u.MW; 𝑇

𝑟1
= 𝑇

𝑟2
= 10 s.

(34)

The power system model in Figure 1 with included GRC
is shown in Figure 4. In simulations, GRC was set to |Δ ̇

𝑃

𝑔𝑖
| ≤

𝑟 = 0.0017 p.u.MW/s.

Thermal
power
system

Thermal
power
system

Figure 3: The two-control area interconnected thermal power
system.

ΔXgi
ΔPgi1

TTi−+

GRC

1

s

Figure 4: GRC in power system LFC.

In real time power system LFC, the power system time
constant 𝑇

𝑃
and turbine time constant 𝑇

𝑇
can change fre-

quently. Thus the robustness study is performed by applying
intentional changes in these two parameters. The maximum
range of parameter variation is chosen to be 40%. The poly-
topic of uncertain LFC system has four vertices, which are

𝐴

(1)

𝑖
(0.6𝑇

𝑃𝑖
, 0.6𝑇

𝑇𝑖
) ; 𝐴

(2)

𝑖
(1.4𝑇

𝑃𝑖
, 1.4𝑇

𝑇𝑖
) ;

𝐴

(3)

𝑖
(0.6𝑇

𝑃𝑖
, 1.4𝑇

𝑇𝑖
) ; 𝐴

(4)

𝑖
(1.4𝑇

𝑃𝑖
, 0.6𝑇

𝑇𝑖
) .

(35)

Under the parameter changes, the performance of the
RDMPC is assessed by applying load disturbance. At 𝑡 = 2 s,
a step load disturbance on control area is added to be Δ𝑃

𝑑1
=

0.01 p.u. Choose the sample time to be 𝑇
𝑠
= 0.1 s, 𝑆

𝑖
= 1, and

𝑅

𝑖
= 0.05.
The proposed RDMPC is compared with two other

schemes, for example, the conventional robust centralized
MPC, which solves themin-max optimization problem using
the centralized model by the formulation of a linear matrix
inequality and also with the communicated-based MPC,
which utilizes the objective function for local subsystem only.
Figures 5, 6, and 7 show the comparison results of the ACE
signals, the frequency deviations, and the tie-line power flow,
respectively. It is clear that the proposed RDMPC has the best
performance, since the MPC controllers cooperate with each
other in achieving system-wide objectives. The performance
of the robust centralized MPC is quite close to that of the
RDMPC, since it is also robust to parameter changes. The
only shortcoming of the centralized MPC is its high compu-
tation burden. The performance of the communicated-based
MPC is the worst, since it can neither realize the cooperation
of the subsystems nor adapt to parameter changes.

Case 2 (a three-area thermal-hydro power system). The
three-control area interconnected power system containing
thermal and hydro power plant is showed in Figure 8.

The power systemmodel in Figures 1 and 2 with included
GRC in hydro power plant is shown in Figure 9, where
|Δ

̇

𝑃

𝑔𝑖
| ≤ 𝑟 = 0.045 p.u.MW/s.
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Figure 5: ACE signals in the two subsystems.
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Figure 6: The frequency deviations.
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Figure 8: The three-control area interconnected thermal-hydro power system.
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Figure 10: ACE signals in three-area thermal-hydro power system.
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Figure 11: The frequency deviation in the three-area thermal-hydro power system.

The parameters used in the simulation are as follows:
𝐾

𝑃1
= 120Hz/p.u.MW; 𝐾

𝑃3
= 115Hz/p.u.MW;

𝐾

𝑃3
= 75Hz/p.u.MW; 𝑇

𝑃1
= 20 s; 𝑇

𝑃2
= 20 s;

𝑇

𝑃3
= 15 s; 𝐾

𝑟1
= 𝐾

𝑟3
= 0.5Hz/p.u.MW;

𝑅

1
= 2.4Hz/p.u.MW; 𝑅

2
= 2.5Hz/p.u.MW;

𝑅

3
= 3Hz/p.u.MW; 𝐵

1
= 0.425 p.u.MW/Hz;

𝐵

2
= 0.494 p.u.MW/Hz; 𝐵

3
= 0.347 p.u.MW/Hz;

𝑇

𝑅2
= 0.6 s; 𝑇

1(2)
= 48.7 s; 𝑇

2(2)
= 5 s;

𝑇

𝑊2
= 1 s; 𝑇

𝐺1
= 0.08 s; 𝑇

𝐺3
= 0.2 s;

𝑇

𝑇1
= 𝑇

𝑇3
= 0.3 s; 𝑇

𝑟1
= 𝑇

𝑟3
= 10 s;

𝑇

𝑠12
= 0.545 p.u.MW; 𝑇

𝑠23
= 0.545 p.u.MW.

(36)
Since the maximum range of parameter variation is also

chosen to be 40% for hydro power system, the polytope is

𝐴

(1)

2
(0.6𝑇

𝑃2
) ; 𝐴

(2)

2
(1.4𝑇

𝑃2
) .

(37)

At 𝑡 = 1 s, a step load disturbance on control area 1 is
added as Δ𝑃

𝑑1
= 0.01 p.u., and at 𝑡 = 10 s, a step load

disturbance on control area 3 is added as Δ𝑃
𝑑3
= −0.01 p.u.

Figures 10 and 11 show the comparison results of the ACE
signals and the frequency deviations, demonstrating clearly
the advantage of the proposed RDMPC.

5. Conclusion

In this paper, a robust distributed MPC scheme for load
frequency control of interconnected power system is pre-
sented. The overall system consisted of at least two control
areas, which either can be thermal-thermal power system
or thermal-hydro power system. Each control area has its
own polytopic distributed model in order to consider the
uncertainty because of parameter variation. A min-max cost
function is used for the optimization problem, and the LMI
method is involved to solve this problem. The simulation
results illustrate the advantage of the proposed RDMPC, due
to its cooperative function.Thus it is suitable for LFCof power
system, which is large-scale complex system and subject to
parameter uncertainty.
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frequency control in power systems,” Electric Power Systems
Research, vol. 80, no. 5, pp. 514–527, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


