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This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011) and (Kılıcman
and Abazari, 2012), that focuses on the application of (𝐺󸀠/𝐺)-expansion method with the aid of Maple to construct more general
exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general
exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientist Joseph Valentin Boussinesq
(1842–1929) described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude.
Our work is motivated by the fact that the (𝐺󸀠/𝐺)-expansion method provides not only more general forms of solutions but also
periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.

1. Introduction

In the recent five decades, a new direction related to the
investigation of nonlinear evolution equations (NLEEs) and
processes has been actively developing in various areas of
sciences.Nonlinear evolution equations have been the impor-
tant subject of study in various branches of mathematical-
physical sciences such as physics, fluidmechanics, and chem-
istry. The analytical solutions of NLEEs are of fundamental
importance, sincemany ofmathematical-physical models are
described byNLEEs. Among the possible solutions toNLEEs,
certain special form solutions may depend only on a single
combination of variables such as solitons. Inmathematics and
physics, a soliton is a self reinforcing solitary wave, a wave
packet or pulse, thatmaintains its shapewhile it travels at con-
stant speed. Solitons are caused by a cancelation of nonlinear
and dispersive effects in the medium. The term “dispersive
effects” refers to a property of certain systemswhere the speed
of the waves varies according to frequency. Solitons arise
as the solutions of a widespread class of weakly nonlinear
dispersive partial differential equations describing physical
systems.The soliton phenomenon was first described by John
Scott Russell (1808–1882) who observed a solitary wave in the

Union Canal in Scotland. He reproduced the phenomenon
in a wave tank and named it the “wave of translation” (also
known as solitary wave or soliton) [1]. The soliton solutions
are typically obtained by means of the inverse scattering
transform [2] and be in dept their stability to the integrability
of the field equations.

In fluid mechanics, the Boussinesq approximation for
water waves is an approximation valid for weakly nonlinear
and fairly long waves. The approximation is named after
Joseph Valentin Boussinesq (1842–1929), who first derived
them in response to the observation by John Scott Russell of
the wave of translation [3, 4]. According to the 1872 paper of
Boussinesq, for water waves on an incompressible fluid and
irrotational flow in the (𝑥, 𝑧) plane, the boundary conditions
at the free surface elevation 𝑧 = 𝜂(𝑥, 𝑡) are

𝜕𝜂

𝜕𝑡
+ k

𝜕𝜂

𝜕𝑥
− w = 0,

𝜕𝜑

𝜕𝑡
+
1

2
(k2 + w2) + 𝑔𝜂 = 0,

(1)

where k is the horizontal flow velocity component, k =

𝜕𝜑/𝜕𝑥, w is the vertical flow velocity component,w = 𝜕𝜑/𝜕𝑧,
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and 𝑔 is the acceleration by gravity. Now, the Boussinesq
approximation for the velocity potential 𝜑, as given previ-
ously, is applied in these boundary conditions. Further, in
the resulting equations, only the linear and quadratic terms
with respect to 𝜂 and k

𝑏
are retained (with k

𝑏
= 𝜕𝜑
𝑏
/𝜕𝑥 the

horizontal velocity at the bed 𝑧 = −ℎ). The cubic and higher
order terms are assumed to be negligible.Then, the following
partial differential equations are obtained:

𝜕𝜂

𝜕𝑡
+
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[(ℎ + 𝜂) k

𝑏
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𝜕3k
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𝜕𝑥3
,

𝜕k
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𝑏

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
=
1

2
ℎ
2
𝜕3k
𝑏

𝜕𝑡𝜕𝑥2
.

(2)

This set of equations has been derived for a flat horizontal bed;
that is, themean depth ℎ is a constant independent of position
𝑥. When the right-hand sides of the previous equations are
set to zero, they reduce to the shallow water equations. Under
some additional approximations, but at the same order of
accuracy, (2) can be reduced to a single partial differential
equation for the free surface elevation 𝜂(𝑥, 𝑡):

𝜕
2𝜂

𝜕𝑡2
− 𝑔ℎ

𝜕2𝜂

𝜕𝑥2
− 𝑔ℎ

𝜕2

𝜕𝑥2
(
3

2

𝜂2

ℎ
+
1

3
ℎ
2
𝜕2𝜂

𝜕𝑥2
) = 0. (3)

In dimensionless quantities, by using the water depth ℎ and
gravitational acceleration 𝑔 for nondimensionalization, (3)
leads to the following, after normalization:

𝜕2𝜓

𝜕𝜏2
−
𝜕2𝜓

𝜕𝜒2
−
𝜕2

𝜕𝜒2
(
1

2
𝜓
2
+
𝜕2𝜓

𝜕𝜒2
) = 0, (4)

where 𝜓 = 3(𝜂/ℎ), 𝜏 = √3(𝑔/ℎ)𝑡, and 𝜒 = √3(𝑥/ℎ). In the
recent years, (4) rewrites as follows [5]:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− (

1

2
𝑢
2
+ 𝑞𝑢
𝑥𝑥
)
𝑥𝑥

= 0, (5)

where |𝑞| = 1 is a real parameter. Setting 𝑞 = −1 gives
the goodBoussinesq equation (GB) orwell-posed Boussinesq
equation, while by setting 𝑞 = 1, we get the bad Boussinesq
equation (BB) or ill-posed classical Boussinesq equation.
Following Bogolubsky’smodification [6] in (5) when the term
𝑞𝑢
𝑥𝑥
, is replaced with 𝑞𝑢

𝑡𝑡
it gives the so-called improved

Boussinesq equation (IBq):

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− (

1

2
𝑢
2
+ 𝑞𝑢
𝑡𝑡
)
𝑥𝑥

= 0. (6)

Similarily, using an analogous characterization used for
Boussinesq equation (5), the IBq equation for 𝑞 = −1will give
the good or well-posed (GIBq), while for 𝑞 = 1 the bad or ill-
posed (BIBq) equation.The IBq equation appears in studying
the transverse motion and nonlinearity in acoustic waves on
elastic rodswith circular cross-section. In particular, the BIBq
is used to discuss the wave propagation at right angles to
the magnetic field and also to approach the bad BS equation
(see Makhankov [7]) or to study ion-sound(s) waves (see
Bogolubsky [6]).

There are some review articles and some collected works
that have been focused to study the classical Boussinesq
equation from various points of view. The initial boundary
value and the Cauchy problem of (5) have been described
in [8–11]. Yajima [12] has studied the nonlinear evolution of
a linearly stable solution, while the exponentially decaying
solution of the spherical Boussinesq equation was obtained
by Nakamura [13].The global existence of the strong solution
and the small amplitude solution for the Cauchy problem
of the multidimensional equation (5) is proved in [14]. A
general approach to construct exact solution to (5) is given by
Clarkson [9], and Hirota [10] has deduced conservation laws
and has examined N-soliton interaction. Bona and Sachs, in
[8], have discussed that the special solitary-wave solutions for
(5), when nonlinear term is 𝑢2, are nonlinearly stable for a
range of their wave speeds.

On the other hand, recently, the (𝐺
󸀠/𝐺)-expansion

method, firstly introduced by Wang et al. [15], has become
widely used to search for various exact solutions of NLEEs
[15–19].The value of the (𝐺󸀠/𝐺)-expansionmethod is that one
treats nonlinear problems by essentially linear methods. The
method is based on the explicit linearization of NLEEs for
traveling waves with a certain substitution which leads to a
second-order differential equation with constant coefficients.
Moreover, it transforms a nonlinear equation to a simple
algebraic computation. Although many efforts have been
devoted to find various methods to solve (integrable or
nonintegrable) NLEEs, there is no unified method. The
main merits of the (𝐺󸀠/𝐺)-expansion method over the other
methods are that it gives more general solutions with some
free parameters which, by suitable choice of the parameters,
turn out to be some known solutions gained by the existing
methods.

Our first interest in the present work is in implementing
the (𝐺󸀠/𝐺)-expansion method to show its power in handling
nonlinear partial differential equations (PDEs), so that one
can apply it to other models of various types of nonlinearity.
The next interest is in the determination of exact travelling
wave solutions for generalized equations (5) and (6).

2. Description of the (𝐺󸀠/𝐺)-Expansion
Method

Theobjective of this section is to outline the use of the (𝐺󸀠/𝐺)-
expansion method for solving certain nonlinear PDEs. Sup-
pose that we have a nonlinear PDE for 𝑢(𝑥, 𝑡), in the form

𝑃 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑡𝑡
, . . .) = 0, (7)

where 𝑃 is a polynomial in its arguments, which includes
nonlinear terms and the highest order derivatives. The trans-
formation 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑘𝑥 + 𝜔𝑡, reduces (7) to the
ordinary differential equation (ODE)

𝑃 (𝑈, 𝑘𝑈
󸀠
, 𝜔𝑈
󸀠
, 𝑘
2
𝑈
󸀠󸀠
, 𝑘𝜔𝑈

󸀠󸀠
, 𝜔
2
𝑈
󸀠󸀠
, . . .) = 0, (8)
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where 𝑈 = 𝑈(𝜉), and prime denotes derivative with respect
to 𝜉. We assume that the solution of (8) can be expressed by
a polynomial in (𝐺󸀠/𝐺) as follows:

𝑈 (𝜉) =

𝑚

∑
𝑖=1

𝛼
𝑖
(
𝐺󸀠

𝐺
)

𝑖

+ 𝛼
0
, 𝛼
𝑚

̸= 0, (9)

where 𝛼
0
and 𝛼

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚, are constants to be

determined later and 𝐺(𝜉) satisfies a second order linear

ordinary differential equation (LODE):

𝑑2𝐺 (𝜉)

𝑑𝜉2
+ 𝜆

𝑑𝐺 (𝜉)

𝑑𝜉
+ 𝜇𝐺 (𝜉) = 0, (10)

where 𝜆 and 𝜇 are arbitrary constants. Using the general
solutions of (10), we have

𝐺󸀠 (𝜉)

𝐺 (𝜉)
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

√𝜆2 − 4𝜇

2
(

𝐶
1
sinh((√𝜆2 − 4𝜇/2) 𝜉) + 𝐶

2
cosh ((√𝜆2 − 4𝜇/2) 𝜉)

𝐶
1
cosh ((√𝜆2 − 4𝜇/2) 𝜉) + 𝐶

2
sinh((√𝜆2 − 4𝜇/2) 𝜉)

) −
𝜆

2
, 𝜆2 − 4𝜇 > 0,

√4𝜇 − 𝜆2

2
(

−𝐶
1
sin((√4𝜇 − 𝜆2/2) 𝜉) + 𝐶

2
cos((√4𝜇 − 𝜆2/2) 𝜉)

𝐶
1
cos((√4𝜇 − 𝜆2/2) 𝜉) + 𝐶

2
sin((√4𝜇 − 𝜆2/2) 𝜉)

) −
𝜆

2
, 𝜆2 − 4𝜇 < 0,

(11)

and it follows from (9) and (10), that

𝑈
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) ,

(12)

and so on, here the prime denotes the derivative with respec-
tive to 𝜉. To determine 𝑢 explicitly, we take the following four
steps.

Step 1. Determine the integer𝑚 by substituting (9) alongwith
(10) into (8) and balance the highest order nonlinear term(s)
and the highest order partial derivative.

Step 2. Substitute (9) to give the value of 𝑚 determined in
Step 1 along with (10) into (8) and collect all terms with
the same order of (𝐺󸀠/𝐺) together, the left-hand side of (8)
is converted into a polynomial in (𝐺󸀠/𝐺). Then, set each
coefficient of this polynomial to zero to derive a set of
algebraic equations for 𝑘, 𝜔, 𝛼

0
, and 𝛼

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚.

Step 3. Solve the system of algebraic equations obtained in
Step 2, for 𝑘, 𝜔, 𝛼

0
, and 𝛼

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚, by the use of

Maple.

Step 4. Use the results obtained in the above steps to derive
a series of fundamental solutions 𝑢(𝜉) of (8) depending on
(𝐺
󸀠/𝐺); since the solutions of (10) have been well known for

us, then we can obtain exact solutions of (7).

3. Application

In this section, we will demonstrate the (𝐺󸀠/𝐺)-expansion
method on three of the well-known Boussinesq type equa-
tions (5) and (6).

3.1. Boussinesq Equation. To look for the traveling wave
solution of Boussinesq equation (5), we use the gauge trans-
formation:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , (13)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, and 𝑘 and 𝜔 are constants. We substitute
(13) into (5) to obtain the nonlinear ordinary differential
equation

(𝜔
2
− 𝑘
2
)𝑈
󸀠󸀠
− 𝑘
2
(
1

2
𝑈
2
+ 𝑞𝑘
2
𝑈
󸀠󸀠
)
󸀠󸀠

= 0. (14)

According to Step 1, we get𝑚+4 = 2𝑚+2; hence,𝑚 = 2. We
then suppose that (14) has the following formal solutions:

𝑈 = 𝛼
2
(
𝐺󸀠

𝐺
)

2

+ 𝛼
1
(
𝐺󸀠

𝐺
) + 𝛼

0
, 𝛼
2
̸= 0, (15)

where 𝛼
2
, 𝛼
1
, and 𝛼

0
are constants which are unknowns

to be determined later. Substituting (15) along with (10)
into (14) and collecting all terms with the same order of
(𝐺
󸀠/𝐺) together, the left-hand sides of (14) are converted

into a polynomial in (𝐺󸀠/𝐺). Setting each coefficient of each
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polynomial to zero, we derive a set of algebraic equations for
𝑘, 𝜔, 𝜆, 𝜇, 𝛼

0
, 𝛼
1
, and 𝛼

2
as follows:
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1
− 2𝜇
2
𝛼
2
(8𝜇 + 7𝜆

2
)) 𝑞𝑘
4

+ (−2𝛼
2

1
𝜇
2
− 𝜆𝛼
1
(1 + 2𝛼

0
) 𝜇 − 2𝜇

2
(1 + 2𝛼

0
) 𝛼
2
) 𝑘
2

+ 2𝜔
2
𝛼
2
𝜇
2
+ 𝜔
2
𝛼
1
𝜆𝜇 = 0,

(
𝐺󸀠

𝐺
)

1

: ((−22𝜇𝜆
2
− 16𝜇

2
− 𝜆
4
) 𝛼
1

−30𝜇𝜆𝛼
2
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2
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4
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2

1
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0
𝜇 − 12𝛼

2
𝜇
2
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1
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0
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𝛼
2
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𝐺
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2
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4
+ 17𝜇

2
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2
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0
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2
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2
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2
𝜇
2
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2
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0
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0
𝜆
2
)) 𝑘
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𝛼
1
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2
𝛼
2
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2
) = 0,

(
𝐺
󸀠

𝐺
)

3

: ((−40𝜇 − 50𝜆
2
) 𝛼
1
− 10𝜆𝛼

2
(13𝜆
2
+ 44𝜇)) 𝑞𝑘

4

+ (−10𝛼
2

1
𝜆 + (−36𝜇𝛼

2
− 18𝛼

2
𝜆
2
− 2 − 4𝛼

0
) 𝛼
1

−2𝛼
2
𝜆 (14𝜇𝛼

2
+ 5 + 10𝛼

0
) ) 𝑘
2

+ 2𝜔
2
𝛼
1
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2
𝛼
2
𝜆 = 0,

(
𝐺󸀠

𝐺
)

4

: (−60𝛼
1
𝜆 − 30𝛼

2
(11𝜆
2
+ 8𝜇)) 𝑞𝑘

4

+ ( − 6𝛼
2

1
− 42 𝛼

2
𝛼
1
𝜆

−2 𝛼
2
(16𝜇𝛼
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+ 8𝛼
2
𝜆
2
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0
)) 𝑘
2

+ 6𝜔
2
𝛼
2
= 0,

(
𝐺
󸀠

𝐺
)

5

: (−24𝛼
1
− 336𝛼

2
𝜆) 𝑞𝑘
4

+ (−36𝛼
2

2
𝜆 − 24𝛼

2
𝛼
1
) 𝑘
2
= 0,

(
𝐺󸀠

𝐺
)

6

: −120𝑞𝑘
4
𝛼
2
− 10𝑘
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𝛼
2

2
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Figure 1: Hyperbolic function solution (20a) of the Boussinesq
equation (5) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/2, 𝜆 = 4, 𝜇 = 1, and 𝜂H = 0.

Solving the obtained algebraic equations by the use of Maple,
we get the following results:

{𝛼
0
= −

8𝑞𝑘4𝜇 + 𝑞𝑘4𝜆2 − 𝜔2 + 𝑘2

𝑘2
,

𝛼
1
= −12𝑘

2
𝑞𝜆, 𝛼

2
= −12𝑘

2
𝑞} ,

(17)

and 𝑘, 𝜔, 𝜆, and 𝜇 are arbitrary constants. Therefore, substi-
tute the previous case in (15), we get

𝑈 = − 12𝑘
2
𝑞(

𝐺󸀠

𝐺
)

2

− 12𝑘
2
𝑞𝜆(

𝐺󸀠

𝐺
)

−
8𝑞𝑘4𝜇 + 𝑞𝑘4𝜆2 − 𝜔2 + 𝑘2

𝑘2
.

(18)

Substituting the general solutions (11) into (18), we obtain
three types of travelingwave solutions of Boussinesq equation
(5) in the view of the positive, negative, or zero of 𝜆2 − 4𝜇.

When D = 𝜆
2
− 4𝜇 > 0, we obtain hyperbolic function

solution 𝑈H of Boussinesq equation (5) (see Figure 1) as
follows:

𝑈H (𝜉)

= −3𝑘
2
𝑞 (( (√D [𝐶

1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)
2
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− 6𝑘
2
𝑞𝜆 (( (√D [𝐶

1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)

−
8𝑞𝑘4𝜇 + 𝑞𝑘4𝜆2 − 𝜔2 + 𝑘2

𝑘2
,

(19)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, and 𝐶
1
, 𝐶
2
are arbitrary constants. It is

easy to see that the hyperbolic solution (19) can be rewritten
at 𝐶2
1
> 𝐶2
2
as follows:

𝑢H (𝑥, 𝑡) = − 3𝑘
2
𝑞Dtanh2 (1

2
√D𝜉 + 𝜂H)

−
−2𝑞𝑘4D − 𝜔2 + 𝑘2

𝑘2
,

(20a)

while at 𝐶2
1
< 𝐶2
2
, one can obtain

𝑢H (𝑥, 𝑡) = − 3𝑘
2
𝑞Dcoth2 (1

2
√D𝜉 + 𝜂H)

−
−2𝑞𝑘4D − 𝜔2 + 𝑘2

𝑘2
,

(20b)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, 𝜂H = tanh−1(𝐶
1
/𝐶
2
), and 𝑘, 𝜔, 𝜆, and

𝜇 are arbitrary constants. Now, when D = 𝜆
2
− 4𝜇 < 0, the

trigonometric function solutions 𝑈T of Boussinesq equation
(5) will be

𝑈T (𝜉)

= −3𝑘
2
𝑞 (( (√−D [−𝐶

1
sin ((1/2)√−D𝜉)

+ 𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+ 𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)
2

− 6𝑘
2
𝑞𝜆 (( (√−D [−𝐶

1
sin ((1/2)√−D𝜉)

+𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)

−
8𝑞𝑘4𝜇 + 𝑞𝑘4𝜆2 − 𝜔2 + 𝑘2

𝑘2
,

(21)

−60
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−20

0
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0
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2
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0
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23

−3
−2

−1

x

t

Figure 2: Trigonometric function solution (22a) of the Boussinesq
equation (5) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/20, 𝜆 = 4, 𝜇 = −1, and
𝜂T = 0.

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, and 𝐶
1
, 𝐶
2
are arbitrary constants (see

Figure 2). Similarly, the trigonometric solutions (21) can be
rewritten at 𝐶2

1
> 𝐶2
2
and 𝐶2

1
< 𝐶2
2
, respectively, as follows:

𝑢T (𝑥, 𝑡) = 3𝑘
2
𝑞Dtan2 (1

2
√−D𝜉 + 𝜂T)

−
−2𝑞𝑘4D − 𝜔2 + 𝑘2

𝑘2
,

(22a)

𝑢T (𝑥, 𝑡) = 3𝑘
2
𝑞Dcot2 (1

2
√−D𝜉 + 𝜂T)

−
−2𝑞𝑘4D − 𝜔2 + 𝑘2

𝑘2
,

(22b)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, 𝜂T = tan−1(𝐶
1
/𝐶
2
), and 𝑘, 𝜔, 𝜆, and 𝜇

are arbitrary constants. Finally, when 𝜆2 − 4𝜇 = 0, then the
rational function solutions to (5) will be

𝑢rat (𝑥, 𝑡) = −
12𝑘2𝑞𝐶2

2

(𝐶
1
+ 𝐶
2
(𝑘𝑥 + 𝜔𝑡))

2
+
𝜔2

𝑘2
− 1, (23)

where 𝐶
1
, 𝐶
2
, 𝑘, and 𝜔 are arbitrary constants.

3.2. Improved Boussinesq Equation. Similar to the previous
section, to obtain the traveling wave solution of improved
Boussinesq equation (6) we substitute the gauge transforma-
tion (13) into (6) to obtain nonlinear ordinary differential
equation

(𝜔
2
− 𝑘
2
)𝑈
󸀠󸀠
− 𝑘
2
(
1

2
𝑈
2
+ 𝑞𝜔
2
𝑈
󸀠󸀠
)
󸀠󸀠

= 0. (24)

According to Step 1, we get 𝑚 + 4 = 2𝑚 + 2; hence, 𝑚 = 2.
Then, similar to the previous section, we suppose that (24) has
the same formal solutions (15). Substituting (15) along with
(10) into (24) and collecting all terms with the same order
of (𝐺󸀠/𝐺) together, the left-hand sides of (24) are converted
into a polynomial in (𝐺󸀠/𝐺). Setting each coefficient of each
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polynomial to zero, we derive a set of algebraic equations for
𝑘, 𝜔, 𝜆, 𝜇, 𝛼

0
, 𝛼
1
, and 𝛼

2
as follows:

(
𝐺󸀠

𝐺
)

0

: ((−𝜇𝜔
2
𝜆 (𝜆
2
+ 8𝜇) 𝛼

1
− 2𝜇
2
𝜔
2
𝛼
2
(8𝜇 + 7𝜆

2
)) 𝑞

−2𝛼
2

1
𝜇
2
− 𝜆𝜇 (1 + 2𝛼

0
) 𝛼
1
− 2𝜇
2
𝛼
2
(1 + 2𝛼

0
)) 𝑘
2

+ 2𝜔
2
𝛼
2
𝜇
2
+ 𝜔
2
𝛼
1
𝜆𝜇 = 0,

(
𝐺
󸀠

𝐺
)

1

: ((−𝜔
2
(22𝜆
2
𝜇 + 16𝜇

2
+ 𝜆
4
) 𝛼
1

−30𝜇𝜔
2
𝛼
2
𝜆 (𝜆
2
+ 4𝜇)) 𝑞 − 6𝛼

1

2
𝜆𝜇

+ (−2𝜇 − 𝜆
2
− 12𝛼

2
𝜇
2
− 4𝛼
0
𝜇 − 2𝛼

0
𝜆
2
) 𝛼
1

−6𝜆𝜇𝛼
2
(1 + 2𝛼

0
) ) 𝑘
2

+ 𝜔
2
(2𝜇 + 𝜆

2
) 𝛼
1
+ 6𝜔
2
𝛼
2
𝜆𝜇 = 0,

(
𝐺󸀠

𝐺
)

2

: ((−15𝜔
2
𝜆 (𝜆
2
+ 4𝜇) 𝛼

1

−8𝜔
2
𝛼
2
(29𝜆
2
𝜇 + 2𝜆

4
+ 17𝜇

2
)) 𝑞

+ (−4𝜆
2
− 8𝜇) 𝛼

2

1
− 3𝜆 (1 + 2𝛼

0
+ 10𝛼

2
𝜇) 𝛼
1

−4𝛼
2
(3𝛼
2
𝜇
2
+ 2𝜇 + 𝜆

2
+ 4𝛼
0
𝜇 + 2𝛼

0
𝜆
2
)) 𝑘
2

+ 3𝜔
2
𝛼
1
𝜆 + 4𝜔

2
𝛼
2
(2𝜇 + 𝜆

2
) = 0,

(
𝐺󸀠

𝐺
)

3

: ((−10𝜔
2
(4𝜇 + 5𝜆

2
) 𝛼
1

−10𝜔
2
𝛼
2
𝜆 (13𝜆

2
+ 44𝜇)) 𝑞 − 10𝛼

2

1
𝜆

+ (−4𝛼
0
− 2 − 36𝛼

2
𝜇 − 18𝛼

2
𝜆
2
) 𝛼
1

−2𝛼
2
𝜆 (14𝛼

2
𝜇 + 10𝛼

0
+ 5) ) 𝑘

2

+ 10𝜔
2
𝛼
2
𝜆 + 2𝜔

2
𝛼
1
= 0,

(
𝐺󸀠

𝐺
)

4

: ((−60𝜔
2
𝛼
1
𝜆 − 30𝜔

2
𝛼
2
(11𝜆
2
+ 8𝜇)) 𝑞

− 6𝛼
2

1
− 42𝛼

2
𝛼
1
𝜆

−2𝛼
2
(16𝛼
2
𝜇 + 8𝛼

2
𝜆
2
+ 3 + 6𝛼

0
) ) 𝑘
2

+ 6𝜔
2
𝛼
2
= 0,

(
𝐺
󸀠

𝐺
)

5

: ((−24𝜔
2
𝛼
1
− 336𝜔

2
𝛼
2
𝜆) 𝑞 − 36𝛼

2

2
𝜆 − 24𝛼

2
𝛼
1
) 𝑘
2

= 0,

(
𝐺󸀠

𝐺
)

6

: (−10𝛼
2

2
− 120𝑞𝜔

2
𝛼
2
) 𝑘
2
= 0,

(25)

0
123

0
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−10
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−2−1

Figure 3: Hyperbolic function solution (20a) of the improved
Boussinesq equation (6) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/2, 𝜆 = 4, 𝜇 = 1,
and 𝜂H = 0.

and solving by use of Maple, we get the following results:

{𝛼
0
= −

8𝑞𝑘2𝜔2𝜇 + 𝑞𝑘2𝜔2𝜆2 + 𝑘2 − 𝜔2

𝑘2
,

𝛼
1
= −12𝜔

2
𝑞𝜆, 𝛼

2
= −12𝜔

2
𝑞} ,

(26)

and 𝑘, 𝜔, 𝜆, and 𝜇 are arbitrary constants. Therefore, the
solution (15) leads to

𝑈 = − 12𝜔
2
𝑞(

𝐺
󸀠

𝐺
)

2

− 12𝜔
2
𝑞𝜆(

𝐺
󸀠

𝐺
)

−
8𝑞𝑘2𝜔2𝜇 + 𝑞𝑘2𝜔2𝜆2 + 𝑘2 − 𝜔2

𝑘2
,

(27)

Now, forD = 𝜆2−4𝜇 > 0 andD = 𝜆2−4𝜇 < 0, the hyperbolic
function solution 𝑈H, and trigonometric function solution
𝑈T, of improved Boussinesq equation (6) are obtained as
follows (see Figures 3 and 4), respectively:

𝑈H (𝜉)

= −3𝜔
2
𝑞 (( (√D [𝐶

1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)
2
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−1.1

−1.05

−1

−0.95

−0.9
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1
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−1
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0

1
23

−3−2
−1

x

Figure 4: Trigonometric function solution (22a) of the improved
Boussinesq equation (6) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/20, 𝜆 = 4,
𝜇 = −1, and 𝜂T = 0.

− 6𝜔
2
𝑞𝜆 (( (√D [𝐶

1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)

−
8𝑞𝑘2𝜔2𝜇 + 𝑞𝑘2𝜔2𝜆2 + 𝑘2 − 𝜔2

𝑘2
,

(28)

𝑈T (𝜉)

= −3𝜔
2
𝑞 (( (√−D [−𝐶

1
sin ((1/2)√−D𝜉)

+ 𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+ 𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)
2

− 6𝜔
2
𝑞𝜆 (( (√−D [−𝐶

1
sin ((1/2)√−D𝜉)

+𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)

−
8𝑞𝑘
2
𝜔
2
𝜇 + 𝑞𝑘

2
𝜔
2
𝜆
2
+ 𝑘
2
− 𝜔
2

𝑘2
,

(29)

where 𝜉 = 𝑘𝑥+𝜔𝑡, and𝐶
1
,𝐶
2
are arbitrary constants. It is easy

to see that the hyperbolic solution (28) and trigonometric

solution (29) can be rewritten at 𝐶2
1
> 𝐶2
2
as follows:

𝑢H (𝑥, 𝑡) = − 3𝜔
2
𝑞Dtanh2 (1

2
√D𝜉 + 𝜂H)

−
−2𝑞𝑘2𝜔2D − 𝜔2 + 𝑘2

𝑘2
,

(30a)

𝑢T (𝑥, 𝑡) = 3𝜔
2
𝑞Dtan2 (1

2
√−D𝜉 + 𝜂T)

−
−2𝑞𝑘2𝜔2D − 𝜔2 + 𝑘2

𝑘2
,

(30b)

while at 𝐶2
1
< 𝐶2
2
, one can obtain

𝑢H (𝑥, 𝑡) = − 3𝜔
2
𝑞Dcoth2 (1

2
√D𝜉 + 𝜂H)

−
−2𝑞𝑘2𝜔2D − 𝜔2 + 𝑘2

𝑘2
,

(31a)

𝑢T (𝑥, 𝑡) = 3𝜔
2
𝑞Dcot2 (1

2
√−D𝜉 + 𝜂T)

−
−2𝑞𝑘2𝜔2D − 𝜔2 + 𝑘2

𝑘2
,

(31b)

where 𝜉 = 𝑘𝑥+𝜔𝑡, 𝜂H = tanh−1(𝐶
1
/𝐶
2
), 𝜂T = tan−1(𝐶

1
/𝐶
2
),

and 𝑘, 𝜔, 𝜆, and 𝜇 are arbitrary constants.
Finally, when 𝜆2 − 4𝜇 = 0, then the rational function

solutions of improved Boussinesq equation (6) will be

𝑢rat (𝑥, 𝑡) = −
12𝜔2𝑞𝐶2

2

(𝐶
1
+ 𝐶
2
(𝑘𝑥 + 𝜔𝑡))

2
+
𝜔2

𝑘2
− 1, (32)

where 𝐶
1
, 𝐶
2
, 𝑘, and 𝜔 are arbitrary constants.

4. Conclusions

This study shows that the (𝐺󸀠/𝐺)-expansion method is
quite efficient and practically well suited for use in finding
exact solutions for the Boussinesq equation and improved
Boussinesq equations. The reliability of the method and the
reduction in the size of computational domain give this
method a wider applicability. Though the obtained solutions
represent only a small part of the large variety of possible
solutions for the equations considered, they might serve as
seeding solutions for a class of localized structures existing in
the physical systems. Furthermore, our solutions are in more
general forms, and many known solutions to these equations
are only special cases of them.With the aid of Maple, we have
assured the correctness of the obtained solutions by putting
them back into the original equation.
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