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Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) nanoscale plate with first-order
shear deformation is studied.Thematerial properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function
(two power law distribution) of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM) nanoscale
plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The
equations ofmotion of the nonlocal theories are derived usingHamilton’s principle.The nonlocal elasticity of Eringen has the ability
to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory
on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect
ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results
of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of
size-dependent S-FGM nanoscale plate models developed in the future.

1. Introduction

The nanoscale plates have attracted attention of scientific
community in solid-state physics, materials science, and
nanoelectronics due to their superior mechanical, chemical,
and electronic properties. Conducting experiments with
nanoscale size specimens is both expensive and difficult.
Hence, development of appropriate mathematical models for
nanostructures is an important issue concerning the applica-
tion of nanostructures. The nanostructures are modeled into
three main categories using atomistic [1, 2], hybrid atomistic-
continuum mechanics [3–5] and continuum mechanics [6,
7]. Continuum mechanics approach is less computationally
expensive than the former two approaches. Further, it has
been found that continuum mechanics results are in good
agreement with those obtained from atomistic and hybrid
approaches. Due to the presence of small scale effects at the
nanoscale structures, size-dependent continuum mechanics
models such as the strain gradient theory (Nix and Gao
[8]), couple stress theory (Hadjesfandiari and Dargush [9]),

modified couple stress theory (Asghari et al. [10]; Ma et al.
[11]; Reddy [12]), and nonlocal elasticity theory (Eringen [13])
are used.

The small size analysis using local theory overpredicts the
results. Thus the consideration of small effects is necessary
for correct prediction of micro/nano-structures. Peddieson
et al. [14] applied nonlocal elasticity to formulate a nonlocal
version of the Euler-Bernoulli beam model and concluded
that nonlocal continuum mechanics could potentially play a
useful role in nanotechnology applications. One of the well-
known continuummechanics theory that includes small scale
effects with good accuracy is the nonlocal theory of Eringen
[6, 7, 13]. Unlike the local theories which assume that the
stress at a point is a function of strain at that point, the
nonlocal elasticity theory assumes that the stress at a point is a
function of strains at all points in the continuum. Compared
to classical continuummechanics theories, nonlocal theory of
Eringen has capability to predict behavior of the large nano-
sized structures, while it avoids solving the large number of
equations.
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Functionally graded material (FGM) is a class of com-
posites in which the material properties vary smoothly and
continuously from one surface to the other and thus elimi-
nates the stress concentration found in laminated composites.
The other advantage of FGM is that it mitigates singular-
ities at intersections between interfaces usually presented
in laminate composites due to their abrupt transitions in
material compositions and properties. A generally FGM is
made from a mixture of ceramic and metal. The FGM is a
composite material whose composition varies according to
the required performance. The increase in FGM applications
requires accurate models to predict their responses. A critical
review of recentworks on the bending analysis of functionally
graded (FG) plates can be found in Jha et al. [15]. Since the
shear deformation has significant effects on the responses
of FG plates, shear deformation theories such as first-order
shear deformation theory (FSDT) should be used to analyze
FG plates. If a high external pressure is applied to the com-
posite plate and shell structures, the high stresses occurred in
the structure will affect its integrity, and the structure, as the
result, susceptible to failure. For these reasons, understanding
the mechanical behavior of FGM plates and shells is very
important to assess the safety of the shell and plate structure.
Chung and Chi [16] proposed a sigmoid FGM (S-FGM),
which is composed of two power-law functions to define
a new volume fraction. The effect of loading conditions,
the aspect ratio, and the change of elastic modulus on the
mechanical behavior of S-FGMplates was investigated in Chi
and Chung [17]. Recent work on the vibration, buckling, and
geometrically nonlinear analysis of S-FGM plates and shells
can be founded in Han et al. [18] and Han et al. [19].

In the literature a great deal of attention has been
focused on studying the bending, vibration, and buckling
behavior of one-dimensional nanostructures using nonlocal
elasticity theory (Aydogdu [20]; Civalek and Demir [21];
Reddy [22]; Reddy and Pang [23]; Reddy [24]; Roque et
al. [25]; Wang and Liew [26]; Wang et al. [27]). These
nanostructures include nanobeams, nanorods, and carbon
nanotubes. In recent years, the application of FGMs has
broadly been spread in micro- and nanoscale devices and
systems such as thin films [28, 29], atomic force microscopes
[30],micro- andnanoelectromechanical systems (MEMSand
NEMS) [31, 32]. In such applications, size effects have been
experimentally observed [33–36]. On the contrary a few
works appear related to the bending analysis of functionally
graded material (FGM) nanoscale plate based on first-order
shear deformation theory. The present study deals with
the use of the nonlocal first-order plate theory in bending
response of S-FGM nanoscale plates. Based on the nonlocal
constitutive relations of Eringen, equations of motion of
nanoscale plates are derived using Hamilton’s principle.
Closed-form solutions of deflection are obtained for simply
supported S-FGMnanoscale plates.The effects of (i) nonlocal
parameters, (ii) power law indexes, (iii) 𝐸

1
/𝐸
2
ratios, (iv)

aspect ratios, (v) side-to-thickness ratios, and (vi) loading
types on nondimensional bending responses are investigated.
To illustrate the accuracy of the present theory, the numerical
examples are investigated and compared with those solutions
from the previous literatures. The present work would be

helpful while designing nano-electro-mechanical system and
micro-electro-mechanical systems devices using the S-FGM
nanoscale plates.

2. Review of Nonlocal Elasticity

According to Eringen [6, 7, 13], the stress field at a point
𝑥 in an elastic continuum not only depends on the strain
field at the point (hyperelastic case) but also on strains at
all other points of the body. Eringen attributed this fact
to the atomic theory of lattice dynamics and experimental
observations on phonon dispersion.Thus, the nonlocal stress
tensor components 𝜎

𝑖𝑗
at point x are expressed as

𝜎
𝑖𝑗
(x) = ∫

𝑉

𝐾 (|x − x| , 𝜏) 𝑡𝑖𝑗 (x) 𝑑x, (1)

where 𝑡
𝑖𝑗
(x) are the components of the classical macroscopic

stress tensor at point x and the kernel function 𝐾(|x − x|, 𝜏)
represents the nonlocalmodulus, |x−x| being the distance (in
Euclidean norm) and 𝜏 is a material constant that depends on
internal and external characteristic lengths (such as the lattice
spacing and wavelength, resp.). The macroscopic stress t at
point x in a Hookean solid is related to the strain at the point
by the generalized Hooke’s law

𝑡 (x) = C (x) : 𝜀 (x) or 𝑡
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
, (2)

where C is the fourth-order elasticity tensor and: denotes the
“double-dot product” (see Reddy [22]).

In the nonlocal linear elasticity, equations of motion can
be obtained from nonlocal balance law

𝜎
𝑖𝑗,𝑗
+ 𝑓
𝑖
= 𝜌�̈�
𝑖
, (3)

where 𝑖, 𝑗 take the symbols 𝑥, 𝑦, 𝑧 and 𝑓
𝑖
, 𝜌, and 𝑢

𝑖
are the

components of the body force,mass density anddisplacement
vector [13]. By substituting (1) into (3), the integral form of
nonlocal constitutive equation is obtained. Because solving
an integral equation is more difficult than a differential
equation, Eringen [6, 7, 13] proposed a differential form of
the nonlocal constitutive equation as

𝑡
𝑖𝑗,𝑗
+L (𝑓

𝑖
− 𝜌�̈�
𝑖
) = 0, (4)

in which the linear differential operatorL was defined by

L = 1 − 𝜇∇
2
, 𝜇 = 𝑒

2

0
𝑎
2
, (5)

where 𝜇 is the nonlocal parameter, 𝑒
0
is material constant

which is defined by the experiment, and 𝑎 is the internal
characteristic length.

By applying this operator on (1), the constitutive equation
can be simplified to

L (𝜎
𝑖𝑗
) = 𝐶

𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
. (6)

Equation (6) is simpler andmore convenient than the integral
relation (1) to apply to various linear elasticity problems.
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3. Plate Equations of Nonlocal Elasticity

Using (2) and (6), stress resultants introduced in plate and
shell theories can be reformulated in terms of strain for
the nonlocal theory. In plate theories based on plane-stress
assumption, we take 𝜎

𝑧𝑧
= 0 and the resulting theory

becomes two-dimensional.
Consider a (𝑥, 𝑦, 𝑧) coordinate system with the 𝑥𝑦-plane

coincidingwith themid-plane of the plate. So the stress-strain
relations of plane-stress can be expressed as

𝑡
𝛼𝛽
= 𝐶
𝛼𝛽𝛾𝛿
𝜀
𝛾𝛿
, (7)

where𝐶
𝛼𝛽𝛾𝛿

= 𝐶
𝛼𝛽𝛾𝛿
−𝐶
𝛼𝛽𝑧𝑧
𝐶
𝑧𝑧𝛾𝛿
/𝐶
𝑧𝑧𝑧𝑧

, and transverse shear
stress-strain relation is expressed as

𝑡
𝛼𝑧
= 2𝐶
𝛼𝑧𝛾𝑧
𝜀
𝛾𝑧
, (8)

where 𝛼, 𝛽, 𝛾, s the shear correction factoand 𝛿 take the
symbols 𝑥, 𝑦.

The relations between stress resultants in local theory and
nonlocal theory are defined by integrating (6) through the
plate thickness:

L (𝑁
𝑖𝑗
) = 𝑁

𝐿

𝑖𝑗
, L (𝑀

𝑖𝑗
) = 𝑀

𝐿

𝑖𝑗
, (9)

where

{

{

{

𝑁
𝛼𝛽
, 𝑁
𝐿

𝛼𝛽

𝑀
𝛼𝛽
,𝑀
𝐿

𝛼𝛽

}

}

}

= ∫

ℎ/2

−ℎ/2

{𝜎
𝛼𝛽
, 𝑡
𝛼𝛽
} {
1

𝑧
} 𝑑𝑧, (10)

{𝑁
𝛼𝑧
, 𝑁
𝐿

𝛼𝑧
} = ∫

ℎ/2

−ℎ/2

{𝜎
𝛼𝑧
, 𝑡
𝛼𝑧
} 𝑑𝑧. (11)

The superscript 𝐿 denoted the quantities in local first-order
shear deformation theory and ℎ is the thickness of the plate.
The governing equation of the plate in nonlocal theory can
be determined by integrating (3) through the plate thickness
and noting (10)

𝑁
𝛼𝑖,𝛼
+ 𝐹
𝑖
= ∫

ℎ/2

−ℎ/2

𝜌�̈�
𝑖
𝑑𝑧, (12)

where 𝐹
𝑖
= ∫
ℎ/2

−ℎ/2
𝑓
𝑖
𝑑𝑧. By multiplying (3) by 𝑧 and then inte-

grating from it through plate thickness and using integration-
by-parts, we obtain

𝑀
𝛼𝛽,𝛽
− 𝑁
𝛼𝑧
= ∫

ℎ/2

−ℎ/2

𝜌�̈�
𝛼
𝑧 𝑑𝑧. (13)

In general, differential operator ∇ in (6) is the 3D Laplace
operator. For 2D problems, the operator ∇ may be reduced
to 2D one. Thus, the linear differential operatorL becomes

L = 1 − (
𝜕
2

𝜕𝑥2
+
𝜕
2

𝜕𝑦2
) . (14)

It is clear that the operator L is independent of the 𝑧
direction.

4. Nonlocal First-Order Shear
Deformation Theory

The classical plate theory is based on the Kirchhof assump-
tions, in which transverse normal and shear stresses are
neglected. In the first-order shear deformation theory
(FSDT), a constant state of transverse shear stresses is
accounted for, and often the transverse normal stress is
neglected. The displacement field of the first-order theory of
plates is given by

𝑢
𝛼
= 𝑢
0

𝛼
+ 𝑧𝜙
𝛼
, 𝑢

𝑧
= 𝑤
0
, (15)

where 𝑢
𝛼
are the inplane displacements of point on the mid-

plane (i.e., 𝑧 = 0) at 𝑡 = 0, 𝑢
𝑧
is the transverse displacement

of the mid-plane of the plate, and 𝜙
𝛼
denotes the slope of the

transverse normal on mid-plane.
By substituting the displacement field into (12)-(13), we

obtain

𝑁
𝛼𝑖,𝛼
+ 𝐹
𝑖
= 𝐼
0
�̈�
0

𝑖
, (16)

𝑀
𝛼𝛽,𝛽
− 𝑁
𝛼𝑧
= 𝐼
2
̈𝜙
𝛼
. (17)

Then (16) for 𝑖 = 𝑧 and (17) can be combined to drive the
following governing equations for flexural response of the
nonlocal first-order plate theory:

𝑁
𝛼𝑧,𝛼
+ 𝑞
𝑧
= 𝐼
0
�̈�
0
, (18)

𝑀
𝛼𝛽,𝛽
− 𝑁
𝛼𝑧
= 𝐼
2
̈𝜙
𝛼
, (19)

where 𝐼
𝑘
= ∫
ℎ/2

−ℎ/2
𝜌(𝑧)
𝑘
𝑑𝑧 (𝑘 = 0, 2).

5. Variational Statements

The variational statements facilitate the direct derivation of
the equations ofmotion in terms of the displacements.Hence,
we also present the variational form of governing equations
which is useful in integral formulations and displacement
finite element formulations. The governing equations of
the first-order nonlocal plate theory can be derived using
dynamic version of the principle of virtual displacement
(Hamilton’s principle)

0 = ∫

𝑇

0

(𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾) 𝑑𝑡. (20)

By substituting nonlocal stress resultants in terms of the
displacements into the principle of virtual displacements and
integrate by part, the equations of motion can be obtained as
follows:

𝛿𝑢
0

𝑥
: 𝑁
𝑥𝑥,𝑥
+ 𝑁
𝑥𝑦,𝑦
−L (𝐼

0
�̈�
0

𝑥
) = 0, (21)

𝛿𝑢
0

𝑦
: 𝑁
𝑥𝑦,𝑥
+ 𝑁
𝑦𝑦,𝑦
−L (𝐼

0
�̈�
0

𝑦
) = 0, (22)

𝛿𝑤
0
: 𝑁
𝑥𝑧,𝑥
+ 𝑁
𝑦𝑧,𝑦
−L [𝑞

𝑧
− 𝐼
0
�̈�
0
] = 0, (23)

𝛿𝜙
𝑥
: 𝑀
𝑥𝑥,𝑥
+𝑀
𝑥𝑦,𝑦
− 𝑁
𝑥𝑧
−L [𝐼

2
̈𝜙
𝑥
] = 0, (24)

𝛿𝜙
𝑦
: 𝑀
𝑥𝑦,𝑥
+𝑀
𝑦𝑦,𝑦
− 𝑁
𝑦𝑧
−L [𝐼

2
̈𝜙
𝑦
] = 0. (25)
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6. Constitutive Relations of S-FGM Structures

The functionally graded material (FGM) can be produced by
continuously varying the constituents of multiphase materi-
als in a predetermined profile.Themost distinct features of an
FGM are the nonuniformmicrostructures with continuously
graded properties. An FGM can be defined by the variation
in the volume fractions. Most researchers use the power-
law function, exponential function, or sigmoid function to
describe the volume fractions. This paper uses FGM plates
and shells with sigmoid function.

The volume fraction using two power-law functions
which ensure smooth distribution of stresses is defined as

𝑉
1

𝑓
(𝑡) = 1 −

1

2
(
ℎ/2 − 𝑡

ℎ/2
)

𝑝

for 0 ≤ 𝑡 ≤ ℎ
2
, (26a)

𝑉
2

𝑓
(𝑡) =

1

2
(
ℎ/2 + 𝑡

ℎ/2
)

𝑝

for − ℎ
2
≤ 𝑡 ≤ 0. (26b)

By using the rule of mixture, the material properties of the
S-FGM can be calculated by

𝐻(𝑡) = 𝑉
1

𝑓
(𝑡)𝐻
1
+ (1 − 𝑉

1

𝑓
(𝑡))𝐻

2
for 0 ≤ 𝑡 ≤ ℎ

2
, (27a)

𝐻(𝑡) = 𝑉
2

𝑓
(𝑡)𝐻
1
+ (1 − 𝑉

2

𝑓
(𝑡))𝐻

2
for − ℎ

2
≤ 𝑡 ≤ 0.

(27b)

Figure 1 shows that the variation of Young’s modulus in
(27a) and (27b) represents sigmoid distributions, and this
FGM structure is thus called a sigmoid FGM structure (S-
FGM structures). In this paper, the volume fraction using two
power-law functions by Chung and Chi [16] is used to ensure
smooth distribution of stresses among all the interfaces.

Consider an elastic rectangular plate and shell. The local
coordinates 𝑟 and 𝑠 define the mid-plane of the plate and
shell, whereas the 𝑡-axis originated at the middle surface of
the plate and shell is in the thickness direction. The material
properties, both of Young’s modulus and the Poisson’s ratio,
the upper and lower surfaces are different but are pre-
assigned according to the performance demands. However,
the Young’s modulus and Poisson’s ratio of the plates and
shells vary continuously only in the thickness direction (𝑡-
axis); that is, 𝐸 = 𝐸(𝑡), ] = ](𝑡). It is called functionally
graded material (FGM) plate and shell.

The constitutive relations of the FGM structures are as
follows:

{
𝑁
𝛼𝛽

𝑀
𝛼𝛽

} = [

[

𝐴
𝛼𝛽𝛾𝛿

FGM 𝐵
𝛼𝛽𝛾𝛿

FGM

𝐵
𝛼𝛽𝛾𝛿

FGM 𝐷
𝛼𝛽𝛾𝛿

FGM

]

]

{

𝜀
𝑚

𝛾𝛿

𝜀
𝑏

𝛾𝛿

} , (28)

{𝑁
𝛼𝑧
} = [𝐴

𝛼𝑧𝛽𝑧

FGM] {𝜀
𝑠

𝛽𝑧
} . (29)

The coefficients of (28) and (29) for FGM structures are
defined as follows:

𝐴
𝛼𝛽𝛾𝛿

FGM, 𝐵
𝛼𝛽𝛾𝛿

FGM, 𝐷
𝛼𝛽𝛾𝛿

FGM = ∫
ℎ/2

−ℎ/2

𝐶
𝛼𝛽𝛾𝛿

FGM (1, 𝑧, 𝑧
2
) 𝑑𝑧,

𝐴
𝛼𝑧𝛽𝑧

FGM = 𝑘𝑠 ∫
ℎ/2

−ℎ/2

𝐶
𝛼𝑧𝛽𝑧

FGM 𝑑𝑧,

(30)

where 𝑘
𝑠
is the shear correction factor (𝑘

𝑠
= 5/6). For details

see Han et al. [18].

7. The Navier Solutions of S-FGM
Nanoscale Plates

Here, analytical solutions for bending of simply supported
S-FGM nanoscale plates are presented using the nonlocal
first-order plate theory to illustrate the small scale effects
on deflections of the nan-scale plates. For the static case, all
time derivative terms are set to zero. For the set of simply
supported boundary conditions, the analytical solution can
be obtained [37]. According to theNavier solution theory, the
generalized displacements at middle of the plane (𝑧 = 0) are
expanded in double Fourier series as follows:

𝑢
0

𝑥
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑈
𝑚𝑛
Λ
1
,

𝑢
0

𝑦
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑉
𝑚𝑛
Λ
2
,

𝑤
0
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑊
𝑚𝑛
Λ
3
,

𝜙
𝑥
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑋
𝑚𝑛
Λ
1
,

𝜙
𝑦
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑌
𝑚𝑛
Λ
2
,

𝑞
𝑧
(𝑥, 𝑦, 𝑡) =

∞

∑

𝑚=1

∞

∑

𝑛=1

𝑄
𝑚𝑛
Λ
3
,

(31)

where Λ
1
= cos 𝜉𝑥 sin 𝜂𝑦 ⋅ 𝑒𝑖𝜛𝑚𝑛𝑡, Λ

2
= sin 𝜉𝑥 cos 𝜂𝑦 ⋅ 𝑒𝑖𝜛𝑚𝑛𝑡,

and Λ
3
= sin 𝜉𝑥 sin 𝜂𝑦 ⋅ 𝑒𝑖𝜛𝑚𝑛𝑡 in which 𝜉 = 𝑚𝜋/𝑎, 𝜂 = 𝑛𝜋/𝑏,

and 𝜛
𝑚𝑛

is the natural frequency.
By substituting (31) into (21)–(25), matrix form is as

follows:

[K] {Δ} + [M] {Δ̈} = {𝑄} , (32)

where {Δ} = {𝑈
𝑚𝑛
, 𝑉
𝑚𝑛
,𝑊
𝑚𝑛
, 𝑋
𝑚𝑛
, 𝑌
𝑚𝑛
}, the superposed dots

denote differentiation with respect to time, [K] is the stiffness
matrix, [M] is the mass matrix, and {𝑄} is the force vector.

8. Numerical Results and Discussion

In order to validate, several numerical examples are solved to
test the performance in bending analysis. Examples include
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Figure 1: The variation of Young’s modulus of S-FGM plate and
shell.

P-FGM to check some crucial features and to make compar-
ison with previous published analysis results.

8.1. Validation. Firstly, since the results of nanoscale plate
made of S-FGM are not available in the open literature,
homogeneous and P-FGM (𝑝 = 1) plates are used herein for
the verification.

Table 1 shows the nondimensional displacements of sim-
ply supported plates with various values of side-to-thickness
ratio 𝑎/ℎ in homogeneous and functionally graded (𝑝 =

1) plates. The nanoscale plate is made of epoxy with the
following material properties:

𝐸
1
= 14.4 GPa, 𝐸

2
= 1.44 GPa, ] = 0.38,

ℎ = 17.6 × 10
−6m, 𝑞

0
= 1.0N/m,

𝜌
1
= 12.2 × 10

3 kg/m3, 𝜌
2
= 1.22 × 10

3 kg/m3.

(33)

The nondimensional displacement and frequency are defined
as

𝑤 = 𝑤
𝐸
2
ℎ
3

𝑞
0
𝑎4
× 10
2
, 𝜔 = 𝜔

𝑎
2

ℎ
√
𝜌
2

𝐸
2

. (34)

A shear correction factor of 5/6 is used for FSDT plate theory.
The calculated displacements based on FSDT plate theory
with S-FGM power law index (𝑝 = 1) are compared with
those reported by Thai and Choi [38] based on Mindlin
plate theory (MPT) with P-FGM index (Table 2). It can be
observed that the present results are identical with those
given by Thai and Choi [38] based on MPT. There is no
difference between the present S-FGM results and those P-
FGM results given by Thai and Choi [38]. This is due to the
fact that the S-FGM material properties are identical with P-
FGM, when the power law index is 1.

Secondly, the analytical bending solutions are numeri-
cally evaluated here for an isotropic plate to discuss the effects
of nonlocal parameter 𝜇 on the plate bending response.

FGM plate

𝑥

𝑏

𝑦

𝑧

ℎ

𝑎

E(z), �(z), 𝜌(z)

Figure 2: Geometry of S-FGM plate.

Table 3 shows the non-dimensional displacements of
simply supported plates with various values of nonlocal
parameter 𝜇 in homogeneous plates. The nanoscale plate is
made of the following material properties:

𝐸 = 30 × 10
6
, ] = 0.3, 𝑞

0
= 1.0. (35)

The results based on FSDT plate theory with various values
of nonlocal parameter 𝜇 are compared with those reported
by Lee et al. [39] based on HSDT. It can be observed that the
present results are identical with those given by Lee et al. [39]
when the side-to-thickness ratio is 100. For the case of the
𝑎/ℎ = 10, there is small difference between the present results
and those given by Lee et al. [39]. This is due to the fact
that Lee et al. [39] used HSDT to calculate the displacement,
whereas the present results are based on the FSDT.

Thirdly, in Tables 4 and 5, the calculated frequency based
on FSDT plate theory with S-FGMpower law index (𝑝 = 1) is
compared with those reported byThai and Choi [38] with P-
FGM index.The present results are identical with those given
byThai and Choi [38]. As we expected, there is no difference
between the present S-FGM results and those P-FGM results
given byThai and Choi [38].

Fourthly, the results of S-FGM plates (see Figure 2) using
the classical plate theory [17] are compared with present solu-
tions using the FSDT for validation. The material properties
are

𝐸
1
= 2.1 × 10

6 kg/cm2, 𝐸
2
= varied, ] = 0.3,

𝑎 = 100 cm, ℎ = 2 cm, 𝑞
0
= 1.0 kg/cm2 .

(36)

The results of classical plate theory by Chi and Chung [17]
and the results of first-order shear deformation theory are
plotted in Figure 3. It shows that themore of𝐸

1
/𝐸
2
brings the

larger deflection, because lager 𝐸
1
/𝐸
2
decreases the stiffness

of the FGMplate.The present and reference results agree very
well.

In order to investigate the effects of the aspect ratio 𝑎/𝑏,
the center deflection of the FGM plate is shown in Figure 4.
The center deflection increases upon raising the aspect ratio
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Table 1: Nondimensional displacement of simply supported FGM plate.

𝑎/ℎ
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
5 0.5147 0.5147 1.1536 1.1536
10 0.4415 0.4415 1.0205 1.0205
20 0.4232 0.4232 0.9873 0.9873
100 — 0.4173 — 0.9766

Table 2: Nondimensional displacement of simply supported nano-scale FGM plate.

𝜇
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
0 0.4415 0.4415 1.0205 1.0205
1.0 — 0.6969 — 1.6123
2.25 — 1.0160 — 2.3521
4.0 — 1.4629 — 3.3878
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Table 3: Nondimensional displacement of simply supported nano-
scale plate (100 term series).

𝜇
𝑎/ℎ = 10 𝑎/ℎ = 100

Lee et al. [39] Present Lee et al. [39] Present
0 4.6658 4.6658 4.4384 4.4384
0.5 5.0836 5.0836 4.8408 4.8408
1 5.5014 5.5012 5.2432 5.2432
1.5 5.9192 5.9189 5.6456 5.6456
2 6.3370 6.3365 6.0480 6.0480
2.5 6.7548 6.7542 6.4504 6.4504
3 7.1726 7.1718 6.8528 6.8528
3.5 — 7.5895 — 7.2552
4 — 8.0071 — 7.6576

for 𝑎/𝑏 is less than 3. In Figures 3 and 4, it is clear that the
results show very good agreement, because of the large side-
to-thickness ratio. As expected, the less side-to-thickness
ratio is, the error is larger. In this study, all discussions are
based on the first-order shear deformation theory.

8.2. Parameter Studies. Consider a simply supported square
plate with the material properties of (33). Parameter studies
are presented to investigate the influences of transverse shear
deformation, nonlocal parameter (𝑁𝑇 = 𝜇), and power law
index 𝑝 on bending responses of S-FGM nanoscale plate.

To illustrate the effect of nonlocal parameter on responses
of S-FGM nanoscale plate, Figure 5 plots the deflection with
respect to dimensionless nonlocal parameter 𝜇 for a simply
supported S-FGM plate with 𝑝 = 1.0 and 𝑎/ℎ = 10. The
nonlocal parameters are taken as 𝜇 = 0, 1.0, 2.25, and 4.These
values are taken because 𝑒

0
𝑎 in (5) should be smaller than

2.0 nm for carbon nanotubes as described by Q. Wang and
C. M. Wang [40]. The inclusion of the nonlocal scale effect
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Table 4: Nondimensional frequency of simply supported FGM plate.

𝑎/ℎ
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
5 5.3871 5.3871 4.8744 4.8744
10 5.9301 5.9301 5.2697 5.2697
20 6.0997 6.0997 5.3880 5.3880
100 — 6.1579 — 5.4280

Table 5: Nondimensional frequency of simply supported nano-scale FGM plate.

𝜇
A homogeneous plate 𝑝 = 1

P-FGM (Thai and Choi [38]) Present (S-FGM) P-FGM (Thai and Choi [38]) Present (S-FGM)
0 5.9301 5.9301 5.2697 5.2697
1.0 — 4.6345 — 4.1184
2.25 — 3.8012 — 3.3779
4.0 — 3.1478 — 2.7973
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Figure 5: Effect of the nonlocal parameter on the nondimensional
displacement of a simply supported S-FGM plate with 𝑎/ℎ = 10.

will decrease the stiffness of the S-FGM nanoscale plate, and
consequently, leads to an enlargement of deflection.

The effect of the power law index 𝑝 on the dimensionless
deflection is presented in Figure 6 for a simply supported
square plate with 𝜇 = 4.0 and 𝑎/ℎ = 10. The increasing
value of the power law index decreases the stiffness of the S-
FGM nanoscale plates. It can be seen that increasing value of
the power law index leads to an increase in the magnitude
of deflection. When the nonlocal parameter (NT) is 0, a
nonlocal S-FGM nanoscale plate is treated as a local nano-
plate.

To show the effect of 𝐸
1
/𝐸
2
of S-FGM nanoscale plate,

Figure 7 plots the nondimensional displacement with 𝜇 =
4.0, 𝑝 = 1.0, and 𝑎/ℎ = 10. In this case, 𝐸

1
is varied and

𝐸
2
is fixed. It shows that the more of 𝐸

1
/𝐸
2
brings the smaller

deflection, because lager 𝐸
1
/𝐸
2
increases the stiffness of the

S-FGM nanoscale plate.
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Figure 6: Effect of the power law index on the nondimensional
displacement of a simply supported S-FGM plate with 𝑎/ℎ = 10.

It is shown that the effects of side-to-thickness ratio on the
dimensionless deflection is presented in Figure 8 for a simply
supported square plate with 𝜇 = 4.0 and 𝑎/ℎ = 10. Figure 8
clearly shows the diminishing effect of transverse shear
deformation on deflections, the effect being negligible for
side-to-thickness ratios larger than 30.The increasing value of
the power law index leads to an increase in the magnitude of
deflection and the increasing value of side-to-thickness ratio
leads to a decrease in the deflection. As expected, the effect
of transverse shear deformation is to increase deflection.
The differences in deflection values predicted by the present
model and the classical model are significant when the side-
to-thickness ration is small, but they are negligible when the
side-to-thickness ratio becomes larger.

Figure 9 shows that the effect of power law index on the
dimensionless deflection is presented for a simply supported
square platewith various nonlocal parameters.The increasing
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value of the power law index decreases the stiffness and the
increasing value of the nonlocal parameter increases the load
vector of the S-FGMnanoscale plates.The increasing value of
the power law index leads to an increase in the magnitude of
deflection and the increasing value of the nonlocal parameter
leads to an increase in the deflection.

It is shown that the effect of the aspect ratio on the
dimensionless deflection is presented in Figure 10 for a simply
supported square plate with various nonlocal parameters
and 𝑝 = 10.0. The increasing values of the aspect ratio
(𝑏/𝑎) and nonlocal parameter decrease the stiffness of the
S-FGM nanoscale plates. When the width 𝑏 of a nanoscale
plate is very small compared to the length 𝑎, it is treated
as a nanoscale beam. The increasing value of the aspect
ratio leads to an increase in the magnitude of deflection
and the increasing value of the nonlocal parameter leads
to an increase in the deflection. The nondimensional center
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Figure 10: Effect of the aspect ratio on the nondimensional dis-
placement of a simply supported S-FGMplate with various nonlocal
parameters.

deflection increases upon raising the aspect ratio for 𝑏/𝑎 less
than 5.

Figure 11 shows that the aspect ratio on the dimensionless
deflection is presented for a simply supported square plate
with various power law indexes and 𝜇 = 4.0. As we
expected, the increasing value of power law index decreases
the stiffness of the S-FGM nanoscale plates. For this reason,
it increases the deflection.The nondimensional center deflec-
tion increases upon raising the aspect ratio for 𝑏/𝑎 less than
5. When the aspect ratio (𝑏/𝑎) is greater than 5, a S-FGM
nanoscale plate is treated as a nanobeam.

To illustrate the effect of the loading type on responses
of S-FGM nanoscale plate, Figure 12 plots the deflection with
respect to uniform and sinusoidal load for a simply supported
S-FGM plate with 𝜇 = 4.0, 𝑝 = 10.0, and 𝑎/ℎ = 10. The
sinusoidal load on the S-FGM nanoscale plate is small in
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magnitude compared to the uniform load. As we expected,
it is observed that the deflections investigated under the
uniform load are larger than those investigated under the
sinusoidal load. It may be noticed that the load-displacement
curve under the sinusoidal load exhibits the value of 20% of
the uniform load.

9. Conclusions

Nonlocal elasticity model for bending analysis of sigmoid
functionally graded materials (S-FGM) nanoscale plates is
presented using a first-order shear deformation theory and
Hamilton’s principle. The present models contain one non-
local parameter and can capture the size effect, and two-
constituent material variation through the plate thickness.
Also, the present model can be reduced to the homogeneous
nanoscale plates by setting 𝐸

1
= 𝐸
2
and S-FGM plates

of local elasticity theory by setting the nonlocal parameter

equal to zero. Analytical solutions for deflection of a simply
supported rectangular S-FGM nanoscale plate are presented.
The numerical results reveal that the inclusion of the small
scale effect and power law index leads to an enlargement
of the magnitude of deflection. The differences in deflection
values predicted by the presentmodel and the classical model
are significant when the side-to-thickness ratio is small, but
they are negligible when the side-to-thickness ratio becomes
larger.

From the present work the following conclusions are
drawn.

(1) The inclusion of the nonlocal scale effect and increas-
ing value of the power law indexwill decrease stiffness
of the S-FGM nanoscale plate, and consequently,
leads to an enlargement of deflection.

(2) The increasing value of side-to-thickness ratio leads to
a decrease in the deflection. As expected, the effect of
transverse shear deformation is to increase deflection.

(3) The increasing value of the aspect ratio leads to an
increase in the magnitude of deflection. The nondi-
mensional center deflection increases upon raising
the aspect ratio for 𝑏/𝑎 is less than 5.

(4) As expected, it is observed that the deflections inves-
tigated under the uniform load are larger than those
investigated under the sinusoidal load.

These predicted trends agree with the size effect at the
micron scale observed in experiments. These results can be
used for evaluating the reliability of size-dependent plate
models developed in the future. Further, in the analysis of
S-FGM structures it is necessary to include the nonlocal
elasticity theory for nanoscale shell and other boundary
conditions.
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[21] Ö. Civalek and Ç. Demir, “Bending analysis of microtubules
using nonlocal Euler-Bernoulli beam theory,” Applied Mathe-
matical Modelling, vol. 35, no. 5, pp. 2053–2067, 2011.

[22] J. N. Reddy, “Nonlocal theories for bending, buckling and vibra-
tion of beams,” International Journal of Engineering Science, vol.
45, no. 2-8, pp. 288–307, 2007.

[23] J. N. Reddy and S. D. Pang, “Nonlocal continuum theories of
beams for the analysis of carbon nanotubes,” Journal of Applied
Physics, vol. 103, no. 2, Article ID 023511, 2008.

[24] J. N. Reddy, “Nonlocal nonlinear formulations for bending of
classical and shear deformation theories of beams and plates,”
International Journal of Engineering Science, vol. 48, no. 11, pp.
1507–1518, 2010.

[25] C. M. C. Roque, A. J. M. Ferreira, and J. N. Reddy, “Analysis
of Timoshenko nanobeams with a nonlocal formulation and
meshless method,” International Journal of Engineering Science,
vol. 49, no. 9, pp. 976–984, 2011.

[26] Q. Wang and K. M. Liew, “Application of nonlocal continuum
mechanics to static analysis of micro- and nano-structures,”
Physics Letters, vol. 363, no. 3, pp. 236–242, 2007.

[27] C. M. Wang, S. Kitipornchai, C. W. Lim, and M. Eisenberger,
“Beam bending solutions based on nonlocal Timoshenko beam
theory,” Journal of Engineering Mechanics, vol. 134, no. 6, pp.
475–481, 2008.

[28] Y. Fu, H. Du, and S. Zhang, “Functionally graded TiN/TiNi
shape memory alloy films,”Materials Letters, vol. 57, no. 20, pp.
2995–2999, 2003.

[29] C. Lu, D. Wu, and W. Chen, “Non-linear responses of nano-
scale FGM films including the effects of surface energies,” IEEE
Transactions on Nanotechnology, vol. 10, no. 6, pp. 1321–1327,
2011.

[30] M. Rahaeifard, M. H. Kahrobaiyan, and M. T. Ahmadian,
“Sensitivity analysis of atomic forcemicroscope cantilevermade
of functionally graded materials,” in Proceedings of the 3rd
International conference onmicro- and nanosystems (DETC ’09),
pp. 539–544, September 2009.

[31] A. Witvrouw and A. Mehta, “The use of functionally graded
poly-SiGe layers for MEMS applications,” Materials Science
Forum, vol. 492-493, pp. 255–260, 2005.

[32] Z. Lee, C. Ophus, L. M. Fischer et al., “Metallic NEMS compo-
nents fabricated from nanocomposite Al-Mo films,” Nanotech-
nology, vol. 17, no. 12, article 042, pp. 3063–3070, 2006.

[33] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson,
“Strain gradient plasticity: theory and experiment,” Acta Metal-
lurgica et Materialia, vol. 42, no. 2, pp. 475–487, 1994.

[34] J. S. Stolken and A. G. Evans, “A microbend test method for
measuring the plasticity length scale,” Acta Materialia, vol. 46,
no. 14, pp. 5109–5115, 1998.

[35] A. C. M. Chong, F. Yang, D. C. C. Lam, and P. Tong, “Torsion
and bending of micron-scaled structures,” Journal of Materials
Research, vol. 16, no. 04, pp. 1052–1058, 2001.

[36] D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong,
“Experiments and theory in strain gradient elasticity,” Journal
of the Mechanics and Physics of Solids, vol. 51, no. 8, pp. 1477–
1508, 2003.

[37] J. N. Reddy, Mechanics of Composite Plates and Shells: Theory
and Analysis, CRC Press, Boca Raton, Fla, USA, 2nd edition,
2004.

[38] H. T.Thai and D. H. Choi, “Size-dependent functionally graded
Kirchhoff andMindlin platemodels based on amodified couple
stress theory,” Composite Structures, vol. 96, pp. 376–383, 2013.

[39] W. H. Lee, S. C. Han, andW. T. Park, “Nonlocal elasticity theory
for bending and free vibration analysis of nano plates,” Journal of
the Korea Academia-Industrial Cooperation Society, vol. 13, no.
7, pp. 3207–3215, 2012 (Korean).

[40] Q. Wang and C. M. Wang, “The constitutive relation and
small scale parameter of nonlocal continuum mechanics for
modelling carbon nanotubes,” Nanotechnology, vol. 18, no. 7,
Article ID 075702, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


