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The paper researches a novel engineering application of Lipschitz exponent function and harmonic wavelet for detecting tool condi-
tion. Tool wear affects often the quality grade of products and is gradually formed during cutting process. Meanwhile, since cutting
noise is very strong, we think tool wear belongs to detecting weak singularity signals in strong noise. It is difficult to obtain a reliable
worn result by raw sampled data. We propose singularity analysis with harmonic wavelet for data processing and a new concept of
Lipschitz exponent function. The method can be quantitative tool condition and make maintaining decision. Test result was vali-
datedwith 27 kinds of cutting conditionswith the sharp tool and theworn tool; 54 groupdata are sampled by acoustic emission (AE).

1. Introduction

In recent years, great achievements in tool wear monitoring
have beenmade based on the advancedmathematical models
[1–8], even though none of these methods was successful
online monitoring due to the complex performance of the
machining processes. How to be quantitative tool condition
monitoring is very important for practical engineering appli-
cations. This is a signal process problem that detects weak
singularity signals in strong noise. However, the classical
signal process is Fourier theory which has four defects [9–
11]: (1) suits stationary stochastic signal, this kind of signal
does not almost exists in engineering; (2) for discrete Fourier,
Fourier analysis is precise with time series long from zero
to infinite, otherwise truncation error is made; (3) weak
singularity signal, relatively strange signal, is omitted in FFT
however, weak singularity signal often contains important
fault information; (4) when signal frequency happen a sud-
den changewith adjacent time intervals, Fouriermethod only
obtains two frequencies, it cannot display the moment two
frequency changes or occurs (i.e., the singularities) in fre-
quency domain. In order to overcome the above four defects
to improve themeasuring precision of weak singular signal in
strong noise, we propose the combination between Lipschitz
exponent index and complex wavelet for the detection of
quantitative tool wear.

Lipschitz functions appear almost everywhere in math-
ematics [12]. Lipschitz functions are an important class of
strong variations originating from smooth deformations of
corresponding nonsmooth function [13]; the local regularity
is often measured by Lipschitz exponents (LE); the sin-
gular variations can be viewed as combinations of weak
increasing and decreasing variations; it means the case of
discontinuity occurence on smooth function. Since the paper
[14] is published in 1992 to detect signal’s singularities,
which proposed that the instantaneous frequencies can be
approximately identified from the modulus maxima of a real
wavelet based on general maxima, which are the locations
of the largest modulus along maxima lines through an
extension of [14], the complex-wavelet modulus maxima can
detect and characterize singularities [15, 16] and has taken
excellent result for measuring weak singularities of signal.
Harmonic wavelet is one kind of complex wavelet; it is very
sensitive to singularity feature of the signal that contains
weak faults [17–20] and satisfies multiwavelets frames with
arbitrary integer dilation factor [21]. The paper combines
the modulus maxima of using a harmonic wavelet, and
Lipschitz functions can be quantitative tool condition during
cutting process. By 27 kinds of cutting conditions and turning
experiments on HL-32 NC turning center, 54 group data are
sampled by acoustic emission (AE). We have demonstrated
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Figure 1: Real (thick line) and imaginary (thin line).

that combining the modulus maxima of harmonic wavelet
and Lipschitz functions is better for detecting and estimating
tool wear when a worn tool generates a singular signal in a
strong noise.

2. Harmonic Wavelet Transform Algorithm

Discrete harmonic wavelets are given by

𝜓
𝑛

𝑘
(2
𝑛

𝑥 − 𝑘)
def
=

exp (4𝜋𝑖 (2𝑛𝑥 − 𝑘)) − exp (2𝜋𝑖 (2𝑛𝑥 − 𝑘))

2𝜋𝑖 (2𝑛𝑥 − 𝑘)
,

(1)

where 𝑛 = −1, 0, 1, 2, . . . , 𝑁. 𝑛 is different levels (scale), and
𝑘 is different steps (time). The functions of its scale and time
are given by Figure 1.

The Fourier transform of (1) is as below:

󵄨󵄨󵄨󵄨𝜓̂
𝑛

𝑘
(𝜔)

󵄨󵄨󵄨󵄨 =
{

{

{
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2𝜋2𝑛
, 2𝜋2𝑛 ≤ 𝜔 ≤ 2𝜋2𝑛+1,

0, other.
(2)

The amplitude-frequency characteristics of (2) is exactly like
a boxwith band limited, as shownFigure 2.This characteristic
is the best than any real wavelets for decomposed signal to
difference frequency band.
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Figure 2: Amplitude-frequency characteristics of the discrete har-
monic wavelets.
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Figure 3: Extracting Lipschitz exponent function 𝛼(𝑡).

3. The Definition of Lipschitz Exponent

Lipschitz is from Taylor formula [16, 22, 23] Suppose that
function 𝑓(𝑥) is 𝑚 times differentiable in [𝑥

0
− ℎ, 𝑥

0
+ ℎ];

then, Taylor expands in the neighborhood of 𝑥
0
:

𝑓
𝑥0
(𝑥) =

𝑚−1

∑
𝑘=0

𝑓(𝑘) (𝑥
0
)

𝑘!
(𝑥 − 𝑥

0
)
𝑘 (3)

exists one approximate error:

𝑒 (𝑥) = 𝑓 (𝑥) − 𝑓
𝑥0
(𝑥) (4)
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Figure 4: AE measurement in metal cutting.
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Figure 5: Waveform of sharp tool in first condition.

which satisfies:

∀𝑥 ∈ [𝑥
0
− ℎ, 𝑥

0
+ ℎ] ,

|𝑒 (𝑥)| ≤
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(5)

The 𝑚th order differentiability of 𝑓(𝑥) in the neighborhood
of 𝑥
0
yields an upper bound on the error 𝑒(𝑥) when 𝑥 tends

to 𝑥
0
. The Lipschitz regularity refines this upper bound with

noninteger exponents.The definition of Lipschitz exponent is
as follows: a function𝑓(𝑥) is of Lipschitz 𝛼 at 𝑥

0
, if and only if

there exists a constant A such that for all 𝑥 in a neighborhood
of 𝑥
0

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥
0
)
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨
𝛼

. (6)

We say that 𝑓(𝑥) is uniformly Lipschitz 𝛼 for all 𝑥. Equation
(6) is a kind of fractional order [20]. In a neighborhood of
𝑥
0
, 𝑓(𝑥) is singular when 𝛼 ̸= 1, and 𝑓(𝑥) is continuous when

𝛼 > 0. In other words, If 𝑓(𝑥) is discontinuous and bounded
in a neighborhood of 𝑥

0
, then 𝛼 = 0. If 𝑓(𝑥) is continuously

differentiable then 𝛼 = 1 and 𝑓(𝑥) is not singular.

4. Modulus Maxima of Wavelet

Reference [14] depicts the modulus maxima of real wavelet
to detect singular signal, and [15] extends to the modulus
maxima of complex wavelet, and algorithm is deduced in
detail. We say a function 𝑓(𝑥) is a modulus maximum of
wavelet at the point (2𝑛, 𝑥

0
); then,
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0
)
󵄨󵄨󵄨󵄨 (7)

or

𝜕𝜓𝑓 (2𝑗, 𝑥
0
)

𝜕𝑥
= 0, (8)

where 𝑥 belongs to either the right or the left neighborhood
of 𝑥
0
. A maxima line is consisted of a connected curve of the
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Table 1: Experimental cutting conditions.

No. Speed Depth of cut Feed No. Speed Depth of cut Feed
r/min mm mm/r r/min mm mm/r

1 1500 1 0.1 15 1000 0.2 0.05
2 1500 0.5 0.1 16 800 1 0.05
3 1500 0.2 0.1 17 800 0.5 0.05
4 1000 1 0.1 18 800 0.2 0.05
5 1000 0.5 0.1 19 1500 1 0.02
6 1000 0.2 0.1 20 1500 0.5 0.02
7 800 1 0.1 21 1500 0.2 0.02
8 800 0.5 0.1 22 1000 1 0.02
9 800 0.2 0.1 23 1000 0.5 0.02
10 1500 1 0.05 24 1000 0.2 0.02
11 1500 0.5 0.05 25 800 1 0.02
12 1500 0.2 0.05 26 800 0.5 0.02
13 1000 1 0.05 27 800 0.2 0.02
14 1000 0.5 0.05
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Figure 6: Waveform of wear tool in first condition.

modulus maxima in the scale space 𝑛 = −1, 0, 1, 2, . . . , 𝑁.
These multiscale modulus maxima are used to locate discon-
tinuities [16], and if 𝜓𝑓(2𝑛, 𝑥) has no modulus maxima at
fine scales, then 𝑓(𝑥) is locally regular. Singular point can be
recognized by modulus maxima.

5. Lipschitz Exponent Based on Modulus
Maxima of Harmonic Wavelet

It has been shown that the Lipschitz exponent of a local
singularity can be characterized by being placed on their
local modulus maxima at each scale [14, 16]. References
[15, 24] extend to using the modulus maxima of a complex
wavelet. Here, we research that the modulus maxima of
harmonic wavelet can be used to detect singularities, by
means of a Lipschitz exponent of a function, and quantitative
analysis on signal’s singularities is measured. By examining
the asymptotic decay of wavelet modulus maxima from
coarser scale to finer scale, the strength of the singularity can
be characterized by Lipschitz exponent.

Let 𝑠 = 2
𝑛, 𝑛 = −1, 0, . . . , 𝑁, in terms of [15, 25], function

𝑓(𝑥), 𝑥 ∈ (𝑎, 𝑏), and let 𝑛th (𝑛 > 0) derivative of Re(𝜓𝑓(𝑠, 𝑥))
and Im(𝜓𝑓(𝑠, 𝑥)) be finite deviations for each scale 𝑠. If a scale
𝑠
0
> 0 and constants𝐶 and𝐴 exist such that for 𝑥 ∈ (𝑎, 𝑏) and

𝑠 > 𝑠
0
, all the modulus maxima of 𝜓𝑓(𝑠, 𝑥) belong to a cone

defined by
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0

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑠 (9)

such that at each modulus maxima (𝑠, 𝑥) in the cone
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then 𝑓(𝑥) is uniformly Lipschitz 𝛼 at 𝑥 when 𝑥 ̸= 𝑥
0
, and

𝑓(𝑥) is Lipschitz 𝛼 at 𝑥
0
when 𝛼 < 𝑛, and 𝛼 is a noninteger.

Equation (10) takes the logarithm on both sides:
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In [15, 24], 𝐴 and 𝛼 are computed by
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The problem of estimating 𝛼 transforms into optimization
based on a nonlinear least squared, and when (12) is mini-
mized at all scale, 𝐴 and 𝛼 are obtained.

According to [24] description of the results, we use 𝑠 = 2
𝑛
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Figure 7: Continued.
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Figure 7: Continued.
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Figure 7: Lipschitz exponent function of 54 group data.

𝛼(𝑥) is called Lipschitz exponent function that describes the
change of Lipschitz exponent value 𝛼 along the temporal
axis 𝑥. The variable 𝑥 is sampling point by acoustic emission
(AE) during cutting process. Figure 5 is a simulation example
of extracting Lipschitz exponent function 𝛼(𝑥) on a sine
function with singular points. Here, we set𝑁 = 10 in (13).

Figure 3 demonstrates the potential ability of singularity
detection (or fault detection) with Lipschitz exponent func-
tion 𝛼(𝑥).

6. Application Platform

In turning experiments, the feasibility for tool condition
monitoring is demonstrated by 27 kinds of cutting conditions
(see Table 1); 54 group data are sampled by AE; they are
shaper1∼shaper27 and wear1∼wear27, respectively. Machin-
ing tests were carried out on HL-32 NC turning center [26].
Theworkmaterial was chosen for ease ofmachining, allowing
for generation of surfaces of varying quality without the use
of cutting fluids. The experiment equipment is shown in
Figure 4. Currently, AE-based sensing technology is the area
of most intense research activity for developing intelligent
tool condition systems. The reason is that the sensitivity of
AE to tool wear and fracture is coupled with a high response
rate of the signal. Sharp1 signal and wear1 signal show Figures
5 and 6, respectively in time domain.

According to (13), we set harmonic wavelet decomposed
level 𝑁 = 10, and Lipschitz exponent function 𝛼(𝑥) of 54
group data is shown in Figure 7.

In Figure 7, all sharp tools are of positive Lipschitz
exponent function 𝛼(𝑡) > 0, and all wear tools are of a
negative Lipschitz exponent function 𝛼(𝑡) < 0. Wear tool
and sharp tool can be distinguished by Lipschitz exponent
function 𝛼(𝑡). A threshold value 𝛼(𝑡) = 0 is obtained as
a criterion of the tool condition monitoring during cutting
process.

7. Conclusion

The proposed research provides a new theoretical basis and
a new engineering application on the online tool monitoring
which can distinguish between worn tool and sharp tool dur-
ing cutting process. The results of experiment demonstrate
that this method is more precise and robust.

The method which was described in this paper can be
used as a valuable method for tool condition monitoring. In
comparison to conventional data processing, the advantages
of Lipschitz exponent and harmonic wavelet were shown.
The zero threshold is determined conveniently which can
distinguish between worn tool and sharp tool. For the
future development of the presented techniques in laboratory,
several approaches will be tested, including new broadband
sensors application.
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