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The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying
a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed
into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the
equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft
ends) between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations,
a characteristic equation of the form [𝐻]{𝐶} = 0 is obtained.Then, the natural frequencies of the torsional shaft are determined from
the determinant equation |𝐻| = 0, and, corresponding to each natural frequency, the column vector for the integration constants,
{𝐶}, is obtained from the equation [𝐻]{𝐶} = 0. Substitution of the last integration constants into the associated displacement
functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all
numerical results obtained from the exact method are compared with those obtained from the conventional finite element method
(FEM) and good agreement is achieved.

1. Introduction

In this paper, a conic shaft with its longitudinal (lateral)
surface generated by revolving an inclined straight line about
its longitudinal axis is called the general conic shaft and that
generated by revolving an inclined curve about its longitudi-
nal axis is called the specific conic shaft. The main difference
between the last two conic shafts is that the variation of cross-
section area𝐴(𝑥) is to take the form of𝐴(𝑥) = 𝐴

ℓ
(𝑥/𝐿
ℓ
)
2 for

the general conic shaft and 𝐴(𝑥) = (𝑎𝑥 + 𝑏)
𝑛 for the specific

conic shaft. In the last expressions for 𝐴(𝑥), 𝑥 denotes the
longitudinal coordinate of the conic shaft with its origin at
the tip (left) end of the general conic shaft, 𝐴

ℓ
denotes the

cross-sectional area at 𝑥 = 𝐿
ℓ
with the subscript ℓ denoting

the larger end of the shaft, while 𝑎, 𝑏, and 𝑛 denote constants
(with 𝑏 ̸= 0). For a general conic shaft, the exact solution for
the natural frequencies and mode shapes of free transverse
vibrations has been presented in [1], while for a specific conic
shaft, that of free longitudinal vibration has been reported in
[2, 3], and that of free torsional vibration in [4]. However,

for a general conic shaft, the information concerning its exact
solution for the natural frequencies and mode shapes of free
torsional vibration is not yet obtainable from the existing
literature. In [2–4], the exact solution for free longitudinal
or free torsional vibration of a specific conic rod is obtained
by using appropriate transformations to reduce its equation
of motion to the analytically solvable standard form with
the specific area variation 𝐴(𝑥) = (𝑎 + 𝑏𝑥)

𝑛. In [5], the
numerical solution for the lowest several natural frequencies
of the free-free specific conic shafts is determined from the
so-called target function method. Because the exact solution
for the natural frequencies and mode shapes of free torsional
vibration of the most practical general conic shafts is not yet
presented, this paper tries to provide some information for
this topic.

For convenience, in this paper, a linearly tapered beam
is called the positive-taper conic shaft if its cross-sectional
diameter 𝑑(𝑥) increases with increasing the longitudinal
coordinates 𝑥 and is called the negative-taper conic shaft if
its diameter 𝑑(𝑥) decreases with increasing 𝑥. Furthermore,
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Table 1: The dimensions of a general conic shaft with five taper ratios 𝛼 = 𝑑
ℓ
/𝐿
ℓ
, larger-end diameter 𝑑

ℓ
= 0.05m, and shaft length 𝐿 shaft =

𝐿 = 2.0m kept unchanged.

Case Taper ratio
𝛼 = 𝑑

ℓ
/𝐿
ℓ

Complete shaft length
𝐿
ℓ
(m)

Length truncated
𝐿
𝑠
(m)

Smaller-end diameter
𝑑
𝑠
(m)

Shaft length
𝐿 shaft = 𝐿 (m)

Larger-end diameter
𝑑
ℓ
(m)

1 0.02 2.5 0.5 0.01
2 0.01 5.0 3.0 0.03
3 0.005 10.0 8.0 0.04 2.0 0.05
4 0.0025 20.0 18.0 0.045
5 0.001 50.0 48.0 0.048

Uniform rod — — 0.05 2.0 0.05

a conic shaft consisting of one positive-taper conic shaft
segment only is called the P-taper shaft (cf. Figures 1 and 2)
and that composed of both a positive-taper and a negative-
taper conic shaft segments is called the PN-taper shaft (cf.
Figure 3). The exact natural frequencies and mode shapes for
the free torsional vibrations of a P-taper shaft with or without
carrying any number of concentrated elements (such as rigid
disks and/or torsional springs) are determined through the
following procedures: (a) to transform the equation ofmotion
of the P-taper shaft into the Bessel equation and to obtain
the exact solution for the (torsional) angular displacements in
terms of the Bessel functions. (b) To establish the equations
of compatibility for deformations and those of equilibrium
for torsional moments at a typical intermediate node 𝑖

connecting the conic shaft segments (𝑖) and (𝑖 + 1), and
those at the two ends of the entire conic shaft. Based on
the last equations and the prescribed boundary conditions,
corresponding to each of the trial natural frequencies, a
characteristic equation for the entire conic shaft, [𝐻]{𝐶} = 0,
is obtained, in which, {𝐶} is a column vector composed of the
integration constants of all conic shaft segments and [H] is a
square matrix composed of the associated coefficients. (c) To
determine the natural frequency of the vibrating system from
the determinant equation |𝐻| = 0 by using the bisectional
method [6] and to obtain the associated integration constants
from the equation [𝐻]{𝐶} = 0. The substitution of the
latter integration constants into the associated displacement
function for each of the conic shaft segments will determine
the corresponding mode shape. The last steps (b) and (c)
must be repeated 𝑞 cycles if 𝑞 pairs of natural frequency
and associated mode shape are required. It is found that
the foregoing procedures for obtaining the exact solution of
free torsional vibrations of a P-taper shaft are also available
for that of a PN-taper shaft carrying arbitrary concentrated
elements. The key point is to replace the longitudinal (axial)
coordinate 𝑥 for the positive-taper part of the PN-taper shaft
by 𝑥 = 𝐿

ℓ
+ 𝐿
ℓ
− 𝑥 for the negative-taper part of the

PN-taper shaft (cf. Figure 3) and the parameters (𝑑
𝑠
, 𝑑
ℓ
, 𝐿
𝑠
,

and 𝐿
ℓ
) for the positive-taper part by those (𝑑

𝑠
, 𝑑
ℓ
, 𝐿
𝑠
, and

𝐿
ℓ
) for the negative-taper part, where 𝑑

𝑠
and 𝑑

ℓ
denote the

diameters at smaller and larger ends of the positive-taper part,
𝑑
𝑠
and𝑑
ℓ
denote the corresponding ones of the negative-taper

part, 𝐿
𝑠
and 𝐿

ℓ
denote the coordinates of smaller and larger

ends of the positive-taper part with origin 𝑜 at the tip of the

complete positive-taper cone, while 𝐿
𝑠
and 𝐿
ℓ
denote those of

the negative-taper part with origin 𝑜 at the tip of the complete
negative-taper cone (cf. Figure 3).

To confirm the reliability of the presented exact method,
the influence of taper ratios (𝛼) of the P-taper and PN-taper
shafts on their lowest four natural frequencies in various
boundary conditions (BCs) is studied. It is found that the
lowest four natural frequencies of all conic shafts converge
to the corresponding ones of the associated uniform shafts in
various BCswhen the taper ratios of the conic shafts approach
zero (i.e., 𝛼 ≈ 0). Furthermore, all numerical results obtained
from the presented exact method are also compared with
those obtained from the conventional finite element method
(FEM) and good agreement is achieved. For convenience, a
conic shaft without any attachments is called the bare shaft
and the one carrying any concentrated elements is called the
loaded shaft in this paper.

2. Bessel Equation for the Torsional Vibration
of a P-Taper Conic Shaft

For a nonuniform shaft performing free torsional vibrations,
its equation of motion takes the form [7]:

𝜕

𝜕𝑥
[𝐺𝐼
𝑃 (𝑥)

𝜕𝜃 (𝑥, 𝑡)

𝜕𝑥
] = 𝜌𝐼

𝑃 (𝑥)
𝜕
2
𝜃 (𝑥, 𝑡)

𝜕𝑡2
, (1)

where 𝜌 and 𝐺 are mass density and shear modulus of the
shaft material, respectively, 𝐼

𝑝
(𝑥) is the polar moment of

inertia for the cross-sectional area𝐴(𝑥)of the shaft at position
𝑥, and 𝜃(𝑥, 𝑡) is the torsional angle of the shaft at position 𝑥

and time 𝑡. For the P-taper conic shaft as shown in Figure 1,
𝑥 is the axial coordinate with its origin 𝑜 at the tip end of
the complete conic shaft. It is evident that the revolution of
the inclined straight line 𝐴𝐵 about the horizontal 𝑥-axis will
generate the longitudinal (lateral) surface of the shaft.

If 𝑑
ℓ
denotes the diameter of the larger end of the

truncated conic shaft (cf. Figure 1), then the diameter for the
cross-section area located at position 𝑥 is given by

𝑑
𝑥
= (

𝑥

𝐿
ℓ

)𝑑
ℓ
, (2)
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Table 2: Influence of taper ratio (𝛼 = 𝑑
ℓ
/𝐿
ℓ
) on the lowest five natural frequencies 𝜔

𝜏
(rad/sec) of the P-taper conic shaft (cf. Figure 5) with

larger-end diameter 𝑑
ℓ
= 0.05m and shaft length 𝐿 shaft = 𝐿 = 2.0m kept unchanged: (a) F-F, (b) C-C, (c) C-F, and (d) F-C BCs.

(a)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 7384.4129 11854.5424 16427.4469 21133.5082 25931.2855
FEM∗ 7382.5338 11854.2819 16438.2035 21170.1886 26013.7379

2 0.01 Exact 5374.8958 10198.6873 15134.0131 20100.9780 25081.0046
FEM 5375.3828 10204.5966 15155.2176 20152.2975 25182.2201

3 0.005 Exact 5074.8956 10037.9356 15025.4133 20019.1472 25015.3982
FEM 5075.6554 10044.3910 15047.4403 20071.5715 25118.0086

4 0.0025 Exact 5016.8720 10008.5200 15005.7524 20004.3882 25003.5861
FEM 5017.6806 10015.0732 15027.9268 20057.0107 25106.4467

5 0.001 Exact 5002.5736 10001.3500 15000.9698 20000.8006 25000.7158
FEM 5003.3940 10007.9269 15023.1800 20053.4711 25103.6372

Uniform shaft∗∗ 5000.0416 10000.0832 15000.1248 20000.1664 25000.2080
#Natural frequencies obtained from presented exact method using single shaft segment (𝑃 = 1).
∗Natural frequencies obtained from finite element method using 50 shaft elements (𝑛𝑒 = 50).
∗∗The exact natural frequencies of uniform shaft obtained from formulas in the appendix.

(b)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 5966.9661 10667.3679 15490.2119 20382.6984 25312.3748
FEM∗ 5966.2987 10670.9583 15508.0439 20429.6221 25408.1553

2 0.01 Exact 5128.1859 10066.7014 15044.8782 20033.8229 25027.1676
FEM 5128.8914 10073.0559 15066.7556 20086.0475 25129.5265

3 0.005 Exact 5025.1181 10012.7167 15008.5594 20006.4959 25005.2732
FEM 5025.9195 10019.2558 15030.7127 20059.0900 25108.0980

4 0.0025 Exact 5005.6582 10002.8966 15002.0014 20001.5744 25001.3349
FEM 5006.4761 10009.4684 15024.2039 20054.2346 25104.2431

5 0.001 Exact 5005.6582 10002.8966 15002.0014 20001.5744 25001.3349
FEM 5001.7077 10007.0855 15022.6214 20053.0546 25103.3066

Uniform shaft∗∗ 5000.0416 10000.0832 15000.1248 20000.1664 25000.2080
(c)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 447.0176 7811.0650 12760.2959 17706.1543 22667.7637
FEM∗ 447.9340 7812.6640 12771.1535 17738.7421 22739.4090

2 0.01 Exact 1579.8439 7313.7896 12390.7453 17422.4856 22439.9285
FEM 1580.1051 7316.8955 12404.1570 17458.5569 22515.9715

3 0.005 Exact 2068.4024 7379.8464 12428.7547 17449.3316 22460.7130
FEM 2068.5822 7382.8417 12441.9769 17485.1338 22536.4057

4 0.0025 Exact 2290.9387 7435.7082 12461.7079 17472.7621 22478.9027
FEM 2291.0813 7438.6027 12474.7612 17508.3261 22554.2862

5 0.001 Exact 2417.9471 7473.5121 12484.2105 17488.8006 22491.3660
FEM 2418.0663 7476.3373 12497.1478 17524.2010 22566.5373

Uniform shaft∗∗ 2500.0208 7500.0624 12500.1040 17500.1456 22500.1872
(d)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 5735.5766 9980.7807 14380.7452 18967.7823 23687.7230
FEM∗ 5733.4631 9977.5119 14382.5800 18986.8702 23741.3914

2 0.01 Exact 3610.0689 8006.2117 12816.3662 17728.7711 22678.9066
FEM 3609.7962 8007.9786 12827.5397 17761.6872 22750.8551
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(d) Continued.

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

3 0.005 Exact 2969.4822 7681.4675 12610.5906 17579.4008 22561.9393
FEM 2969.4664 7683.8987 12622.8685 17613.8717 22635.9044

4 0.0025 Exact 2717.6065 7578.0625 12547.2117 17533.8559 22526.4265
FEM 2717.6603 7580.6924 12559.8220 17568.7953 22600.9996

5 0.001 Exact 2583.3737 7528.6619 12517.3057 17512.4412 22509.7535
FEM 2583.4588 7531.3848 12530.0716 17547.6000 22584.6113

Uniform shaft∗∗ 2500.0208 7500.0624 12500.1040 17500.1456 22500.1872

𝐿 𝐵

𝑥

𝑥
𝐿𝑠

𝑦

𝐴
𝑑𝑠 𝑑𝑥

𝐿󰪓

𝑑󰪓𝑜

Figure 1: The coordinate system for a P-taper conic shaft with
diameter 𝑑

ℓ
at its larger end, diameter 𝑑

𝑠
at its smaller end, and

length 𝐿 shaft = 𝐿 = 𝐿
ℓ
− 𝐿
𝑠
.

where 𝐿
ℓ
is the total length of the complete conic shaft, and

the polar moment of inertia 𝐼
𝑝
(𝑥) of the cross-sectional area

is given by

𝐼
𝑝 (𝑥) =

𝜋𝑑
4

𝑥

32
= (

𝑥

𝐿
ℓ

)

4

𝐼
𝑝,ℓ

, (3)

where 𝐼
𝑝,ℓ

is the polar moment of inertia for the cross-
sectional area at larger end of the conic shaft given by

𝐼
𝑝,ℓ

=
𝜋𝑑
4

ℓ

32
. (4)

For free vibrations, one has

𝜃 (𝑥, 𝑡) = Θ (𝑥) 𝑒
𝑗𝜔𝑡, (5)

where Θ(𝑥) denotes the amplitude of 𝜃(𝑥, 𝑡), and 𝜔 denotes
the angular natural frequency of conic shaft and 𝑗 = √−1.

Substitution of (3) and (5) into (1) gives

𝑑

𝑑𝑥
[𝑥
4 𝑑Θ (𝑥)

𝑑𝑥
] + 𝛽
2
𝑥
4
Θ (𝑥) = 0, (6)

where

𝛽
2
=

𝜌𝜔
2

𝐺
. (7)

Equation (6) is a Bessel equation with its solution composed
of the Bessel functions.

3. Displacement Function for the Conic Shaft

From [8–10], it can be found that the solution for the next
differential equation:

𝑑

𝑑𝜒
[𝜒
𝑚 𝑑𝑦

𝑑𝜒
] + 𝑐𝜒

𝑛
𝑦 = 0 (8)

is given by

𝑦 = 𝜒
]/𝛼

[𝐶
1
𝐽] (𝑧) + 𝐶

2
𝑌] (𝑧)] , (9)

where 𝐽V(𝑧) and 𝑌V(𝑧) are 1st and 2nd kind Bessel functions
of order V, and the other parameters are given by

𝛼 =
2

𝑛 − 𝑚 + 2
, (10a)

] =
1 − 𝑚

𝑛 − 𝑚 + 2
, (10b)

𝑧 = 𝜒
1/𝛼

𝛼√𝑐. (10c)

Comparing (8) with (6), one finds that

𝜒 = 𝑥, 𝑦 = Θ, 𝑚 = 4, 𝑛 = 4, 𝑐 = 𝛽
2.
(11)

Substituting (11) into (10a), (10b), and (10c), one obtains,

𝛼 = 1, (12a)

] = −
3

2
, (12b)

𝑧 = 𝜒
1/𝛼

𝛼√𝑐 = 𝑥𝛽. (13)

Substituting the last parameters into (9) and using the
relationship 𝑌V/2(𝑧) ∝ 𝐽

−V/2(𝑧) [8], one has

Θ
𝜏
(𝑧
𝜏
) = 𝛽
3/2

𝜏
𝑧
−3/2

𝜏
[𝐶
(𝜏)

1
𝐽
3/2

(𝑧
𝜏
) + 𝐶
(𝜏)

2
𝐽
−3/2

(𝑧
𝜏
)] , (14)

where

𝑧
𝜏
= 𝛽
𝜏
𝑥, (15a)

𝛽
2

𝜏
=

𝜌𝜔
2

𝜏

𝐺
. (15b)

In (14), (15a), and (15b), the subscript (or superscript) 𝜏

refers to the 𝜏th vibrating mode of the conic shaft, while 𝐶
(𝜏)

1

and 𝐶
(𝜏)

2
denote the two corresponding integration constants

determined by the associated boundary conditions of the
entire conic shaft.
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Table 3: Influence of taper ratio (𝛼 = 𝑑
ℓ
/𝐿
ℓ
) on the lowest five natural frequencies 𝜔

𝜏
(rad/sec) of the PN-taper shaft 𝐴𝐵𝐶 (cf. Figure 3 or

Figure 4(a)) with dimensions of its negative-taper part𝐵𝐶 identical to the corresponding ones of its positive-taper part𝐴𝐵, and the larger-end
diameter 𝑑

ℓ
= 0.05m and total shaft length 𝐿 shaft = 𝐿 = 4.0m kept unchanged: (a) F-F, (b) C-C, and (c) C-F (or F-C) BCs.

(a)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 5735.5766 7384.4129 9980.7807 11854.5424 14380.7452
FEM∗ 5733.4631 7382.5338 9977.5119 11854.2819 14382.5800

2 0.01 Exact 3610.0689 5374.8958 8006.2117 10198.6873 12816.3662
FEM 3609.7962 5375.3828 8007.9786 10204.5966 12827.5397

3 0.005 Exact 2969.4822 5074.8956 7681.4675 10037.9356 12610.5906
FEM 2969.4664 5075.6554 7683.8987 10044.3910 12622.8685

4 0.0025 Exact 2717.6065 5016.8720 7578.0625 10008.5200 12547.2117
FEM 2717.6603 5017.6806 7580.6924 10015.0732 12559.8220

5 0.001 Exact 2583.3737 5002.5736 7528.6619 10001.3500 12517.3057
FEM 2583.4588 5003.3940 7531.3848 10007.9269 12530.0716

Uniform shaft∗∗ 2500.0208 5000.0416 7500.0624 10000.0832 12500.1040
#Natural frequencies obtained from presented exact method using two shaft segments (𝑃 = 2).
∗Natural frequencies obtained from finite element method using 100 shaft elements (𝑛𝑒 = 100).
∗∗The exact natural frequencies of uniform shaft obtained from formulas in the appendix.

(b)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 447.0176 5966.9661 7811.0650 10667.3679 12760.2959
FEM∗ 447.9340 5966.2987 7812.6640 10670.9583 12771.1535

2 0.01 Exact 1579.8439 5128.1859 7313.7896 10066.7014 12390.7453
FEM 1580.1051 5128.8914 7316.8955 10073.0559 12404.1570

3 0.005 Exact 2068.4024 5025.1181 7379.8464 10012.7167 12428.7547
FEM 2068.5822 5025.9195 7382.8417 10019.2558 12441.9769

4 0.0025 Exact 2290.9387 5005.6582 7435.7082 10002.8966 12461.7079
FEM 2291.0813 5006.4761 7438.6027 10009.4684 12474.7612

5 0.001 Exact 2417.9471 5000.8859 7473.5121 10000.5058 12484.2105
FEM 2418.0663 5001.7077 7476.3373 10007.0855 12497.1478

Uniform shaft∗∗ 2500.0208 5000.0416 7500.0624 10000.0832 12500.1040
(c)

Case Taper ratios 𝛼 Method Natural frequencies, 𝜔
𝜏
(rad/sec)

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

1 0.02 Exact# 314.6200 5841.7915 7596.9631 10286.6906 12314.5569
FEM∗ 315.2569 5840.2785 7596.7480 10286.1690 12319.6401

2 0.01 Exact 1016.5493 4182.8341 6408.1802 8927.6668 11352.3196
FEM 1016.6576 4182.8740 6409.6737 8931.5092 11361.3636

3 0.005 Exact 1197.3804 3842.8258 6280.1632 8784.1136 11269.3945
FEM 1197.4156 3843.1091 6281.7514 8788.4149 11278.7052

4 0.0025 Exact 1237.8483 3771.2365 6256.7605 8757.6678 11254.3883
FEM 1237.8664 3771.5690 6258.3630 8762.0525 11263.7458

5 0.001 Exact 1248.1680 3753.2346 6251.0591 8751.2135 11250.7384
FEM 1248.1817 3753.5794 6252.6651 8755.6185 11260.1073

Uniform shaft∗∗ 1250.0104 3750.0312 6250.0520 8750.0728 11250.0936
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Table 4: Influence of rigid disks (each with rotary inertia 𝐽
𝑖
= 𝐽
∗
/3) or/and torsional springs (each with stiffness 𝑘̂

𝑡,𝑖
= 𝑘
∗

𝑡
/3) on the lowest

five natural frequencies of the P-taper conic shaft (cf. Figures 6 and case 2 of Table 1) with reference polar mass moment of inertia 𝐽
∗

=

5.4409436902 × 10
−3 kg-m2 and reference torsional stiffness 𝑘∗

𝑡
= 1.378230198 × 10

4Nm/rad.

Case 𝑁
𝐽

𝑁
𝑘̂𝑡

𝐽
𝑖 𝑘̂

𝑡,𝑖
Method Natural frequencies, 𝜔

𝜏
(rad/sec)

𝜔
0

#
𝜔
1

𝜔
2

𝜔
3

𝜔
4

1 3 0 1

3
𝐽
∗ 0 Exact — 2475.3743 5026.7728 10924.0242 12894.1665

FEM — 2475.4996 5027.4548 10931.3000 12904.4532

2 0 3 0 1

3
𝑘
∗

𝑡

Exact 1684.6341 5932.6585 10654.8699 15394.2260 20355.8291
FEM 1684.7292 5933.5926 10661.9274 15416.7018 20409.3205

3 3 3 1

3
𝐽
∗ 1

3
𝑘
∗

𝑡

Exact 1168.6767 2853.7625 5191.2778 10939.0990 12923.7224
FEM 1168.6972 2853.8492 5191.9785 10946.3775 12934.0271

Bare F-F P-taper shaft∗ Exact — 5374.8958 10198.6873 15134.0131 20100.9780
∗The exact values for the lowest four natural frequencies of the “bare” free-free P-taper shaft taken from case 2 of Table 2(a).
#Natural frequencies of quasi rigid-body modes.

Table 5: Influence of rigid disks (each with rotary inertia 𝐽
𝑖
= 𝐽
∗
/5) or/and torsional springs (each with stiffness 𝑘̂

𝑡,𝑖
= 𝑘
∗

𝑡
/5) on the lowest

five natural frequencies of the free-free PN-taper conic shaft (cf. Figure 8 and case 2 of Table 1) with reference polar mass moment of inertia
𝐽
∗
= 1.0881887380 × 10

−2 kg-m2and reference stiffness of torsional springs 𝑘∗
𝑡
= 6.891150988 × 10

3 N-m/rad.

Case 𝑁
𝐽

𝑁
𝑘̂𝑡

𝐽
𝑖 𝑘̂

𝑡,𝑖
Method Natural frequencies, 𝜔

𝜏
(rad/sec)

𝜔
0

#
𝜔
1

𝜔
2

𝜔
3

𝜔
4

1 5 0 1

5
𝐽
∗ 0 Exact — 1688.3916 2388.5998 3733.3469 5098.3850

FEM — 1688.3959 2388.7487 3733.5282 5099.2798

2 0 5 0 1

5
𝑘
∗

𝑡

Exact 862.2360 3832.1008 5552.7121 8137.9636 10337.4211
FEM 862.2638 3831.8884 5553.3272 8139.9447 10343.6571

3 5 5 1

5
𝐽
∗ 1

5
𝑘
∗

𝑡

Exact 587.7894 1836.1973 2489.3670 3791.2496 5136.1437
FEM 587.7957 1836.1865 2489.5046 3791.4298 5137.0417

Bare F-F PN-taper shaft∗ Exact — 3610.0689 5374.8958 8006.2117 10198.6873
∗The exact values for the lowest four natural frequencies of the “bare” free-free PN-taper shaft taken from case 2 of Table 3(a).
#Natural frequencies of quasi rigid-body modes.

4. Boundary Conditions

Figure 2 shows a free-free P-taper conic shaft composed of 𝑝
conic shaft segments (denoted by (1), (2), . . . , (𝑖), . . . , (𝑝)) and
carrying one rigid disk with polar mass moment of inertia
𝐽
𝑖
and one torsional spring with stiffness 𝑘̂

𝑡,𝑖
at each node 𝑖

(𝑖 = 0, 1, 2, . . . , 𝑝). The compatibility of twisting angles and
equilibrium of torques at the arbitrary intermediate node 𝑖

located at 𝑥 = 𝑥
𝑖
require that

Θ
𝜏,𝑖

(𝑧
𝜏,𝑖
) = Θ

𝜏,𝑖+1
(𝑧
𝜏,𝑖
) , (16a)

𝐺𝐼
𝑝,𝑖

Θ
󸀠

𝜏,𝑖
(𝑧
𝜏,𝑖
) = 𝐺𝐼

𝑝,𝑖
Θ
󸀠

𝜏,𝑖+1
(𝑧
𝜏,𝑖
) + (𝜔

2

𝜏
𝐽
𝑖
− 𝑘̂
𝑡,𝑖
)Θ
𝜏,𝑖

(𝑧
𝜏,𝑖
) ,

(16b)

where

𝑧
𝜏,𝑖

= 𝛽
𝜏
𝑥
𝑖
, (17a)

𝐼
𝑝,𝑖

= (
𝑥
𝑖

𝐿
ℓ

)

4

𝐼
𝑝,ℓ
. (17b)

Theboundary condition for the left end of the entire conic
shaft is given by

𝐺𝐼
𝑝,0

Θ
󸀠

𝜏,1
(𝑧
𝜏,0

) + (𝜔
2

𝜏
𝐽
0
− 𝑘̂
𝑡,0
)Θ
𝜏,1

(𝑧
𝜏,0

) = 0, (18)

where

𝑧
𝜏,0

= 𝛽
𝜏
𝑥
0
= 𝛽
𝜏
𝐿
𝑠
, (19a)

𝐼
𝑝,0

= (
𝑥
0

𝐿
ℓ

)

4

𝐼
𝑝,ℓ

= (
𝐿
𝑠

𝐿
ℓ

)

4

𝐼
𝑝,ℓ
. (19b)

Similarly, the boundary condition for the right end of the
entire conic shaft is

𝐺𝐼
𝑝,𝑝

Θ
󸀠

𝜏,𝑝
(𝑧
𝜏,𝑝

) − (𝜔
2

𝜏
𝐽
𝑝
− 𝑘̂
𝑡,𝑝

)Θ
𝜏,𝑝

(𝑧
𝜏,𝑝

) = 0, (20)

where

𝑧
𝜏,𝑝

= 𝛽
𝜏
𝑥
𝑝
= 𝛽
𝜏
𝐿
ℓ
, (21a)

𝐼
𝑝,𝑝

= (
𝑥
𝑝

𝐿
ℓ

)

4

𝐼
𝑝,ℓ

= (
𝐿
ℓ

𝐿
ℓ

)

4

𝐼
𝑝,ℓ

= 𝐼
𝑝,ℓ
. (21b)

Equations (18) and (20) are the nonclassical boundary condi-
tions.The general classical boundary conditions (without any
attachments at each end of the shaft) are given by

Θ
󸀠

𝜏,1
(𝑧
𝜏,0

) = 0, (22a)

Θ
󸀠

𝜏,𝑝
(𝑧
𝜏,0

) = 0 (for F-F shaft) , (22b)
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𝑥0 = 𝐿𝑠

𝑥𝑖−1

𝑥𝑖+1

𝑥𝑖

𝑥𝑝 = 𝐿󰪓

𝐿

𝑥

𝑦

𝑜

𝐽𝑖
𝐽0 𝐽𝑖−1 𝐽𝑖+1

𝐽𝑝

(1) (𝑖) (𝑖 + 1) (𝑝)

𝑘̂𝑡, 0
𝑘̂𝑡, 𝑖−1

𝑘̂𝑡, 𝑖+1𝑘̂𝑡, 𝑖

𝑘̂𝑡, 𝑝

Figure 2: A free-free P-taper conic shaft composed of 𝑝 conic shaft segments (denoted by (1), (2), . . . , (𝑖), . . . , (𝑝)) and carrying one rigid disk
with polar mass moment of inertia 𝐽

𝑖
and one torsional spring with stiffness 𝑘̂

𝑡,𝑖
at each node 𝑖 (𝑖 = 0, 1, 2, . . . , 𝑝).

Θ
𝜏,1

(𝑧
𝜏,0

) = 0, (23a)

Θ
𝜏,𝑝

(𝑧
𝜏,0

) = 0 (for C-C shaft) , (23b)

Θ
𝜏,1

(𝑧
𝜏,0

) = 0, (24a)

Θ
󸀠

𝜏,𝑝
(𝑧
𝜏,0

) = 0 (for C-F shaft) , (24b)

Θ
󸀠

𝜏,1
(𝑧
𝜏,0

) = 0, (25a)

Θ
𝜏,𝑝

(𝑧
𝜏,0

) = 0 (for F-C shaft) . (25b)

In (22a)–(25b), the capital letters F and C denote the free and
clamped ends of the entire shaft, respectively. Besides, the
symbols Θ

𝜏,1
(𝑧
𝜏,0

) and Θ
󸀠

𝜏,1
(𝑧
𝜏,0

) denote the twisting angle
and its first derivative of the first shaft segment at (left end)
node 𝑜 (cf. Figure 2), respectively. Similarly, Θ

𝜏,𝑝
(𝑧
𝜏,𝑝

) and
Θ
󸀠

𝜏,𝑝
(𝑧
𝜏,𝑝

) denote those of the final (𝑝th) shaft segment at
(right end) node 𝑝, respectively.

5. Determination of Exact Natural Frequencies
and Mode Shapes

From (14), the displacement function of the 𝑖th conic shaft
segment takes the form

Θ
𝜏,𝑖

(𝑧
𝜏,𝑖
) = 𝛽
3/2

𝜏
𝑧
−3/2

𝜏,𝑖
[𝐶
(𝜏)

1,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) + 𝐶
(𝜏)

2,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
)] .
(26a)

Therefore,

Θ
󸀠

𝜏,𝑖
(𝑧
𝜏,𝑖
)

=
𝑑Θ
𝜏,𝑖

(𝑧
𝜏,𝑖
)

𝑑𝑥

= 𝛽
5/2

𝜏
𝑧
−3/2

𝜏,𝑖
{−

3

2
𝑧
−1

𝜏,𝑖
[𝐶
(𝜏)

1,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) + 𝐶
(𝜏)

2,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
)]

+ [𝐶
(𝜏)

1,𝑖
𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
) + 𝐶
(𝜏)

2,𝑖
𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)] } ,

(26b)

in which [11]

𝐽
3/2 (𝑧) = (

2

𝜋𝑧
)
1/2

(− cos 𝑧 +
sin 𝑧

𝑧
) , (27)

𝐽
−3/2 (𝑧) = (

2

𝜋𝑧
)
1/2

(− sin 𝑧 −
cos 𝑧
𝑧

) , (28)

𝐽
󸀠

V (𝑧) =
𝑑𝐽V

𝑑𝑧
(V =

3

2
or −3

2
) . (29)

Now, the exact natural frequencies and the associated mode
shapes of a conic shaft carrying arbitrary number of con-
centrated elements (including rigid disks and/or torsional
springs) with various boundary conditions can be deter-
mined as follows.

5.1. Free-Free P-Taper Conic Shaft. For the free-free P-taper
conic shaft shown in Figure 2, the substitutions of (26a) and
(26b) into (18) lead to

𝐶
(𝜏)

1,1
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,0
+ 𝑓
𝜏,0

] 𝐽
3/2

(𝑧
𝜏,0

) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,0

)}

+ 𝐶
(𝜏)

2,1
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,0
+ 𝑓
𝜏,0

] 𝐽
−3/2

(𝑧
𝜏,0

) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,0

)} = 0,
(30)

where

𝑓
𝜏,0

=
(𝜔
2

𝜏
𝐽
0
− 𝑘̂
𝑡,0
)

(𝐺𝐼
𝑝,0

)
. (31)
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Similarly, substituting (26a) and (26b) into (16a) and (16b),
respectively, one obtains

𝐶
(𝜏)

1,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) + 𝐶
(𝜏)

2,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
)

− 𝐶
(𝜏)

1,𝑖+1
𝐽
3/2

(𝑧
𝜏,𝑖
) − 𝐶
(𝜏)

2,𝑖+1
𝐽
−3/2

(𝑧
𝜏,𝑖
) = 0,

(32)

𝐶
(𝜏)

1,𝑖
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑖
− 𝑓
𝜏,𝑖
] 𝐽
3/2

(𝑧
𝜏,𝑖
) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
)}

+ 𝐶
(𝜏)

2,𝑖
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑖
− 𝑓
𝜏,𝑖
] 𝐽
−3/2

(𝑧
𝜏,𝑖
) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)}

+ 𝐶
(𝜏)

1,𝑖+1
𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
)]

+ 𝐶
(𝜏)

2,𝑖+1
𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)] = 0,

(33)

where

𝑓
𝜏,𝑖

=
(𝜔
2

𝜏
𝐽
𝑖
− 𝑘̂
𝑡,𝑖
)

(𝐺𝐼
𝑝,𝑖

)
. (34)

Finally, the substitution of (26a) and (26b) into (20) leads to

𝐶
(𝜏)

1,𝑝
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑝
− 𝑓
𝜏,𝑝

] 𝐽
3/2

(𝑧
𝜏,𝑝

) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,𝑝

)}

+𝐶
(𝜏)

2,𝑝
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑝
− 𝑓
𝜏,𝑝

] 𝐽
−3/2

(𝑧
𝜏,𝑝

) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,𝑝

)} = 0,
(35)

where

𝑓
𝜏,𝑝

=
(𝜔
2

𝜏
𝐽
𝑝
− 𝑘̂
𝑡,𝑝

)

(𝐺𝐼
𝑝,𝑝

)
. (36)

Based on (30), (32), (33), and (35), one obtains a characteristic
equation:

[𝐻]𝑛×𝑛{𝐶}𝑛×1 = 0, (37)

where {𝐶}
𝑛×1

is a 𝑛 × 1 column vector composed of 𝑛 = 2𝑝

integration constants for the 𝜏th mode shape of the 𝑝th rod
segments, 𝐶(𝜏)

1,𝑖
and 𝐶

(𝜏)

2,𝑖
(𝑖 = 1, . . . , 𝑖, . . . , 𝑝), that is,

{𝐶}𝑛×1 = [ 𝐶
(𝜏)

1,1
𝐶
(𝜏)

2,1
⋅ ⋅ ⋅ 𝐶

(𝜏)

1,𝑖
𝐶
(𝜏)

2,𝑖
⋅ ⋅ ⋅ 𝐶

(𝜏)

1,𝑝
𝐶
(𝜏)

2,𝑝
]
𝑇

,
(38)

and [𝐻]
𝑛×𝑛

is a 𝑛 × 𝑛 (with 𝑛 = 2𝑝) square matrix with its
nonzero coefficients given by

𝐻
1,1

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,0
+ 𝑓
𝜏,0

] 𝐽
3/2

(𝑧
𝜏,0

) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,0

) , (39a)

𝐻
1,2

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,0
+ 𝑓
𝜏,0

] 𝐽
−3/2

(𝑧
𝜏,0

) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,0

) ,

(39b)

𝐻
2𝑖,2(𝑖−1)+1

= 𝐽
3/2

(𝑧
𝜏,𝑖
) , (40a)

𝐻
2𝑖,2(𝑖−1)+2

= 𝐽
−3/2

(𝑧
𝜏,𝑖
) , (40b)

𝐻
2𝑖,2(𝑖−1)+3

= −𝐽
3/2

(𝑧
𝜏,𝑖
) , (40c)

𝐻
2𝑖,2(𝑖−1)+4

= −𝐽
−3/2

(𝑧
𝜏,𝑖
) , (40d)

𝐻
2𝑖+1,2(𝑖−1)+1

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑖
− 𝑓
𝜏,𝑖
] 𝐽
3/2

(𝑧
𝜏,𝑖
) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
) ,

(41a)

𝐻
2𝑖+1,2(𝑖−1)+2

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑖
− 𝑓
𝜏,𝑖
] 𝐽
−3/2

(𝑧
𝜏,𝑖
) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
) ,

(41b)

𝐻
2𝑖+1,2(𝑖−1)+3

= 𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
)] , (41c)

𝐻
2𝑖+1,2(𝑖−1)+4

= 𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)] , (41d)

𝐻
𝑛,𝑛−1

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑝
− 𝑓
𝜏,𝑝

] 𝐽
3/2

(𝑧
𝜏,𝑝

) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,𝑝

) ,
(42a)

𝐻
𝑛,𝑛

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑝
− 𝑓
𝜏,𝑝

] 𝐽
−3/2

(𝑧
𝜏,𝑝

) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,𝑝

) .
(42b)

For the case of a P-taper shaft consisting of one shaft segment
(i.e., 𝑝 = 1), only (39a), (39b), (42a), and (42b) are required
for the determination of natural frequencies and associated
mode shapes, and (40a)–(40d) and (41a)–(41d) are further
required for the case of total number of shaft segments being
greater than 1 (i.e., 𝑝 > 1) with 𝑖 being less than or equal to
𝑝 − 1 (i.e., 𝑖 ≤ (𝑝 − 1)).

Nontrivial solution of (37) requires that

|𝐻| = 0. (43)

Equation (43) is the frequency equation for the free-free
P-taper shaft with each node 𝑖 carrying one rigid disk 𝐽

𝑖

and one torsional spring 𝑘̂
𝑡,𝑖

(𝑖 = 0, 1, 2, . . . , 𝑝). From
(43), one may find the natural frequencies of the vibrating
system, 𝜔

𝜏
(𝜏 = 1, 2, 3, . . .), and then, with respect to

each natural frequency 𝜔
𝜏
, one may determine the values

of 𝐶
(𝜏)

1,𝑖
and 𝐶

(𝜏)

2,𝑖
(𝑖 = 1, 2, . . . , 𝑝) from (37). Finally, the

substitution of the last integration constants into (26a) will
determine the corresponding natural mode shape of the
entire conic shaft Θ

𝜏
(𝑥). Since the values of rotary inertia 𝐽

𝑖

and rotational stiffness 𝑘̂
𝑡,𝑖
are arbitrary including zero, the

foregoing formulation is available for arbitrary cases of the
free-free loaded conic shaft including the bare one.

For the special case of a free-free conic shaft consisting of
only one shaft segment (i.e., 𝑝 = 1), (37) reduces to

[𝐻]2×2{𝐶}2×1 = 0, (44)
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where

{𝐶}2×1 = [𝐶
(𝜏)

1,1
𝐶
(𝜏)

2,1
]
𝑇

, (45a)

[𝐻]2×2 = [
𝐻
1,1

𝐻
1,2

𝐻
2,1

𝐻
2,2

] . (45b)

In (45b), the coefficients 𝐻
1,1

and 𝐻
1,2

are the same as those
given by (39a) and (39b), while those 𝐻

2,1
and 𝐻

2,2
may be

obtained from (42a) and (42b) by letting 𝑝 = 1 and 𝑛 = 2𝑝 =

2. The results are

𝐻
2,1

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,1
− 𝑓
𝜏,1

] 𝐽
3/2

(𝑧
𝜏,1

) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,1

) , (46a)

𝐻
2,2

= [−
3

2
𝛽
𝜏
𝑧
−1

𝜏,1
− 𝑓
𝜏,1

] 𝐽
−3/2

(𝑧
𝜏,1

) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,1

) ,
(46b)

where

𝑧
𝜏,1

= 𝛽
𝜏
𝑥
𝑝
= 𝛽
𝜏
𝐿
ℓ
. (47)

5.2. Clamped-Clamped P-Taper Conic Shaft. If both left and
right ends of the P-taper conic shaft shown in Figure 2 are
clamped, then the effects of all concentrated elements at the
last two ends are nil. In such a case, the foregoing nonclassical
boundary conditions of the conic shaft are the same as the
C-C classical ones given by (23a) and (23b). Substitution of
(26a) into (23a) and (23b), respectively, yields

𝐶
(𝜏)

1,1
𝐽
3/2

(𝑧
𝜏,0

) + 𝐶
(𝜏)

2,1
𝐽
−3/2

(𝑧
𝜏,0

) = 0, (48a)

𝐶
(𝜏)

1,𝑝
𝐽
3/2

(𝑧
𝜏,𝑝

) + 𝐶
(𝜏)

2,𝑝
𝐽
−3/2

(𝑧
𝜏,𝑝

) = 0. (48b)

Therefore, the coefficients relating to the boundary con-
ditions, given by (39a), (39b), (42a), and (42b), must be,
respectively, replaced by

𝐻
1,1

= 𝐽
3/2

(𝑧
𝜏,0

) , (49a)

𝐻
1,2

= 𝐽
−3/2

(𝑧
𝜏,0

) , (49b)

𝐻
𝑛,𝑛−1

= 𝐽
3/2

(𝑧
𝜏,𝑝

) , (50a)

𝐻
𝑛,𝑛

= 𝐽
−3/2

(𝑧
𝜏,𝑝

) . (50b)

5.3. Clamped-Free (or Free-Clamped) P-Taper Conic Shaft.
The formulation presented in Section 5.1 is also available for
the free vibration analysis of the clamped-free (C-F) and free-
clamped (F-C) P-taper conic shaft: the BCs given by (49a),
(49b), (42a), and (42b) are required for a C-F shaft, and

the BCs given by (39a), (39b), (50a), and (50b) are required
for a F-C shaft. It is noted that, for the classical boundary
conditions, 𝐽

0
= 𝑘̂
𝑡,0

= 0 and 𝐽
𝑝
= 𝑘̂
𝑡,𝑝

= 0.

6. Formulation for a PN-Taper Conic Shaft

Figure 3 shows the coordinate system of a conic shaft com-
posed of a shaft segment 𝐴𝐵 with positive taper and a shaft
segment 𝐵𝐶 with negative taper, which is called PN-taper
conic shaft in this paper.The key parameters for the positive-
taper part 𝐴𝐵, 𝑑

𝑠
, 𝑑
ℓ
, 𝐿
𝑠
and 𝐿

ℓ
, are the same as those

shown in Figures 1 or 2 for the P-taper conic shaft, and
the corresponding ones of the negative-taper part 𝐵𝐶 are
represented by 𝑑

𝑠
, 𝑑
ℓ
, 𝐿
𝑠
, and 𝐿

ℓ
, respectively. Since the origin

𝑜 for the coordinate system of the negative-taper part 𝐵𝐶 is
located at 𝑥 = 𝐿

ℓ
+ 𝐿
ℓ
, the relationship between the axial

coordinates 𝑥 and 𝑥 is given by

𝑥 = (𝐿
ℓ
+ 𝐿
ℓ
) − 𝑥 (for 𝐿

ℓ
≤ 𝑥 ≤ (𝐿

ℓ
+ 𝐿
ℓ
− 𝐿
𝑠
)) . (51)

If the intermediate node 𝑖 is located at the junction of positive-
taper part 𝐴𝐵 and negative-taper part 𝐵𝐶 of the PN-taper
conic shaft 𝐴𝐵𝐶, that is, 𝑥 = 𝑥

𝑖
= 𝐿
ℓ
, then (16a), (16b), (33),

(41c), and (41d) must be, respectively, replaced by

Θ
𝜏,𝑖

(𝑧
𝜏,𝑖
) = Θ

𝜏,𝑖+1
(𝑧
𝜏,𝑖
) , (52a)

𝐺𝐼
𝑝,𝑖

Θ
󸀠

𝜏,𝑖
(𝑧
𝜏,𝑖
) = − 𝐺𝐼

𝑝,𝑖+1
Θ
󸀠

𝜏,𝑖+1
(𝑧
𝜏,𝑖
)

+ (𝜔
2

𝜏
𝐽
𝑖
− 𝑘̂
𝑡,𝑖
)Θ
𝜏,𝑖

(𝑧
𝜏,𝑖
) ,

(52b)

𝐶
(𝜏)

1,𝑖
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑖
− 𝑓
𝜏,𝑖
] 𝐽
3/2

(𝑧
𝜏,𝑖
) + 𝛽
𝜏
𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
)}

+ 𝐶
(𝜏)

2,𝑖
{[−

3

2
𝛽
𝜏
𝑧
−1

𝜏,𝑖
− 𝑓
𝜏,𝑖
] 𝐽
−3/2

(𝑧
𝜏,𝑖
) + 𝛽
𝜏
𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)}

− 𝐶
(𝜏)

1,𝑖+1
𝑅
𝐼
𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
)]

− 𝐶
(𝜏)

2,𝑖+1
𝑅
𝐼
𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)] = 0,

(53)

𝐻
2𝑖+1,2(𝑖−1)+3

= −𝑅
𝐼
𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

3/2
(𝑧
𝜏,𝑖
)] ,

(54a)

𝐻
2𝑖+1,2(𝑖−1)+4

= −𝑅
𝐼
𝛽
𝜏
[
3

2
𝑧
−1

𝜏,𝑖
𝐽
−3/2

(𝑧
𝜏,𝑖
) − 𝐽
󸀠

−3/2
(𝑧
𝜏,𝑖
)] ,
(54b)
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where

𝑥
𝑖
= (𝐿
1
+ 𝐿
1
) − 𝑥
𝑖
, (55a)

𝑧
𝜏,𝑖

= 𝛽
𝜏
𝑥
𝑖
, (55b)

𝑧
𝜏,𝑖

= 𝛽
𝜏
𝑥
𝑖
, (55c)

𝐼
𝑝,𝑖

= (
𝑥
𝑖

𝐿
ℓ

)

4

𝐼
𝑝,ℓ

, (55d)

𝐼
𝑝,𝑖+1

= (
𝑥
𝑖

𝐿
ℓ

)

4

𝐼
𝑝,ℓ
, (55e)

𝑅
𝐼
=

𝐼
𝑝,𝑖+1

𝐼
𝑝,𝑖

. (55f)

Furthermore, if the intermediate node 𝑖 is located at the
negative-taper part 𝐵𝐶 of the PN-taper conic shaft𝐴𝐵𝐶, that
is, 𝑥 = 𝑥

𝑖
> 𝐿
ℓ
, then (34) and (36) must be, respectively,

replaced by

𝑓
𝜏,𝑖

=
− (𝜔
2

𝜏
𝐽
𝑖
− 𝑘̂
𝑡,𝑖
)

(𝐺𝐼
𝑝,𝑖

)
, (56)

𝑓
𝜏,𝑝

=
− (𝜔
2

𝜏
𝐽
𝑝
− 𝑘̂
𝑡,𝑝

)

(𝐺𝐼
𝑝,𝑝

)
. (57)

The negative signs (−) in the right hand sides of (52b), (56),
and (57) are due to the fact that the sign for the first derivative
of the negative-taper part𝐵𝐶 of the PN-taper shaft is opposite
to that of the positive-taper part 𝐴𝐵 (cf. Figure 3), that is,
𝑑/𝑑𝑥 = −𝑑/𝑑𝑥 according to (51).

It is noted that the formulation for the P-taper conic shaft
presented in the last section is available for the positive-taper
part𝐴𝐵 of the current PN-taper conic shaft𝐴𝐵𝐶, and so is for
the negative-taper part𝐵𝐶, if one obtains the axial coordinate
𝑥 from (51) and sets

𝑥 = 𝑥, (58a)

𝑑
𝑠
= 𝑑
𝑠
, (58b)

𝑑
ℓ
= 𝑑
ℓ
, (58c)

𝐿
𝑠
= 𝐿
𝑠
, (58d)

𝐿
ℓ
= 𝐿
ℓ

(58e)

for the intermediate node 𝑖 located in the negative-taper part
𝐵𝐶, that is, for the case of 𝐿

ℓ
< 𝑥 = 𝑥

𝑖
≤ (𝐿
ℓ
+ 𝐿
ℓ
− 𝐿
𝑠
).

7. Free Torsional Vibration Analysis of
a Conic Shaft by FEM

In order to use the conventional FEM to tackle the examined
problem, the conic shaft such as that shown in Figure 3 must
be replaced by a stepped one composed of 𝑛

𝑒
uniform circular

shaft elements shown in Figure 4(a). The average diameter
of the 𝑗th uniform shaft segment, 𝑑

𝑗
, is determined in the

following.
From Figure 4(b), one sees that the diameters for the

cross-sections of the original conic shaft located at the two
ends of the 𝑗th uniform rod element, 𝑑

𝑘
and 𝑑

𝑘+1
, are given

by

𝑑
𝑗
= (

𝑥
𝑗

𝐿
ℓ

)𝑑
ℓ
, (59a)

𝑑
𝑗+1

= (
𝑥
𝑗+1

𝐿
ℓ

)𝑑
ℓ
, (59b)

Based on the requirement that the mass of the 𝑗th uniform
shaft element (with average diameter 𝑑

𝑗
) is equal to that of its

original 𝑗th conic shaft element, one obtains

𝜌(
𝜋𝑑
2

𝑗

4
) ℓ
𝑗
=

1

3

𝜌𝜋 (𝑑
2

𝑗+1
𝑥
𝑗+1

− 𝑑
2

𝑗
𝑥
𝑗
)

4
. (60)

From the last expression, one obtains average diameter of the
𝑗th uniform shaft element

𝑑
𝑗
= √

(𝑑
2

𝑗+1
𝑥
𝑗+1

− 𝑑
2

𝑗
𝑥
𝑗
)

(3ℓ
𝑗
)

, (61)

where

ℓ
𝑗
= Δ𝑥
𝑗
=

𝐿 shaft
𝑛
𝑒

. (62)

Therefore, the average polar moment of inertia for the cross-
sectional area of the 𝑗th uniform shaft element is given by

𝐼
𝑝,𝑗

=
𝜋𝑑
4

𝑗

32
, (63)

and the corresponding polar massmoment of inertia 𝐽
𝑗
of the

𝑗th uniform shaft element is determined by

𝐽
𝑗
= 𝜌ℓ
𝑗
𝐼
𝑝,𝑗
. (64)

Equations (59a)–(61) are for the case of the 𝑗th shaft element
being located in the positive-taper part 𝐴𝐵 of the PN-taper
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𝐿󰪓

𝐿𝑠

𝑑𝑥𝑑󰪓
𝑑𝑠

𝐿󰪓

𝐿 𝐿

𝑂
o

𝐴

𝑑𝑠 𝑑𝑥 𝑑󰪓

𝐵

𝐶

𝑥 𝑥 = (𝐿󰪓 + 𝐿󰪓) − 𝑥
𝐿𝑠

𝑦

𝑥

Figure 3: The coordinate system for PN-taper conic shaft (𝐴𝐵𝐶) composed of both a positive-taper part 𝐴𝐵 and a negative-taper part 𝐵𝐶.

𝑗 𝑗 + 1 𝐵

𝑦

o 𝐴 𝑑𝑗

𝑛𝑒 𝑛𝑒 + 1

𝐶 𝑥

1 2

(a)

𝐿

𝑗 𝑗 + 1
𝐵

𝑥
𝑑󰪓𝑑𝑗 𝑑𝑗 𝑑𝑗+1

1 2

𝑦

𝑑𝑠

Δ𝑥𝑗

𝐴

𝑥1 = 𝐿𝑠

𝑥𝑗+1

𝑥𝑗

𝑜

𝑥𝑛𝑒+1 = 𝐿󰪓

(b)

Figure 4: (a)The PN-taper conic shaft (𝐴𝐵𝐶) is replaced by 𝑛
𝑒
uniform circular shaft elements. (b)The average diameter 𝑑

𝑗
(𝑗 = 1, 2, . . . , 𝑛

𝑒
)

for the 𝑗th uniform circular shaft element in the positive-taper part 𝐴𝐵 is determined by 𝑑
𝑗
= √(𝑑2

𝑗+1
𝑥
𝑗+1

− 𝑑2
𝑗
𝑥
𝑗
)/(3Δ𝑥

𝑗
).

conic shaft 𝐴𝐵𝐶. If the 𝑗th shaft element is located in the
negative-taper part 𝐵𝐶, then (59a)–(61) must be, respectively,
replaced by

𝑑
𝑗
= (

𝑥
𝑗

𝐿
ℓ

)𝑑
ℓ
, (59a)󸀠

𝑑
𝑗+1

= (
𝑥
𝑗+1

𝐿
ℓ

)𝑑
ℓ
, (59b)󸀠

𝜌(
𝜋𝑑
2

𝑗

4
) ℓ
𝑗
=

1

3

𝜌𝜋 (𝑑
2

𝑗
𝑥
𝑗
− 𝑑
2

𝑗+1
𝑥
𝑗+1

)

4
, (60)

󸀠

𝑑
𝑗
= √

(𝑑
2

𝑗
𝑥
𝑗
− 𝑑
2

𝑗+1
𝑥
𝑗+1

)

(3ℓ
𝑗
)

. (61)
󸀠

In the last expressions, the values of 𝑥
𝑗
and 𝑥

𝑗+1
are deter-

mined by (51).

Based on the foregoing information for the 𝑗th uniform
rod element (𝑗 = 1, 2, 3, . . . , 𝑛

𝑒
) and shear modulus 𝐺 of the

shaft material, one may obtain the mass matrix and stiffness
matrix of each uniform shaft element from [12]:

[𝑚]𝑗 = 𝐽
𝑗

[
[
[

[

1

3

1

6

1

6

1

3

]
]
]

]

, (65a)

[𝑘]𝑗 = (
𝐺𝐼
𝑝,𝑗

ℓ
𝑗

)[
1 −1

−1 1
] . (65b)

Assembly of the elemental mass and stiffness matrices
for each of the uniform shaft elements yields the overall
mass matrix [𝑚] and overall stiffness matrix [𝑘] of the
entire conic shaft. If there exist a rigid disk with rotary
inertia 𝐽

𝑗
and a torsional spring with stiffness 𝑘̂

𝑡,𝑗
at 𝑥 =

𝑥
𝑗
, then 𝐽

𝑗
and 𝑘̂

𝑡,𝑗
must be added to the 𝑗th diagonal

coefficient of the overall mass matrix [𝑚] and that of the
overall stiffness matrix [𝑘], respectively. Finally, imposing
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the specified boundary conditions of the entire conic shaft
and solving the resulting characteristic equation, one will
determine the natural frequencies and the corresponding
mode shapes of the entire conic shaft.

8. Numerical Results and Discussions

Except Tables 2 and 3, all numerical results for the P-taper
conic shaft (cf. Figures 1 or 2) in this paper are based on
the following data (cf. case 2 of Table 1): mass density 𝜌 =

7850 kg/m3, Young’s modulus 𝐸 = 2.068 × 1011N/m2, shear
modulus 𝐺 = 𝐸/[2(1 + V)] = 0.7953846 × 1011N/m2, Poison’s
ratio V = 0.3, smaller-end diameter 𝑑

𝑠
= 0.03m, larger-

end diameter 𝑑
ℓ

= 0.05m, and distance from origin 𝑜 to
the smaller end 𝐿

𝑠
= 3.0m and that to the larger end

𝐿
ℓ

= 5.0m. The parameters for the negative-taper part 𝐵𝐶
of the PN-taper shaft 𝐴𝐵𝐶 (cf. Figure 3) are the same as the
corresponding ones of positive-taper part𝐴𝐵, that is, 𝑑

𝑠
= 𝑑
𝑠
,

𝑑
ℓ
= 𝑑
ℓ
,𝐿
𝑠
= 𝐿
𝑠
, and𝐿

ℓ
= 𝐿
ℓ
. For convenience, two reference

parameters are introduced:

𝐽
∗
= 𝜌𝐼
𝑃
𝐿 shaft , (66a)

𝑘
∗

𝑡
=

𝐺𝐼
𝑃

𝐿 shaft
, (66b)

where 𝐽∗ denotes the reference polar mass moment of inertia
for rigid disks and 𝑘

∗

𝑡
denotes the reference stiffness for

torsional springs, 𝐿 shaft denotes the length of the entire shaft
and is given by 𝐿 shaft = 𝐿

ℓ
− 𝐿
𝑠
for the P-taper shaft and

𝐿 shaft = (𝐿
ℓ
+ 𝐿
ℓ
) − (𝐿

𝑠
+ 𝐿
𝑠
) for PN-taper shaft; besides,

𝐼
𝑝
denotes the average polar moment of inertia for the entire

taper shaft, that is,

𝐼
𝑝
=

(𝐼
𝑝,𝑠

+ 𝐼
𝑝,ℓ

)

2
(for the P-taper shaft) , (67a)

𝐼
𝑝
=

(𝐼
𝑝,𝑠

+ 𝐼
𝑝,ℓ

+ 𝐼
𝑝,𝑠

+ 𝐼
𝑝,ℓ

)

4
(for the PN-taper shaft) ,

(67b)
where 𝐼

𝑝,𝑠
and 𝐼

𝑝,ℓ
denote the polar moment of inertia of

the smaller-end area and that of the larger-end area of the
P-taper shaft (or the positive-taper part 𝐴𝐵 of the PN-
taper shaft 𝐴𝐵𝐶), respectively, while 𝐼

𝑝,𝑠
and 𝐼

𝑝,ℓ
denote

the corresponding ones of the negative-taper part 𝐵𝐶 of
the PN-taper shaft. Based on the foregoing given data, one
obtains the reference polar mass moment of inertia 𝐽

∗
=

5.4409436902 × 10
−3 kg-m2 and reference stiffness 𝑘

∗

𝑡
=

1.378230198× 10
4N⋅m/rad for the P-taper shaft. Because the

dimensions of the positive-taper part 𝐴𝐵 of the PN-taper
shaft 𝐴𝐵𝐶 are identical to those of the P-taper shaft and the
dimensions of the negative-taper part 𝐵𝐶 of the PN-taper
shaft 𝐴𝐵𝐶 are the same as the positive-taper part 𝐴𝐵, it is
evident that the reference polar mass moment of inertia 𝐽

∗
=

2 × 5.4409436902 × 10−3 kg⋅m2 and reference stiffness 𝑘
∗

𝑡
=

(1.378230198 × 104)/2N⋅m/rad for the PN-taper shaft.

8.1. Influence of Taper Ratios on the P-Taper Shaft. In this
paper, the taper ratio 𝛼 of the conic shaft is defined by
𝛼 = 𝑑

ℓ
/𝐿
ℓ

= 𝑑
𝑠
/𝐿
𝑠
, and the five cases of taper ratio and

the associated parameters of the P-taper shaft are shown in
Table 1. Furthermore, the sketch for the P-taper shaft with
taper ratios 𝛼 = 0.02, 0.01, 0.005, 0.0025, and 0.001 is shown
in Figure 5 with diameter of the larger end (𝑑

ℓ
= 0.05m) and

length of the shaft (𝐿 shaft = 𝐿 = 2.0m) being kept unchanged.
The influence of taper ratio 𝛼 on the lowest five natural
frequencies of the P-taper shaft, 𝜔

𝜏
(𝜏 = 1 to 5), is shown in

Tables 2(a), 2(b), 2(c), and 2(d) for the F-F, C-C, C-F, and F-C
BCs, respectively. In which, Exact refers to the exact method
presented in this paper, FEM refers to the conventional finite
element method and the natural frequencies of the uniform
shaft listed in the final row of each table (and denoted by the
bold-faced digits) are obtained from the formulas given in the
appendix at the end of this paper. From Tables 2(a)–2(d), one
finds that:

(i) For various BCs, the lowest five natural frequencies
(𝜔
𝜏
, 𝜏 = 1 to 5) of the P-taper shaft obtained from

either exact method (using single shaft segment, i.e.,
𝑝 = 1) or FEM (using 50 shaft elements, i.e., 𝑛

𝑒
= 50)

converge to the corresponding ones of the uniform
circular shaft obtained from the exact formulas given
in the appendix, when the taper ratio 𝛼 decreases and
approaches zero.

(ii) For various BCs, the lowest five natural frequencies
of the P-taper shaft obtained from the exact method
(using 𝑝 = 1) are very close to those obtained from
FEM (using 𝑛

𝑒
= 50).

(iii) For the F-F, C-C, or F-C BCs, the lowest five natural
frequencies (𝜔

𝜏
, 𝜏 = 1 to 5) of the P-taper shaft

decrease with the decrease of taper ratio 𝛼 as one
may see from Tables 2(a), 2(b), and 2(d). This is a
reasonable result because the influence of taper ratio
𝛼 on the supporting stiffness is very small for the
above-mentioned BCs (with right-end clamped and
diameter being kept unchanged) and the polar mass
moment of inertia of the entire shaft increases with
the decrease of taper ratio 𝛼.

(iv) For the C-F BCs (cf. Table 2(c)), the lowest two to five
natural frequencies (𝜔

2
to𝜔
5
) of the P-taper shaft also

decrease with the decrease of taper ratio 𝛼. However,
the first natural frequency 𝜔

1
increases significantly

with the decrease of the taper ratio 𝛼. This is also a
reasonable result because, near the (left) clamped end,
the increasing effect of supporting stiffness is much
greater than that of polar mass moment of inertia due
to the decrease of taper ratio 𝛼.

Based on the foregoing reasonable results, it is believed
that the theory and computer programs developed for the
presented exact method should be reliable. It is worthy
of mention that because the exact solution of the current
research is determined based on the bar theory [7], the beam
element theory [12] is used in FEM.The fundamental theory
of solid element is different from the bar theory. Therefore,
the solid element is not adopted in FEM.
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𝐿 = 2

𝑑󰪓 = 0.05

𝑑𝑠 = 0.045 (𝛼 = 0.0025)
𝑑𝑠 = 0.04 (𝛼 = 0.005)
𝑑𝑠 = 0.03 (𝛼 = 0.01)
𝑑𝑠 = 0.01 (𝛼 = 0.02)

𝑑𝑠 = 0.048 (𝛼 = 0.001) Unit of dimensions: meter

Figure 5: The profiles for longitudinal cross-sections of the conic shaft with five different taper ratios (cf. Table 1).

8.2. Influence of Taper Ratios on the PN-Taper Shaft. For the
PN-taper shaft 𝐴𝐵𝐶 as shown in Figures 3 or 4(a), if the
dimensions of its positive-taper part 𝐴𝐵 are the same as
those of the P-taper shaft (cf. Figure 5) studied in the last
(Section 8.1), and the dimensions of the negative-taper part
𝐵𝐶 are identical to the corresponding ones of the positive-
taper part𝐴𝐵, then the influence of taper ratio𝛼 on the lowest
five natural frequencies (𝜔

𝜏
, 𝜏 = 1 to 5) of the PN-taper shaft

is shown in Tables 3(a), 3(b), and 3(c) for the F-F, C-C, and
C-F (or F-C) BCs, respectively. From Table 3, one sees that:

(i) for various BCs, the lowest five natural frequencies
(𝜔
𝜏
, 𝜏 = 1 to 5) of the PN-taper shaft obtained

from either exact method (using two shaft segments,
i.e., 𝑝 = 2) or FEM (using 100 shaft elements, i.e.,
𝑛
𝑒

= 100) converge to the corresponding ones of
the uniform circular shaft (cf. bold-faced digits in
the final row of each table) obtained from the exact
formulas given in the appendix, when the taper ratio
𝛼 decreases and approaches zero.

(ii) For various BCs, the lowest five natural frequencies of
the PN-taper shaft obtained from the exact method
(using 𝑝 = 2) are very close to those obtained from
FEM (using 𝑛

𝑒
= 100).

(iii) Because of symmetry in geometrical structures, the
lowest five natural frequencies of the C-F PN-taper
shaft are identical to those of F-C PN-taper shaft.

(iv) Comparing Table 3(b) with Table 2(c), one sees that
the 1st, 3rd, and 5th natural frequencies of the PN-
taper shaft (with C-C BCs) are exactly equal to the
1st, 2nd, and 3rd natural frequencies of the P-taper
shaft (with C-F BCs), respectively. This is because the
dimensions and left-end boundary conditions of the
positive-taper part 𝐴𝐵 of the PN-taper shaft 𝐴𝐵𝐶 are
the same as those of the P-taper shaft, and the 1st,
3rd, and 5th mode shapes of the former are the same
as the 1st, 2nd, and 3rd mode shapes of the latter,
respectively.

In view of the foregoing reasonable results, one believes
that the theory and computer programs developed for the
PN-taper shaft should be reliable.

8.3. A Free-Free P-Taper Shaft CarryingMultiple Concentrated
Elements. To show the ability of the presented exact method

for obtaining the exact solution of free torsional vibration
of the conic shaft carrying arbitrary concentrated elements,
the lowest five natural frequencies and some associatedmode
shapes of a free-free P-taper shaft carrying 3 identical rigid
disks and 3 identical torsional springs (cf. Figure 6) are
determined in this subsection. The taper ratio of the P-taper
shaft is 𝛼 = 𝑑

ℓ
/𝐿
ℓ
= 0.01. From case 2 of Table 1, one sees

that the pertinent parameters for the current P-taper shaft are:
diameter at smaller end 𝑑

𝑠
= 0.03m, diameter at larger end

𝑑
ℓ

= 0.05m, coordinate at smaller end 𝑥
0

= 𝐿
𝑠

= 3.0m,
and coordinate at larger end 𝑥

𝑝
= 𝐿
ℓ

= 5.0m. It is noted
that the origin of the last coordinates is at the tip of the conic
shaft (cf. Figure 6). In Figure 6(a), the P-taper shaft carries 3
identical rigid disks, where the polar mass moment of inertia
of each disk is given by 𝐽

𝑖
= 𝐽
∗
/3 (𝑖 = 0, 1, 2) with 𝐽

∗
=

5.4409436902×10
−3 kg-m2 denoting the reference polarmass

moment of inertia mentioned at the beginning of the current
section. In Figure 6(b), the P-taper shaft carries 3 identical
torsional springs, where the stiffness of each torsional spring
is given by 𝑘̂

𝑡,𝑖
= 𝑘
∗

𝑡
/3 (𝑖 = 0, 1, 2) with 𝑘

∗

𝑡
= 1.378230198 ×

10
4Nm/rad denoting the reference stiffness mentioned at

the beginning of the current section. In Figure 6(c), the 3
identical rigid disks shown in Figure 6(a) and the 3 identical
torsional springs shown in Figure 6(b) are attached to the
same P-taper shaft. The locations of the concentrated ele-
ments (rigid disks or torsional springs or both rigid disks and
torsional springs) are 𝑥

0
= 3.0m, 𝑥

1
= 4.0m, and 𝑥

2
= 5.0m,

as onemay see fromFigure 6. For convenience, in Table 4, the
loaded P-taper shaft shown in Figures 6(a), 6(b), and 6(c) are
called cases 1, 2, and 3, respectively. Besides, the total number
of rigid disks is denoted by 𝑁

𝐽
and that of torsional springs

by𝑁
𝑘̂
𝑡

in the same table.
Comparing with the lowest four natural frequencies

of the bare free-free P-taper shaft (without carrying any
concentrated elements) given by case 2 of Table 2(a) and
listed in the final row of Table 4 (denoted by the bold-faced
digits), one sees that the 3 identical rigid disks, each with
𝐽
𝑖
= 𝐽
∗
/3 (𝑖 = 0, 1, 2) as shown in Figure 6(a), reduce the

lowest four natural frequencies of the P-taper shaft (cf. case 1
in Table 4). On the contrary, the 3 identical torsional springs,
each with 𝑘̂

𝑡,𝑖
= 𝑘
∗

𝑡
/3 (𝑖 = 0, 1, 2) as shown in Figure 6(b),

raise the lowest four natural frequencies of the P-taper shaft
(cf. case 2 in Table 4). When the last concentrated elements
are simultaneously attached to the P-taper shaft as shown in
Figure 6(c), it is under expectation that the numerical values
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𝑥0 = 𝐿𝑠 = 3
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𝑦
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𝑥

(c)

Figure 6: The P-taper shaft (cf. case 2 of Table 1) carrying: (a) 3 rigid disks each with 𝐽
𝑖
= 𝐽
∗
/3 (𝑖 = 0, 1, 2); (b) 3 torsional springs each

with 𝑘̂
𝑡,𝑖

= 𝑘
∗

𝑡
/3 (𝑖 = 0, 1, 2); and (c) 3 rigid disks and 3 torsional springs each with 𝐽

𝑖
= 𝐽
∗
/3 and 𝑘̂

𝑡,𝑖
= 𝑘
∗

𝑡
/3 (𝑖 = 0, 1, 2). The locations

of concentrated elements are 𝑥
0
= 3.0m, 𝑥

1
= 4.0m, and 𝑥

2
= 5.0m. Besides, 𝐽∗ = 5.4409436902 × 10

−3 kg-m2 and 𝑘
∗

𝑡
= 1.378230198 ×

10
4Nm/rad.

of the lowest four natural frequencies of the shaft have the
next relationship:𝜔

𝑖,(𝑎)
< 𝜔
𝑖,(𝑐)

< 𝜔
𝑖,(𝑏)

, where 𝜔
𝑖,(𝑎)

, 𝜔
𝑖,(𝑏)

, and
𝜔
𝑖,(𝑐)

represent the 𝑖th natural frequencies of the P-taper shafts
shown in Figures 6(a), 6(b), and 6(c), respectively.

It is noted that, for a free-free shaft supported by torsional
springs such as that shown in Figures 6(b) or 6(c), there
exists a quasi rigid-body natural frequency 𝜔

0
as one may

see from Table 4. The quasi straight lines (—⧫— and - -◊-
-) appearing in the upper side of Figure 7(b) are the mode
shapes corresponding to the above-mentioned frequencies
𝜔
0
for the shaft shown in Figure 6(c), obtained from the

presented exact method and the conventional FEM, respec-
tively. For a true rigid shaft, its natural frequency is given
by 𝜔
0

= √𝑘
𝑡
/𝐽; thus, the true rigid body natural frequency

for the P-taper shaft shown in Figure 6(b) is given by
𝜔
0,(𝑏)

=√𝑘∗
𝑡
/𝐽∗ = √1.378230198 × 104/5.44094369 × 10−3 =

1591.5627 rad/sec, and that shown in Figure 6(c) by 𝜔
0,(𝑐)

= √𝑘∗
𝑡
/(2𝐽∗)=√1.378230198 × 104/(2 × 5.44094369 × 10−3)

= 1125.4048 rad/sec, where 2𝐽
∗ is the summation of polar

mass moment of inertia of the entire shaft itself (𝐽∗) and that
of the 3 rigid disks (𝐽∗). Comparing with cases 2 and 3 of

Table 4, one sees that quasi rigid-body natural frequencies,
𝜔
0,(𝑏)

= 1684.6341 rad/sec and 𝜔
0,(𝑐)

= 1168.6767 rad/sec, are
slightly greater than the foregoing corresponding true ones,
𝜔
0,(𝑏)

= 1591.5627 rad/sec and 𝜔
0,(𝑐)

= 1125.4048 rad/sec,
respectively.

The lowest five mode shapes (including the quasi rigid-
body mode) of the “loaded” free-free P-taper shaft shown
in Figure 6(c) are plotted in Figure 7(b). Comparing with
the corresponding ones of the “bare” free-free P-taper shaft
shown in Figure 7(a), one sees that the lowest four (elastic)
mode shapes of the “loaded” shaft are much different from
those of the “bare” shaft. From Table 4, one sees that all
the natural frequencies obtained from FEM using 50 shaft
elements (i.e., 𝑛

𝑒
= 50) are very close to the corresponding

ones obtained from the presented exact method using 2 shaft
segments (i.e., 𝑝 = 2).

In Figure 7, the mode shapes obtained from the pre-
sented exact method are represented by the solid lines (—
) and those obtained from FEM by the dashed lines (- -
-). Furthermore, the 1st, 2nd, 3rd, and 4th mode shapes
obtained from the exact method are denoted by the symbols
∙, +, 󳵳, and ◼, respectively, while those from FEM by
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Figure 7:The lowest fivemode shapes of the free-free P-taper shaftwith taper ratio𝛼 = 0.01 (cf. case 2 of Table 1): (a) for the bare shaft (without
any attachments as shown in Figure 1); (b) for the loaded shaft (carrying 3 rigid disks and 3 torsional springs as shown in Figure 6(c)).

the symbols ∘, ×, △ and ◻, respectively. Because all the
natural frequencies obtained from FEM are very close to
the corresponding ones obtained from the presented exact
method as one may see from Table 4, so are the associated
mode shapes obtained from the above twomethods as shown
in Figure 7(b).

8.4. A Free-Free PN-Taper Shaft Carrying Multiple Concen-
trated Elements. This subsection studies the free vibration
characteristics of a free-free PN-taper shaft carrying 5 iden-
tical rigid disks and 5 identical torsional springs as shown in
Figure 8 by using the presented exact method (with 4 shaft
segments, i.e., 𝑝 = 4) and the conventional FEM (with 100
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Figure 8: The free-free PN-taper conic shaft carrying: (a) 5 rigid disks each with 𝐽
𝑖
= 𝐽
∗
/5 (𝑖 = 0, 1, 2, 3, 4); (b) 5 torsional springs each

with 𝑘̂
𝑡,𝑖

= 𝑘
∗

𝑡
/5 (𝑖 = 0, 1, 2, 3, 4); and (c) 5 rigid disks and 5 torsional springs each with 𝐽

𝑖
= 𝐽
∗
/5 and 𝑘̂

𝑡,𝑖
= 𝑘
∗

𝑡
/5 (𝑖 = 0, 1, 2, 3, 4). The

locations of the concentrated elements are: 𝑥
𝑖
= 3.0, 4.0, 5.0, 6.0, and 7.0m, respectively. Besides, 𝐽∗ = 1.0881887380 × 10

−2 kg-m2 and
𝑘
∗

𝑡
= 6.891150988 × 10

3 N-m/rad.

shaft elements, i.e.,𝑛
𝑒
= 100).Theparameters for the positive-

taper part 𝐴𝐵 of the current PN-taper shaft𝐴𝐵𝐶 are the same
as those of the P-taper shaft studied in the last subsection, and
the parameters for the negative-taper part 𝐵𝐶 are identical
to the positive-taper part 𝐴𝐵, that is, 𝑑

𝑠
= 𝑑
𝑠

= 0.03m,
𝑑
ℓ
= 𝑑
ℓ
= 0.05m, 𝐿

𝑠
= 𝐿
𝑠
= 3.0m, and 𝐿

ℓ
= 𝐿
ℓ
= 5.0m.

The polar mass moment of inertia for each of the 5 identical
rigid disks is given by 𝐽

𝑖
= 𝐽
∗
/5 (𝑖 = 0, 1, 2, 3, 4) with 𝐽

∗
=

1.0881887380×10
−2 kg-m2 denoting the reference polarmass

moment of inertia mentioned at the beginning of this section
and the stiffness for each of the torsional springs is given
𝑘̂
𝑡,𝑖

= 𝑘
∗

𝑡
/5 with 𝑘

∗

𝑡
= 6.891150988 × 103Nm/rad denoting

the reference stiffness. From Figure 8, one sees that the entire
PN-taper shaft is composed of four shaft segments and the
length of each shaft segment is given by Δ𝐿

𝑖
= 𝐿 shaft/𝑝 =

[(𝐿
ℓ
+𝐿
ℓ
) − (𝐿
𝑠
+𝐿
𝑠
)]/4 = [(5 + 5) − (3 + 3)]/4 = 1.0m. Since

the concentrated elements are located at the ends of the shaft
segments, their coordinates with respect to the origin 𝑜 of the
positive-taper shaft 𝐴𝐵 are given by 𝑥

0
= 3.0m, 𝑥

1
= 4.0m,

𝑥
2
= 5.0m, 𝑥

3
= 6.0m, and 𝑥

4
= 7.0m, respectively, as one

may see from Figures 8(a)–8(c).
For convenience of comparison, the lowest four natural

frequencies and the five mode shapes of the “bare” free-free
PN-taper shaft (without carrying any concentrated elements)
are shown in the final row of Table 5 (denoted by bold-
faced digits) and Figure 9(a), respectively. Comparing Table 5
for the current free-free PN-taper shaft with Table 4 for
the free-free P-taper shaft, one sees that the conclusions
drawn from Table 4 are also correct for Table 5. However,
there exists a significant difference between Figures 9(b)
and 7(b) that the lowest five mode shapes (including the
quasi rigid-body mode) of the loaded PN-taper shaft shown
in Figure 9(b) are symmetrical (or antisymmetrical) with
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Figure 9: The lowest five mode shapes of the free-free PN-taper shaft with taper ratio 𝛼 = 0.01 (cf. case 2 of Table 1): (a) for the bare shaft
(without any attachment, cf. Figure 3); (b) for the loaded shaft (carrying 5 rigid disks and 5 torsional springs as shown in Figure 8).

respect to its middle cross-section due to the fact that both
the structural dimensions and the loading conditions are
symmetrical with respect to its middle cross-section, but this
is not true for those of the loaded P-taper shaft shown in
Figure 7(b). Of course, the lowest fivemode shapes of the bare
PN-taper shaft as shown in Figure 9(a) are also symmetrical
(or antisymmetrical) with respect to its middle cross-section

due to symmetry of the structure.The legends of Figure 9 are
the same as those of Figure 7. It is seen that all mode shapes
obtained from FEM are very close to the corresponding
ones obtained from the exact method as one may see from
Figure 9(b). This is under expectation because the associated
natural frequencies shown in Table 5 are very close to each
other.
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9. Conclusions

(1) Since the exact solution for free torsional vibrations
of the general conic shafts is not yet obtainable from
the existing literature, the presented exact method is
significant in this aspect. Besides, the exact natural
frequencies and associated mode shapes for free tor-
sional vibrations of the general conic shafts carrying
any number of rigid disks or/and torsional springs
obtained from the presented exact method are also
significant for evaluating the accuracy of various
existing approximate methods concerned (such as
FEM).

(2) For a conic shaft composed of two shaft segments
with opposite tapers, it is difficult to obtain its exact
natural frequencies and associated mode shapes of
free torsional vibrations.The simple theory presented
in this paper is helpful for solving this kind of
problem.

(3) The formulation of this paper is very flexible because
(i) the locations of the concentrated elements on the
shaft are arbitrary; (ii) the total number of concen-
trated elements attached to the shaft is also arbitrary
including zero; and (iii) each nodemay be attached by
a rigid disk or a torsional spring or both a rigid disk
and a torsional spring.

(4) For a P-taper conic shaft with its (right) larger-
end diameter 𝑑

ℓ
and total length 𝐿 kept constant

(cf. Figure 5), its lowest five natural frequencies (𝜔
𝜏
,

𝜏 = 1 to 5) in the F-F, C-C, or F-C BCs decrease
with the decrease of its taper ratio 𝛼 because the
polar mass moment of inertia of the entire shaft
increases with the decrease of 𝛼 and the influence of
𝛼 on the supporting stiffness is much smaller. The
last trend is also true for the 2nd to 4th natural
frequencies (𝜔

2
to 𝜔
4
) of the shaft with C-F BCs, but

the 1st natural frequency (𝜔
1
) increases significantly

with the decrease of taper ratio 𝛼 because near the
(left) clamped end, the increasing effect of supporting
stiffness is much greater than that of polar mass
moment of inertia due to the decrease of taper ratio
𝛼.

(5) For a conic shaft (either P-taper or PN-taper) carrying
arbitrary rigid disks and the same number of torsional
springs, if the locations of the rigid disks are identical
to the corresponding torsional springs, then the
lowest five natural frequencies of the shaft decrease
due to carrying the rigid disks only and increase due
to carrying the torsional springs only. However, the
lowest five natural frequencies of the shaft carrying
both the rigid disks and the torsional springs have the
next relationship: 𝜔

𝑖,𝐽
< 𝜔
𝑖,𝐽𝑘
𝑡

< 𝜔
𝑖,𝑘
𝑡

, where 𝜔
𝑖,𝐽
, 𝜔
𝑖,𝑘
𝑡

,
and 𝜔

𝑖,𝐽𝑘
𝑡

represent the 𝑖th natural frequencies of the
conic shaft carrying the rigid disks only, the torsional
springs only, and both the rigid disks and the torsional
springs, respectively.

(6) For a conic shaft (either P-taper or PN-taper) carrying
torsional springs or both rigid disks and torsional
springs, there exists a quasi rigid-body natural fre-
quency 𝜔

0
. The latter is slightly higher than the

true rigid-body natural frequency defined by 𝜔
0

=

√∑ 𝑘̂
𝑡,𝑖
/(𝐽shaft + ∑𝐽

𝑖
), where 𝐽shaft denotes the polar

mass moment of inertia of the entire shaft itself, while
∑ 𝑘̂
𝑡,𝑖
and ∑𝐽

𝑖
denote the summation of stiffness of

all torsional springs and that of polar mass moment
of inertia of all rigid disks attached to the shaft,
respectively.

Appendix

Exact Natural Frequencies and Mode Shapes of
a Uniform Shaft

The characteristic equation for free torsional vibration of a
uniform shaft is given by [7]

Θ
󸀠󸀠
(𝑥) + 𝛽

2
Θ (𝑥) = 0, (A.1)

where

𝛽
2
=

𝜔
2
𝜌

𝐺
. (A.2)

The last expressions are similar to those of the same uniform
shaft performing free longitudinal vibration [7]; thus, the
exact solution for natural frequencies andmode shapes of free
longitudinal vibration of a uniform shaft is available for those
of free torsional vibration of the same shaft, if the Young’s
modulus𝐸 for longitudinal vibrations is replaced by the shear
modulus 𝐺 for torsional vibrations. The results for various
boundary conditions are listed in the following.

(i) F-F Shaft and C-C Shaft.The exact natural frequencies for
the torsional vibrations of a uniform shaft with free-free (F-
F) boundary conditions are the same as those with clamped-
clamped (C-C) ones. They are given by

𝛽
𝜏
=

𝜏𝜋

𝐿
(𝜏 = 0, 1, 2, 3, . . . ,∞) ,

𝜔
𝜏
=

𝛽
𝜏
𝐿

𝐿
√

𝐺

𝜌
=

𝜏𝜋

𝐿
√

𝐺

𝜌
(𝜏 = 0, 1, 2, 3, . . . ,∞) .

(A.3)

However, the associated mode shapes are different from each
other and given by

Θ
𝜏 (𝑥) = 𝐴

𝜏
cos(𝜏𝜋𝑥

𝐿
) (𝜏 = 0, 1, 2, 3, . . . ,∞)

(for F-F shaft) ,
(A.4)

Θ
𝜏 (𝑥) = 𝐴

𝜏
sin(

𝜏𝜋𝑥

𝐿
) (𝜏 = 1, 2, 3, . . . ,∞)

(for C-C shaft) .
(A.5)
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Since 𝜏 = 0 represents the rigid-body mode, the formulas
given by (A.3) with 𝜏 = 0 are correct only for the F-F shaft.

(ii) C-F Shaft. The exact natural frequencies and mode
shapes of a uniform shaft with clamped-free (C-F) boundary
conditions are given by

𝛽
𝜏
=

𝜏𝜋

2𝐿
(𝜏 = 1, 3, 5, . . . ,∞) , (A.6)

𝜔
𝜏
=

𝛽
𝜏
𝐿

𝐿
√

𝐺

𝜌
=

𝜏𝜋

2𝐿
√

𝐺

𝜌
(𝜏 = 1, 3, 5, . . . ,∞) 󳨀→

𝜔
𝑠
=

(2𝑠 − 1) 𝜋

2𝐿
√

𝐺

𝜌
(𝑠 = 1, 2, 3, . . . ,∞) ,

(A.7)

Θ
𝜏 (𝑥) = 𝐴

𝜏
sin(

𝜏𝜋𝑥

2𝐿
) (𝜏 = 1, 3, 5, . . . ,∞) 󳨀→

Θ
𝑠 (𝑥) = 𝐴

𝑠
sin(

(2𝑠 − 1) 𝜋𝑥

2𝐿
) (𝑠 = 1, 2, 3, . . .) .

(A.8)

(iii) F-C Shaft. The exact natural frequencies and mode
shapes for a uniform shaftwith free-clamped (F-C) boundary
conditions are given by

𝛽
𝜏
=

𝜏𝜋

2𝐿
(𝜏 = 1, 3, 5, . . . ,∞) , (A.9)

𝜔
𝜏
=

𝛽
𝜏
𝐿

𝐿
√

𝐺

𝜌
=

𝜏𝜋

2𝐿
√

𝐺

𝜌
(𝜏 = 1, 3, 5, . . . ,∞) 󳨀→

𝜔
𝑠
=

(2𝑠 − 1) 𝜋

2𝐿
√

𝐺

𝜌
(𝑠 = 1, 2, 3, . . .) ,

(A.10)

Θ
𝜏 (𝑥) = 𝐴

𝜏
cos(𝜏𝜋𝑥

2𝐿
) (𝜏 = 1, 3, 5, . . . ,∞) 󳨀→

Θ
𝑠 (𝑥) = 𝐴

𝑠
cos((2𝑠 − 1) 𝜋𝑥

2𝐿
) (𝑠 = 1, 2, 3, . . .) .

(A.11)

It is noted that the frequency parameters 𝛽
𝜏
given by (A.9)

are the same as those given by (A.6), but the corresponding
mode shapesΘ

𝜏
(𝑥) defined by (A.11) are different from those

defined by (A.8).
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