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Although there have been a lot of works about the synthesis and analysis of networked control systems (NCSs) with data
quantization, most of the results are developed for the case of considering the quantizer only existing in one of the transmission
links (either from the sensor to the controller link or from the controller to the actuator link). This paper investigates the synthesis
approaches ofmodel predictive control (MPC) for NCS subject to data quantizations in both links. Firstly, a novel model to describe
the state and input quantizations of the NCS is addressed by extending the sector bound approach. Further, from the new model,
two synthesis approaches of MPC are developed: one parameterizes the infinite horizon control moves into a single state feedback
law and the other into a free control move followed by the single state feedback law. Finally, the stability results that explicitly
consider the satisfaction of input and state constraints are presented. A numerical example is given to illustrate the effectiveness of
the proposed MPC.

1. Introduction

Model predictive control (MPC) commonly refers to a class
of computer control algorithms that use an explicit process
model to forecast the future response of a plant [1]. In
practical applications, MPC can now be found in a wide
variety of industrial fields, such as chemical industries,
food processing, and automotive applications, since it has
advantages including good tracking performance, physical
constraints handling, and extension to nonlinear systems.
Not only that, in recent decades, it also has a great improve-
ment in theoretical research; various methodologies have
been addressed and developed, such as dynamic matrix
control (DMC), generalized predictive control (GPC), and
robust MPC. From the 1990s, the main stream of the
theoretical research about MPC has been turned to the
synthesis approach, which means that the MPC controller is
synthesized so that the closed-loop system is stable whenever
the optimization problem is feasible. A simple procedure of
synthesis approach of MPC is to parameterize the infinite
horizon control moves into a state feedback control law at
each sampling time. In this field, [2] introduces the linear
matrix inequality (LMI) technique to solve the optimization

problem ofminimizing an upper bound on “worst case” value
of the infinite horizon objective function and reduces the
problem to a convex optimization problem involving a set
of LMIs. Reference [3] applies the technique in [2] off-line,
and a sequence of control laws corresponding to a sequence
of asymptotically stable invariant ellipsoids is constructed.
The real-time state feedback gain is chosen from the designed
control laws. In this way, the on-line computational burden
can be significantly reduced. Another procedure of synthesis
approach of MPC is to add free control moves before the
linear state feedback law, instead of a single state feedback. In
this field, the related works can be found in [4, 5]. Reference
[4] proposes a “quasi-min-max” MPC algorithm for linear
parameter varying systems by adding one free control move,
and the conservatism and feasibility in [2] are reduced and
improved. Reference [5] extends the results in [4] to 𝑁 > 1

free control moves, which further improves the optimality
and feasibility.

Networked control systems (NCSs) are distributed sys-
tems in which the sensors, the controllers, and the actuators
are spatially distributed and interconnected through com-
munication networks [6–12]. Data quantization is inevitable
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Figure 1: Structure of NCS with quantizations.

in NCSs, which is caused by 𝐴/𝐷 and 𝐷/𝐴 conversions
and has an undesirable effect on system performance or
even stability. The issue of mitigating the effect of data
quantization has been considered by many researchers [13–
20]. For static and time-invariant quantizer, [13] first points
out that the coarsest quantizer should follow a logarithmic
law in quadratic stabilization of single-input-single-output
(SISO) linear time-invariant (LTI) systems. Reference [14]
generalizes the results of [13] to the multi-input-multi-output
(MIMO) systems and the output feedback control and con-
verts the quantized quadratic stabilization problem into the
robust control problemby using the sector boundmethod. By
adopting a quantization error dependent Lyapunov function,
[15] proposes a new approach to the problem of analysis and
synthesis for quantized feedback system based on the results
in [14], which offers less conservative results. Based on the
results in [14], a robust MPC strategy is proposed to deal
with the stabilization of NCS with quantized control input
in [16] and a simple dynamic scaling method for a logarith-
mic quantizer based output feedback controller is given in
[17]. However, all the mentioned papers consider only one
quantizer existing in one communication link, either in the
sensor to controller (S-C) link or the controller to actuator
(C-A) link.The quantized stabilization problem in both links
has not received much attention than what it deserves. In
the existing results, to the best of our knowledge, there are
only a small amount of results [18–20] about the quantization
problemwhen both the state and the input are quantized, and
all of them do not consider the synthesis approach of MPC.
This situation motivates our study presented here.

The synthesis approach of MPC is known as a control
algorithm that can significantly improve the control perfor-
mance, especially when system uncertainties exist; see [2, 3].
Therefore, it is of theoretical and practical significance to
extend these approaches to the networked control. However,
very few works have focused on the synthesis approaches of
MPC for NCS with quantizations. The goal of this paper is
to give synthesis approaches of MPC for discrete LTI MIMO
system over networks with state and input quantizations.
Firstly, by applying the sector bound approach in [14], a novel
model which describes the NCS with quantizers in both S-C
andC-A links is established.The result converts the quantized
stabilization problem into robust control problem. Secondly,
based on the developed newmodel, two synthesis approaches

of MPC, without free control move and with one free control
move, are derived, respectively, by extending the results in
[2, 4]. Finally, the stability results of the closed-loop system
are given by applying the Lyapunov method.

Notation. 𝐼 is the identity matrix with appropriate dimen-
sions. For any vector 𝑥 and matrix𝑊, ‖𝑥‖2

𝑊
:= 𝑥

T
𝑊𝑥. The

superscript T denotes the transpose for vectors or matrices.
𝑥(𝑘 + 𝑖 | 𝑘) is the value of vector 𝑥 at a future time 𝑘 + 𝑖
predicted at time 𝑘.

2. System Description

Consider the quantized feedback control system in Figure 1.
The plant to be controlled is modeled by

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘) , 𝑘 ≥ 0, (1)

where 𝑢(𝑘) ∈ R𝑚 and 𝑥(𝑘) ∈ R𝑛 are the control input and
measurable state of the plant, respectively. 𝑤(𝑘) ∈ R𝑛 and
V(𝑘) ∈ R𝑚 are input and output of the controller, respectively.
We assume that [𝐴(𝑘) | 𝐵(𝑘)] varies inside a corresponding
polytopeΩwhose vertices consist of 𝐿 local systemsmatrices;
that is,

[𝐴 (𝑘) | 𝐵 (𝑘)] ∈ Ω, 𝑘 ≥ 0, (2)

with

Ω = Co {[𝐴
1
| 𝐵
1
] , [𝐴
2
| 𝐵
2
] , . . . , [𝐴

𝐿
| 𝐵
𝐿
]} , (3)

where Co{⋅} denotes the convex hull. The input and state
constraints are

−𝑢 ≤ 𝑢 (𝑘 + 𝑖) ≤ 𝑢, −𝜓 ≤ Ψ𝑥 (𝑘 + 𝑖 + 1) ≤ 𝜓, ∀𝑖 ≥ 0,

(4)

where 𝑢 := [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
]
T, 𝑢 := [𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑚
]
T, 𝑢
𝑗
> 0,

𝑢
𝑗
> 0, 𝑗 ∈ {1, 2, . . . , 𝑚}; 𝜓 := [𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑞
]
T, 𝜓 :=

[𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑞
]
T, 𝜓
𝑠
> 0, 𝜓

𝑠
> 0, 𝑠 ∈ {1, 2, . . . , 𝑞}; Ψ ∈ R𝑞×𝑛.

The quantized state feedback controller is given by

𝑢 (𝑘) = 𝑓 (V (𝑘)) ,

V (𝑘) = 𝐾𝑤 (𝑘) = 𝐾𝑔 (𝑥 (𝑘)) ,
(5)

where 𝐾 ∈ R𝑚×𝑛 is the feedback gain to be designed and
𝑓(⋅) and 𝑔(⋅) are two static logarithmic quantizers which are
defined as

𝑓 (V (𝑘)) = [𝑓 (V1 (𝑘)) 𝑓 (V2 (𝑘)) ⋅ ⋅ ⋅ 𝑓 (V𝑚 (𝑘))]
T
,

𝑔 (𝑥 (𝑘)) = [𝑔 (𝑥1 (𝑘)) 𝑔 (𝑥2 (𝑘)) ⋅ ⋅ ⋅ 𝑔 (𝑥𝑛 (𝑘))]
T
,

(6)

where 𝑓(⋅) and 𝑔(⋅) are assumed to be symmetric, that is,
𝑓(−V
𝑗
(𝑘)) = −𝑓(V

𝑗
(𝑘)), 𝑗 ∈ M

1
:= {1, 2, . . . , 𝑚}, and

𝑔(−𝑥
𝑖
(𝑘)) = −𝑔(𝑥

𝑖
(𝑘)), 𝑖 ∈ N

1
:= {1, 2, . . . , 𝑛}, and V

𝑗
(𝑘)

(𝑥
𝑖
(𝑘)) is the 𝑗th (𝑖th) component of V(𝑘) (𝑥(𝑘)).
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In terms of [14], the set of quantization levels for logarith-
mic quantizers 𝑓(⋅) and 𝑔(⋅) is described by

U
𝜁
= {±𝑢

𝑠
: 𝑢
𝑠
= 𝜌
𝑠

𝜁
𝑢
0
, 𝑠 = 0, ±1, ±2, . . .} ∪ {0} ,

0 < 𝜌
𝜁
< 1, 𝑢

0
> 0,

(7)

where 𝜁 is 𝑓 or 𝑔. The associated quantizer 𝜁 is defined as
follows:

𝜁 (𝜃) =

{{{{

{{{{

{

𝑢
𝑠
, if 1

1 + 𝛿
𝜁

𝑢
𝑠
< 𝜃 ≤

1

1 − 𝛿
𝜁

𝑢
𝑠
, 𝜃 > 0,

0, if 𝜃 = 0,
−𝜁 (−𝜃) , if 𝜃 < 0,

(8)

with

𝛿
𝜁
=
1 − 𝜌
𝜁

1 + 𝜌
𝜁

. (9)

Denote by ♯𝑔[𝜀] the number of quantization levels in the
interval [𝜀, 1/𝜀]. The density of the quantizer 𝜁 is

𝜗
𝜁
= lim sup

𝜀→0

♯𝑔
𝜁 [𝜀]

− ln 𝜀
. (10)

A small 𝜌
𝜁
means coarse quantization and a large 𝜌

𝜁
implies

dense quantization. In the following, we will call 𝜌
𝜁
the

quantization density of the quantizer 𝜁, instead of 𝜗
𝜁
, and

assume that 𝜌
𝜁
is a known number and, hence, 𝛿

𝜁
is known

and satisfies 0 < 𝛿
𝜁
< 1.

Applying the sector bound approach in [14], 𝑓(V(𝑘)) and
𝑔(𝑥(𝑘)) can be written as

𝑓 (V (𝑘)) = (𝐼 + Δ
𝑓
(𝑘)) V (𝑘) ,

𝑔 (𝑥 (𝑘)) = (𝐼 + Δ
𝑔
(𝑘)) 𝑥 (𝑘) ,

(11)

where

Δ
𝑓
(𝑘) = diag (Δ

𝑓
1
(𝑘) , Δ

𝑓
2
(𝑘) , . . . , Δ

𝑓
𝑚
(𝑘)) ,

Δ
𝑔
(𝑘) = diag (Δ

𝑔
1
(𝑘) , Δ

𝑔
2
(𝑘) , . . . , Δ

𝑔
𝑛
(𝑘))

(12)

with |Δ
𝑓
𝑗

(𝑘)| ≤ 𝛿
𝑓
, 𝑗 ∈M

1
, and |Δ

𝑔
𝑖

(𝑘)| ≤ 𝛿
𝑔
, 𝑖 ∈N

1
.

Let F be the set of 𝑚 × 𝑚 diagonal matrices whose
diagonal elements are either −𝛿

𝑓
or 𝛿
𝑓
.There are 2𝑚 elements

in F. Suppose that each element in F is labeled as F
𝑗
, 𝑗 ∈

M
2
:= {1, 2, . . . , 2

𝑚
}. Then, F = {F

𝑗
: 𝑗 ∈ M

2
}. Let G be

the set of 𝑛 × 𝑛 diagonal matrices whose diagonal elements
are either −𝛿

𝑔
or 𝛿
𝑔
. There are 2𝑛 elements inG. Suppose that

each element in G is labeled as G
𝑖
, 𝑖 ∈ N

2
:= {1, 2, . . . , 2

𝑛
}.

Then,G = {G
𝑖
: 𝑖 ∈N

2
}. It is easy to show that

Δ
𝑓
(𝑘) ∈ Ω

𝑓
= Co {F

𝑗
: 𝑗 ∈M

2
} ,

Δ
𝑔
(𝑘) ∈ Ω

𝑔
= Co {G

𝑖
: 𝑖 ∈N

2
} .

(13)

This means that

Δ
𝑓
(𝑘) =

2
𝑚

∑

𝑗=1

𝛼
𝑗
(𝑘) {F

𝑗
} , Δ

𝑔
(𝑘) =

2
𝑛

∑

𝑖=1

𝛽
𝑖
(𝑘) {G

𝑖
} , (14)

where ∑2
𝑚

𝑗=1
𝛼
𝑗
= 1, ∑2

𝑛

𝑖=1
𝛽
𝑖
= 1, 𝛼

𝑗
≥ 0, 𝛽

𝑖
≥ 0.

Taking into account (11), the closed-loop system becomes

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘)

+ 𝐵 (𝑘) (𝐼 + Δ
𝑓
(𝑘))𝐾 (𝐼 + Δ

𝑔
(𝑘)) 𝑥 (𝑘) .

(15)

It is shown in [14] that the system (15) and system (1), (2), (5)
are equivalent for stability analysis.

3. Stabilization Using Networked MPC

3.1. Optimization Problem for Networked MPC. As in the
nonnetworked MPC (see, e.g., [2, 4]), the state feedback V =
𝐾w will be utilized, where 𝐾 is to be optimized. We will give
two different techniques: case 1 that is without free control
move; case 2 that is with one free controlmove. For simplicity,
denote

(𝐼 + Δ
𝑓
(𝑘))𝐾 (𝑘) (𝐼 + Δ

𝑔
(𝑘)) := 𝐾 (𝑘) + Δ𝐾 (𝑘) . (16)

For case 1, the predicted control input becomes

𝑢 (𝑘 + 𝑙 | 𝑘) = 𝑓 (𝑔 (𝑥 (𝑘 + 𝑙 | 𝑘)))

= (𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑥 (𝑘 + 𝑙 | 𝑘) , 𝑙 ≥ 0.

(17)

The closed-loop state prediction satisfies

𝑥 (𝑘 + 𝑙 + 1 | 𝑘) = 𝐴 (𝑘 + 𝑙) 𝑥 (𝑘 + 𝑙 | 𝑘) + 𝐵 (𝑘 + 𝑙)

× (𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑥 (𝑘 + 𝑙 | 𝑘) , 𝑙 ≥ 0,

(18)

where

𝑥 (𝑘 | 𝑘) ∈ 𝜕 (𝑘) 𝑤 (𝑘) (19)

with

𝜕 (𝑘) = diag {𝜕
1
(𝑘) , 𝜕
2
(𝑘) , . . . , 𝜕

𝑛
(𝑘)} ,

(1 + 𝛿
𝑔
)
−1

≤ 𝜕
𝑖
(𝑘) ≤ (1 − 𝛿

𝑔
)
−1

, 𝑖 ∈N
1
.

(20)

Let C = {C
ℎ
: ℎ ∈ N

2
} be the set of 𝑛 × 𝑛 diagonal matrices

whose diagonal elements are either (1 + 𝛿
𝑔
)
−1 or (1 − 𝛿

𝑔
)
−1.

Then, it is shown that 𝜕(𝑘) ∈ Ω𝑐 = Co{C
ℎ
: ℎ ∈N

2
}.

The objective of case 1 is to design𝐾(𝑘) which drives (18)
to the equilibrium point 𝑥 = 0, by minimizing the infinite
horizon worst case performance index at each sampling
instant:

min
𝐾(𝑘)

max
⋆

𝐽 (𝑘) =

∞

∑

𝑙=0

[‖𝑥 (𝑘 + 𝑙 | 𝑘)‖
2

Q + ‖𝑢 (𝑘 + 𝑙 | 𝑘)‖
2

R]

s.t. (4) , (18) , (19) ,

(21)
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where ⋆ = {𝜕(𝑘) ∈ Ω𝑐, Δ
𝑓
(𝑘) ∈ Ω

𝑓
, Δ
𝑔
(𝑘) ∈ Ω

𝑔
, [𝐴(𝑘 + 𝑙) |

𝐵(𝑘+𝑙)] ∈ Ω, 𝑙 ≥ 0};Q andR are symmetric positive-definite
weight matrices.

For case 2, the output of the controller achieves

V (𝑘 | 𝑘) = V (𝑘) , 𝑙 = 0,

V (𝑘 + 𝑙 | 𝑘) = (𝑘) (𝐼 + Δ
𝑔
(𝑘)) 𝑥 (𝑘 + 𝑙 | 𝑘) , 𝑙 ≥ 1,

(22)

where V(𝑘) is freedom for optimization.The predicted control
input becomes

𝑢 (𝑘 | 𝑘) = 𝑓 (V (𝑘 | 𝑘)) = (𝐼 + Δ
𝑓
(𝑘)) V (𝑘) , 𝑙 = 0,

𝑢 (𝑘 + 𝑙 | 𝑘) = (𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑥 (𝑘 + 𝑙 | 𝑘) , 𝑙 ≥ 1.

(23)

Hence, the closed-loop state prediction satisfies

𝑥 (𝑘 + 1 | 𝑘) = 𝐴 (𝑘) 𝑥 (𝑘 | 𝑘)

+ 𝐵 (𝑘) (𝐼 + Δ
𝑓
(𝑘)) V (𝑘) , 𝑙 = 0,

𝑥 (𝑘 + 𝑙 + 1 | 𝑘) = 𝐴 (𝑘 + 𝑙) 𝑥 (𝑘 + 𝑙 | 𝑘) + 𝐵 (𝑘 + 𝑙)

× (𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑥 (𝑘 + 𝑙 | 𝑘) , 𝑙 ≥ 1.

(24)

The objective of case 2 is to design {V(𝑘), 𝐾(𝑘)} which
drives (24) to the equilibrium point 𝑥 = 0, by minimizing
the infinite horizon worst case performance index at each
sampling instant:

min
𝐾(𝑘)

max
⋆

𝐽 (𝑘) ,

s.t. (4) , (19) , (24) .

(25)

Problems (21) and (25) are the “min-max” optimization
problem, for which the techniques of LMI can be efficiently
utilized.

3.2. Networked MPC without Free Control Move. In order to
derive an upper bound on max

⋆
𝐽(𝑗
𝑙
) and solve problem (21),

let us impose the following stability constraint:

𝑉 (𝑥 (𝑘 + 𝑙 + 1 | 𝑘)) − 𝑉 (𝑥 (𝑘 + 𝑙 | 𝑘))

≤ −‖𝑥 (𝑘 + 𝑙 | 𝑘)‖
2

Q − ‖𝑢 (𝑘 + 𝑙 | 𝑘)‖
2

R, ∀𝑙 ≥ 0,

(26)

where𝑉(𝑥(𝑘+𝑙 | 𝑘)) = ‖𝑥(𝑘 + 𝑙 | 𝑘)‖2
𝑃
. For stable closed-loop

system, lim
𝑙→∞

𝑉(𝑥(𝑘 + 𝑙 | 𝑘)) = 0. Hence, by summing (26)
from 𝑙 = 0 to 𝑙 = ∞, we can obtain𝑉(𝑥(𝑘 | 𝑘)) ≥ 𝐽(𝑘). Define
𝑄 = 𝛾𝑃

−1
> 0, where 𝛾 is a scalar. By minimizing 𝛾 satisfying

𝑉(𝑥(𝑘 | 𝑘)) ≤ 𝛾, the upper bound on performance cost is
minimized. By using the Schur complement, 𝑉(𝑥(𝑘 | 𝑘)) ≤ 𝛾
is guaranteed by

[
1 ∗

𝑥 (𝑘 | 𝑘) 𝑄
] ≥ 0. (27)

Considering (19) and (14), this is equivalent to

[
1 ∗

C
ℎ
𝑤 (𝑘) 𝑄

] ≥ 0, ℎ ∈N
2
. (28)

Substituting 𝑄 = 𝛾𝑃
−1 and using Schur complement, it is

shown that (26) is equivalent to

[
[
[

[

𝑄
−1

∗ ∗ ∗

𝐴 (𝑘 + 𝑙) + 𝐵 (𝑘 + 𝑙) (𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑄 ∗ ∗

Q1/2 0 𝛾𝐼 ∗

R1/2 (𝐾 (𝑘) + Δ𝐾 (𝑘)) 0 0 𝛾𝐼

]
]
]

]

≥ 0.

(29)

Denote 𝐾(𝑘) = 𝑌𝐺−1 where 𝐺 is nonsingular matrix. Per-
forming congruence transformation to (29) by diag{𝐺, 𝐼, 𝐼, 𝐼},
utilizing the fact that 𝐺𝑄−1𝐺T

≥ 𝐺 + 𝐺
T
− 𝑄 and the

convexity of polytopic description, it is shown that (29) can
be guaranteed by

[
[
[
[

[

𝐺 + 𝐺
T
− 𝑄 ∗ ∗ ∗

𝐴
𝑠
+ 𝐵
𝑠
(𝑌 + F

𝑗
𝑌 + 𝑌G

𝑖
+ F
𝑗
𝑌G
𝑖
) 𝑄 ∗ ∗

Q1/2𝐺 0 𝛾𝐼 ∗

R1/2 (𝑌 + F
𝑗
𝑌 + 𝑌G

𝑖
+ F
𝑗
𝑌G
𝑖
) 0 0 𝛾𝐼

]
]
]
]

]

≥ 0,

𝑠 ∈ {1, 2, . . . , 𝐿} , 𝑗 ∈M
2
, 𝑖 ∈N

2
.

(30)

Then, we consider handling of the input constraint. Define 𝜉
𝑠

as the 𝑠th row of the𝑚-ordered identity matrix. We get

max
𝑙≥0

󵄨󵄨󵄨󵄨𝜉𝑠𝑢 (𝑘 + 𝑙 | 𝑘)
󵄨󵄨󵄨󵄨

2

= max
𝑙≥0

󵄨󵄨󵄨󵄨𝜉𝑠 (𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑥 (𝑘 + 𝑙 | 𝑘)
󵄨󵄨󵄨󵄨

2

≤ max
𝑙≥0

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑠
(𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑄

1/2󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄
−(1/2)

𝑥 (𝑘 + 𝑙 | 𝑘)
󵄩󵄩󵄩󵄩󵄩

2

≤ max
𝑙≥0

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑠
(𝐾(𝑘) + Δ𝐾(𝑘))𝑄

1/2󵄩󵄩󵄩󵄩󵄩

2

.

(31)

If there exists a symmetric matrix 𝑍, 𝑍
𝑠𝑠
≤ 𝑢
2

𝑠,inf , 𝑠 ∈ m, such
that

max
𝑙≥0

(𝐾 (𝑘) + Δ𝐾 (𝑘)) 𝑄(𝐾 (𝑘) + Δ𝐾 (𝑘))
T
≤ 𝑍, (32)

then |𝜉
𝑠
𝑢(𝑘 | 𝑗

𝑙
)| ≤ 𝑢

𝑠,inf , 𝑠 ∈ m. It is easy to show that (32) is
equivalent to

(𝐾 (𝑘) + F
𝑗
𝐾 (𝑘) + 𝐾 (𝑘)G

𝑖
+ F
𝑗
𝐾 (𝑘)G

𝑖
)

× 𝑄(𝐾 (𝑘) + F
𝑗
𝐾 (𝑘) + 𝐾 (𝑘)G

𝑖
+ F
𝑗
𝐾 (𝑘)G

𝑖
)
T
≤ 𝑍,

𝑗 ∈M
2
, 𝑖 ∈N

2
.

(33)

By performing congruence transformation to (33) by
diag{𝐺, 𝐼}, utilizing the fact that 𝐺𝑄−1𝐺T

≥ 𝐺 + 𝐺
T
− 𝑄, and

applying the Schur complement, it is shown that (33) can be
guaranteed by

[
𝐺 + 𝐺

T
− 𝑄 ∗

𝑌 + F
𝑗
𝑌 + 𝑌G

𝑖
+ F
𝑗
𝑌G
𝑖
𝑍
] ≥ 0, 𝑗 ∈M

2
, 𝑖 ∈N

2
,

𝑍
𝑠𝑠
≤ 𝑢
2

𝑠,inf , 𝑠 ∈ m.
(34)
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Lastly, consider the state constraint. Define 𝜉
𝑠
as the 𝑠th row

of the 𝑞-ordered identity matrix. Then, we have

max
𝑙≥0

󵄨󵄨󵄨󵄨𝜉𝑠Ψ𝑥 (𝑘 + 𝑙 + 1 | 𝑘)
󵄨󵄨󵄨󵄨

2

= max
𝑙≥0

󵄨󵄨󵄨󵄨𝜉𝑠Ψ [⋆] 𝑥 (𝑘 + 𝑙 | 𝑘)
󵄨󵄨󵄨󵄨

2

≤ max
𝑙≥0

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑠
Ψ [⋆]𝑄

1/2󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄
−(1/2)

𝑥 (𝑘 + 𝑙 | 𝑘)
󵄩󵄩󵄩󵄩󵄩

2

≤ max
𝑙≥0

󵄩󵄩󵄩󵄩󵄩
𝜉
𝑠
Ψ [⋆]𝑄

1/2󵄩󵄩󵄩󵄩󵄩

2

,

(35)

where ⋆ = 𝐴(𝑘 + 𝑙) + 𝐵(𝑘 + 𝑙)(𝐾(𝑘) + Δ𝐾(𝑘)). If there exists a
symmetric matrix Γ, Γ

𝑠𝑠
≤ 𝜓
2

𝑠,inf , 𝑠 ∈ q, such that

max
𝑙≥0

Ψ ⋆ 𝑄⋆
T
Ψ

T
≤ Γ, (36)

then, by performing congruence transformation to (36) by
diag{𝐺, 𝐼}, utilizing the fact that𝐺𝑄−1𝐺T

≥ 𝐺+𝐺
T
−𝑄 and the

convexity of polytopic description, and applying the Schur
complement, it is easy to show that (36) is guaranteed by

[
𝐺 + 𝐺

T
− 𝑄 ∗

Ψ(𝐴
𝑠
𝐺 + 𝐵

𝑠
(𝑌 + F

𝑗
𝑌 + 𝑌G

𝑖
+ F
𝑗
𝑌G
𝑖
)) Γ

] ≥ 0,

𝑠 ∈ {1, 2, . . . , 𝐿} , 𝑗 ∈M
2
, 𝑖 ∈N

2
,

Γ
𝑠𝑠
≤ 𝜓
2

𝑠,inf , 𝑠 ∈ q.

(37)

Therefore, the “min-max” optimization problem (21) for
the proposed quantized state feedbackMPCcan be developed
as

min
𝛾,𝑄,𝐺,𝑌,Γ,𝑍

𝛾

s.t. (28) , (30) , (34) , and (37) .
(38)

Theorem 1. If the optimization problem (38) is feasible at time
𝑘, then it is feasible for all times 𝑡 > 𝑘, and the receding horizon
quantized state feedback control move 𝑢(𝑘) = 𝑓(𝐾(𝑘)𝑔(𝑥(𝑘)))
asymptotically stabilizes the closed-loop system.

Proof. Firstly, we consider the recursive feasibility. Assume
that the optimization problem (38) is feasible at time 𝑘. The
only LMI in this problem which depends on the measured
state of the system is (28). Hence, we only need to prove that
(28) is feasible for future measured state𝑤(𝑘 + 𝑖), 𝑖 > 0. From
[2], when the constraints (28) and (30) are satisfied, it must
have

𝑥(𝑘 + 𝑙 | 𝑘)
T
𝑄
−1
𝑥 (𝑘 + 𝑙 | 𝑘) < 1, 𝑙 ≥ 1. (39)

At time 𝑘, the state prediction for 𝑘 + 1 is

𝑥 (𝑘 + 1 | 𝑘) = (𝐴
𝑠
+ 𝐵
𝑠
(𝐾 (𝑘) + F

𝑗
𝐾 (𝑘) + 𝐾 (𝑘)G

𝑖

+ F
𝑗
𝐾 (𝑘)G

𝑖
))C
ℎ
𝑤 (𝑘) ,

𝑠 ∈ {1, 2, . . . , 𝐿} , 𝑗 ∈M
2
, 𝑖, ℎ ∈N

2
.

(40)

At time 𝑘 + 1, there exist [𝐴 | 𝐵] ∈ Ω, F ∈ Ω𝑓, G ∈ Ω𝑔, and
C ∈ Ω𝑐 such that

𝑥 (𝑘 + 1 | 𝑘 + 1)

= (𝐴 + 𝐵 (𝐾 (𝑘) + F𝐾 (𝑘) + 𝐾 (𝑘)G + F𝐾 (𝑘)G))C𝑤 (𝑘) .

(41)

From (40) and (41), it is easy to show that 𝑥(𝑘 + 1 | 𝑘 + 1)
is contained in 𝑥(𝑘 + 1 | 𝑘). Taking into account (39), we get
𝑥(𝑘 + 𝑙 | 𝑘 + 1)

T
𝑄
−1
𝑥(𝑘 + 𝑙 | 𝑘 + 1) < 1, which is equivalent

to

[
1 ∗

C
ℎ
𝑤 (𝑘 + 1) 𝑄

] ≥ 0, ℎ ∈N
2
. (42)

Thus, the optimization problem is also feasible at time 𝑘 + 1,
and the same results can be achieved at times 𝑘 + 2, 𝑘 + 3, . . .
by analogy. Hence, the recursive feasibility of optimization
problem (38) is guaranteed.

Secondly, we prove the asymptotic stability. Assume that
the optimization problem (38) is feasible and the solution is
depicted as “∗”. By applying stability constraints, we have

‖𝑥 (𝑘 + 1 | 𝑘)‖
2

𝑃
∗
(𝑘)
− ‖𝑥 (𝑘 | 𝑘)‖

2

𝑃
∗
(𝑘)

≤ −‖𝑥 (𝑘 | 𝑘)‖
2

Q −
󵄩󵄩󵄩󵄩𝑢
∗
(𝑘 | 𝑘)

󵄩󵄩󵄩󵄩

2

R
.

(43)

Since 𝑥(𝑘+1 | 𝑘+1) is contained in 𝑥(𝑘+1 | 𝑘), the following
holds:

‖𝑥 (𝑘 + 1 | 𝑘 + 1)‖
2

𝑃
∗
(𝑘)
− ‖𝑥 (𝑘 | 𝑘)‖

2

𝑃
∗
(𝑘)

≤ −‖𝑥 (𝑘 | 𝑘)‖
2

Q −
󵄩󵄩󵄩󵄩𝑢
∗
(𝑘 | 𝑘)

󵄩󵄩󵄩󵄩

2

R
.

(44)

By noting

‖𝑥 (𝑘 | 𝑘)‖
2

𝑃
∗
(𝑘)
≤ 𝛾
∗
(𝑘) ,

‖𝑥 (𝑘 + 1 | 𝑘 + 1)‖
2

𝑃(𝑘+1)
≤ 𝛾 (𝑘 + 1) ,

(45)

it is admissible to choose

𝛾 (𝑘 + 1) = 𝛾
∗
(𝑘) − ‖𝑥 (𝑘 | 𝑘)‖

2

Q −
󵄩󵄩󵄩󵄩𝑢
∗
(𝑘 | 𝑘)

󵄩󵄩󵄩󵄩

2

R
. (46)

Solving the optimization problem (38) at time 𝑘 + 1, it leads
to

𝛾
∗
(𝑘 + 1) ≤ 𝛾 (𝑘 + 1) . (47)

It must have

𝛾
∗
(𝑘 + 1) ≤ 𝛾

∗
(𝑘) − ‖𝑥 (𝑘 | 𝑘)‖

2

Q −
󵄩󵄩󵄩󵄩𝑢
∗
(𝑘 | 𝑘)

󵄩󵄩󵄩󵄩

2

R
. (48)

Therefore, 𝛾∗(𝑘) decreases monotonously and can be chosen
as the Lyapunov function for proving the stability of the
closed-loop system.
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3.3. Networked MPC with One Free Control Move. In
Section 3.2, we developed the synthesis approach of net-
worked MPC by parameterizing the infinite horizon control
moves into a single state feedback law. This part, in order
to reduce the conservatism, provides a synthesis approach of
MPC by adding one free control move, which is easier to be
feasible and can obtain more optimal control moves.

The optimization problem is shown in (25). Similar to
Section 3.2, let us impose the stability constraint (26) for all
𝑙 ≥ 1. For stable closed-loop system, lim

𝑙→∞
𝑉(𝑥(𝑘 + 𝑙 |

𝑘)) = 0. By summing (26) from 𝑙 = 1 to 𝑙 = ∞, we get
𝐽(𝑘) ≤ 𝑉(𝑥(𝑘 + 1 | 𝑘)) + ‖𝑥(𝑘 | 𝑘)‖

2

Q + ‖𝑢(𝑘 | 𝑘)‖
2

R. Let

𝑉 (𝑥 (𝑘 + 1 | 𝑘)) ≤ 𝛾, (49)

‖𝑢 (𝑘 | 𝑘)‖
2

R ≤ 𝛾1, (50)

where 𝛾
1
is a scalar. By defining 𝑄 = 𝛾𝑃

−1
> 0 and using

Schur complement, it is shown that (49) is guaranteed by

[
1 ∗

𝑥 (𝑘 + 1 | 𝑘) 𝑄
] ≥ 0. (51)

Considering (14), (19) and (24), this is equivalent to

[
1 ∗

𝐴
𝑠
𝐶
ℎ
𝑤 (𝑘) + 𝐵

𝑠
(𝐼 + F

𝑗
) V (𝑘) 𝑄] ≥ 0,

𝑠 ∈ {1, 2, . . . , 𝐿} , 𝑗 ∈M
2
, ℎ ∈N

2
.

(52)

By considering (24) and (14), and applying Schur comple-
ment, it is shown that (50) is guaranteed by

[
1 ∗

R1/2 (𝐼 + F
𝑗
) V (𝑘) 𝛾

1
𝐼
] ≥ 0, 𝑗 ∈M

2
. (53)

Lemma 2. Suppose there exist a scalar 𝛾, a vector V(𝑘),
symmetric matrices Γ, 𝑍, and 𝑄, and any matrices 𝐺, 𝑌 such
that (30), (34), (37), (52), and the following are satisfied:

−𝑢 ≤ V (𝑘) ≤ 𝑢, (54)

−𝜓 ≤ Ψ𝑥 (𝑘 + 1) ≤ 𝜓. (55)

Then, (4) is satisfied.

Proof. According to the deductions in Section 3.2, if (30) and
(52) are satisfied, then (4) for 𝑙 ≥ 1 is guaranteed by (34) and
(37). Equations (54) and (55) guarantee the satisfaction of (4)
for 𝑙 = 0. This completes the proof.

According to (24), (55) is equivalent to

−𝜓 ≤ 𝐴 (𝑘) 𝑥 (𝑘 | 𝑘) + 𝐵 (𝑘) (𝐼 + Δ
𝑓
(𝑘)) V (𝑘) ≤ 𝜓. (56)

Considering (19) and the convexity of the polytopic descrip-
tion, it is shown that (56) can be guaranteed by

− 𝜓 ≤ 𝐴
𝑠
𝐶
ℎ
𝑤 (𝑘) + 𝐵

𝑠
(𝐼 + F

𝑗
) V (𝑘) ≤ 𝜓,

𝑠 ∈ {1, 2, . . . , 𝐿} , 𝑗 ∈M
2
, ℎ ∈N

2
.

(57)

Therefore, the “min-max” optimization problem (25)
for the proposed quantized networked MPC with one free
control move can be approximated by

min
𝛾,𝛾
1
,V(𝑘),𝑄,𝐺,𝑌,Γ,𝑍

𝛾
1
+ 𝛾

s.t. (30) , (34) , (37) , (52)–(54) , (57) .
(58)

Theorem3. If the optimization problem (58) is feasible at time
𝑘, then it is feasible for all times 𝑡 > 𝑘, and the receding horizon
quantized state feedback control move 𝑢(𝑘) = 𝑓(V(𝑥(𝑘)))
asymptotically stabilizes the closed-loop system.

Proof. Assume that the optimization problem (58) is feasible
and the optimal solutions are depicted as “∗.”At time 𝑘+1, the
feasible solution can be chosen as V(𝑘 + 1) = V∗(𝑘 + 1 | 𝑘) =
𝐾
∗
(𝑘)𝑤(𝑘 + 1). Denote

𝐿 (𝑘) = ‖𝑥 (𝑘 + 1 | 𝑘)‖
2

𝑃(𝑘)
+ ‖𝑥 (𝑘 | 𝑘)‖

2

Q + ‖𝑢 (𝑘 | 𝑘)‖
2

R.

(59)

We can take

𝐿 (𝑘 + 1) =
󵄩󵄩󵄩󵄩𝑥
∗
(𝑘 + 1 | 𝑘)

󵄩󵄩󵄩󵄩

2

Q
+
󵄩󵄩󵄩󵄩𝑢
∗
(𝑘 + 1 | 𝑘)

󵄩󵄩󵄩󵄩

2

R

+
󵄩󵄩󵄩󵄩𝑥
∗
(𝑘 + 2 | 𝑘)

󵄩󵄩󵄩󵄩

2

𝑃
∗
(𝑘)
.

(60)

It is easy to show

𝐽 (𝑘 + 1) ≤ 𝐿 (𝑘 + 1) . (61)

Since stability constraint (26) is satisfied, it must have

󵄩󵄩󵄩󵄩𝑥
∗
(𝑘 + 2 | 𝑘)

󵄩󵄩󵄩󵄩

2

𝑃
∗
(𝑘)
−
󵄩󵄩󵄩󵄩𝑥
∗
(𝑘 + 1 | 𝑘)

󵄩󵄩󵄩󵄩

2

𝑃
∗
(𝑘)

≤ −
󵄩󵄩󵄩󵄩𝑥
∗
(𝑘 + 1 | 𝑘)

󵄩󵄩󵄩󵄩

2

Q
−
󵄩󵄩󵄩󵄩𝑢
∗
(𝑘 + 1 | 𝑘)

󵄩󵄩󵄩󵄩

2

R
.

(62)

Substituting (62) into (61), we get

𝐿 (𝑘 + 1) ≤
󵄩󵄩󵄩󵄩𝑥
∗
(𝑘 + 1 | 𝑘)

󵄩󵄩󵄩󵄩

2

𝑃
∗
(𝑘)
≤ 𝐿
∗
(𝑘) . (63)

At time 𝑘+1, the optimization is performed again, and it leads
to

𝐿
∗
(𝑘 + 1) ≤ 𝐿 (𝑘 + 1) < 𝐿

∗
(𝑘) . (64)

Hence, 𝐿∗(𝑘) is decreased monotonously, and we can choose
it as the Lyapunov function for proving the stability of the
closed-loop system. This completes the proof.

4. Numerical Example

In this section, the effectiveness of the proposed MPC is
illustrated by a numerical example. Consider the following
linear parameter varying system:

𝑥 (𝑘 + 1) = [
0.872 −0.0623𝜅 (𝑘)

0.0935 0.997
] 𝑥 (𝑘)

+ [
0.0935

0.00478
] 𝑢 (𝑘) .

(65)



Mathematical Problems in Engineering 7

−1.5

−1

−0.5

0

0 10 20 30 40 50 60

St
at

e r
es

po
ns

es

Time step (k)

x1

x2

Figure 2:The state responses of the closed-loop system by applying
(38) and (58).

We assume that the uncertain parameter 𝜅(𝑘) lies in the area
𝜅(𝑘) ∈ [1, 5] and is generated by 𝜅(𝑘) = 1 + 4 | sin(0.01𝑘)|.
The initial state is assumed as 𝑥(0) = [−1.5 −0.2]

T. The
input constraint is |𝑢| ≤ 1. Moreover, for the networked
environment, the quantizers 𝑓(⋅) and 𝑔(⋅) are chosen as
logarithmic with quantization density 𝜌

𝑓
= 𝜌
𝑔
= 0.8091

and the quantizer parameter 𝑢
0
is selected as 𝑢

0
= 15. It

is easy to show that the set of quantization is able to cover
the state trajectories according to the evaluation of the initial
condition.Theparameters of the cost function areR = 1,Q =
𝐼.

Let 𝐽true = ∑
∞

𝑘=0
(𝑥(𝑘)

T
𝑥(𝑘) + 𝑢(𝑘)

2
) and denote 𝑇ave as

the average computation time for each 𝑘. By solving (38)
and (58), the resultant state trajectories, the control input,
and the evolution of 𝛾(𝑘) (𝐿(𝑘)) are shown in Figures 2, 3,
and 4, respectively, in dash lines (solid lines), with 𝐽true =
19.005 and 𝑇ave = 0.2078 s (𝐽true = 18.586 and 𝑇ave =

0.2954 s). It is shown that the closed-loop system is stable by
applying the two techniques we proposed. Compared with
the networked MPC without free control move, by adding
one free control move one can achieve faster state responses
and more aggressive control moves. Moreover, 𝛾(𝑘) and 𝐿(𝑘)
are monotonic with the evolution of time.

5. Conclusions

In this paper, the synthesis approaches of MPC have been
introduced to deal with the problem of NCS with input
and state quantizations. The issue of quantized stabilization
of this system is transformed into the robust control prob-
lem by applying the sector bound approach. Two synthesis
approaches of MPC are formulated and the stability results
for the closed-loop system are given by taking the presented
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Figure 3: The control input by applying (38) and (58).
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Figure 4:The evolutions of 𝛾(𝑘) and 𝐿(𝑘) by applying (38) and (58),
respectively.

MPC which explicitly consider the input and state con-
straints. The numerical example illustrates the effectiveness
of the proposed techniques.
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