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Multivariate statistical process control is the continuation and development of unitary statistical process control. Most multivariate
statistical quality control charts are usually used (in manufacturing and service industries) to determine whether a process is
performing as intended or if there are some unnatural causes of variation upon an overall statistics. Once the control chart detects
out-of-control signals, one difficulty encountered with multivariate control charts is the interpretation of an out-of-control signal.
That is, we have to determine whether one or more or a combination of variables is responsible for the abnormal signal. A novel
approach for diagnosing the out-of-control signals in themultivariate process is described in this paper.The proposedmethodology
uses the optimized support vector machines (support vector machine classification based on genetic algorithm) to recognize set of
subclasses of multivariate abnormal patters, identify the responsible variable(s) on the occurrence of abnormal pattern. Multiple
sets of experiments are used to verify this model. The performance of the proposed approach demonstrates that this model can
accurately classify the source(s) of out-of-control signal and even outperforms the conventional multivariate control scheme.

1. Introduction

Statistical process control (SPC) is one of the most effective
tools in total quality management (TQM), which is used to
monitor manufacture process variation. Control charts are
the most widely applied SPC tools used to reveal abnormal
variations of monitored measurements, as well as to locate
their assignable causes [1, 2]. According to the state of control
chart, we can easily be informed whether the manufacture
process is in in-control state or not; quality practitioners or
engineers search for the assignable causes and take some
necessary corrections and adjustments to bring the out-of-
control process back to the in-control state [3].

In the multiply quality diagnose field, there are often two
or more quality characteristics which should be monitored at
the same time. A nature idea is that we can maintain a sepa-
rate control chart for each characteristic. The traditional SPC
technology is based on the process observation data meeting
the independent and identically distributed. However, many
manufacturing processes do not meet this assumption. It

would result in high error discrimination phenomenonwhen
the characteristics are highly correlated. Hotelling is the first
to recognize the defects if we simply expand the univariate
control chart to multivariate process; thus the concept of
multivariate quality was proposed in 1947. Hotelling’s 𝑇2
statistic [4–7]might be themost common tool inmultivariate
analysis for identifying whether the whole process is in out-
of-control state. The primary possible causes for the mean
shifts result from the introduction of new workers, machines,
material, or methods, a change in the measurement method
or standard, and so forth. The 𝑇2 test statistic of the mean
vector is not only considered the volatility of the mean, but
also the correlation among the variables. it is the optimal
test statistic for detecting a general shift. Besides 𝑇2 control
chart, Mason et al. [8] proposed a cause-selecting procedure
by using the decomposition of the 𝑇2 statistic. The user can
see the contribution of each variable by decomposing the
𝑇
2 statistic. Moreover, this decomposition allows the user

to observe which variable(s) with a significant contribution
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is (are) the cause of abnormal processes. The drawbacks of
this method are additional computation and its sensitivity to
the number of variables. Other multivariate control charts,
such as multivariate exponentially weighted moving average
(MEWMA) control chart, and multivariate cumulative sum
(MCUSUM) control chart have been proposed to detect
mean shifts. Lowry et al. [9] proposed a multivariate exten-
sion of the exponentially weighted moving average (EWMA)
control chart. They compared their method to a multivariate
cumulative sum (MCUSUM) control chart based on the
average running length (ARL) performance and their results
showed that theMEWMAchart was similar to theMCUSUM
chart in detecting mean shifts of a multivariate normal
distribution.

Besides the traditional multivariate statistical process
control (MSPC) technology, many scholars have been trying
to diagnose the abnormal process in multivariate process via
data mining and artificial intelligence especially the neural
networks [10, 11]. Neural networks (NNs) have excellent noise
tolerance in real time, requiring no hypothesis on statistical
distribution of monitored measurements. These important
features make NNs promising and effective tools that can
be used to improve data analysis in manufacturing quality
control applications. In the past two decades, various NNs
with different structures and learning algorithms have been
adopted widely in quality control [12]. Multilayer perceptron
(MLP) NN [13], learning vector quantization (LVQ) NN [14],
probabilistic NN [15], adaptive resonance theory (ART) NN
[16], modular NN [17], backpropagation NN (BPN) [18],
and so forth, were used to detect abnormal signals and (or)
identify some basic abnormal patters such as shift, trend,
cycle, and mixture patterns. These NN-based models have
shown their efficiency and effectiveness in SPC.

Summarizing the multiple variables of interest in one
single statistic does not release source(s) of the out-of-control
signals; that is, it cannot tell which one of the variables or
a combination of variables has caused the out-of-control
signals. You know, the knowledge of separation out-of-
control variables can be helpful to narrow the set of possible
assignable causes, which is more rapid identification of the
particular causes and reducing of the adjustment cost.

There are a few multivariate studies found with neural
networks in the literature, such as an effective detection
out-of-control signals or identification source(s) of out-of-
control signals by mean shift in multivariate processes. El-
Midany et al. [19] developed artificial neural networks to
recognition control chart pattern recognition in multivariate
process. Yu et al. [1, 20] proposed a selective neural network
(NN) ensemble approach (DPSOEN, discrete particle swarm
optimization) tomonitor and diagnose out-of-control signals
in bivariate process. Extensive experiments demonstrate that
this method is effective. Salehi et al. [21] presented a hybrid
learning-based model for on-line analysis of out-of-control
signals in multivariate manufacturing processes. The main
contributions of this work are recognizing of the type of
unnatural pattern and classification of major parameters for
shift, trend and cycle and for each variable simultaneously by
proposed hybridmodel. Kim et al. [22] attempted to integrate
state-of-the-art data mining algorithms including artificial

neural networks, support vector regression, and multivariate
adaptive regression splines with SPC techniques to achieve
efficient monitoring in multivariate and autocorrelated pro-
cesses. Simulation results from various scenarios indicated
that data mining model-based control charts perform bet-
ter than traditional time-series model-based control charts.
Cheng et al. [23] developed using of SVR to predict the mag-
nitudes of process shift. Feed-forward neural networks with
different training algorithms and CUSUM-based estimator
are used as benchmarks for comparison.

Research indicates that identifying source(s) of out-of-
control signals using neural network has been proved to be
an effective and useful tool in multivariate manufacturing
processes, which has better estimation capabilities than
CUSUM and MEWMA. However, ANN classifier just has
the judgment and classification ability only after it is studied
via machine learning. It is training based on the principle of
empirical risk minimization, which leads to a long training
time, a poor generalization ability, and easiness of fallng into
local minimum. It is not suitable for the quality diagnosis
when the process is dynamic and changeable. Although
support vector machines has shown excellent generalization
performance in a number of applications, one problem that
faces the user of an SVM is how to choose a kernel and
the specific parameters for that kernel. Applications of an
SVM therefore require a search for the optimum settings
for a particular application. The kernel functions map the
original data into higher-dimension space andmake the input
data be set linearly separable in the transformed space. The
choice of kernel functions is highly problem dependent and
it is the most important factor in support vector machine
applications. In this work, the RBF kernel is used as the
kernel function of the SVM because it tends to give better
performance.

In this study, considering the robust recognition power
of support vector machine and the global search capability of
the genetic algorithm, an optimized SVM approach named
GA-SVM (support vector machine classification based on
genetic algorithms) was developed; a framework of control
chart pattern recognition of multivariate observation data is
proposed for classifying source(s) of out-of-control signals
in multivariate processes. The SVM classification is used
to recognize selected subclasses of multivariate abnormal
patterns, identify the variate(s) that is (are) responsible for
the occurrence of the abnormal pattern, while the role of GA
is that it optimizes SVM parameters such as kernel function
parameters and the penalty factor.

The remainder of this paper is organized as follows: the
patterns generation of multivariate process and support vec-
tor machine algorithms are presented in Section 2; Section 3
describes the diagnosis SVM classifier based on GA in the
process mean for its content; in Section 4 we use numerical
example and series tests to verify the proposed method;
conclusions are presented in Section 5.

2. Methodology

This section provides a practical overview for the pat-
terns generation of multivariate process and support vector
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machine algorithms. It is preparing for the diagnosis model
to be proposed in later chapter.

2.1. The Patterns Generation of Multivariate Process. Accord-
ing to multivariate quality control theory [24–26], the 𝑇2
statistic can reflect the state of the correlation structure and
the mean vector of the multivariate process data. The overall
quality of amultivariate process can bemonitored by compar-
ing the above statistic against a positive UCL.These charts are
easy to construct as long as the process parameters (i.e., 𝜇

0
is

the mean vector and∑
0
is the covariance matrix) are known.

However, the covariance matrix ∑
0
is usually unknown in

many quality process control fields; we could not assume
the value arbitrarily. In this case, the covariance matrix ∑

0

should be estimated via limit sample.Themean vector 𝜇
0
and

the covariance matrix ∑
0
are sufficient to characterize any

multivariate normal distribution. Thus, random multivariate
vectors, such as X

𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
], represent a vector of

observations from 𝑃 quality characteristics of independent
normal distributions at time 𝑖. In the multivariate statistical
process control, the mean vector of 𝑇2 statistic is thus
obtained using the following form:

𝑇
2
= 𝑛(X − X)

𝑇

S−1 (X − X) . (1)

Random samples of size are collected regularly from the
process. Thus, represents the mean vector for each of the 𝑛
multivariate vectors, such as [𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
] for 𝑖 = 1 to 𝑛.

The term (X − X) is a number of quality characteristics (𝑃)
represented by 1 column vector and (X−X)𝑇 is the transpose
of (X −X), that is, a 1 by 𝑃 row vector. Finally, S−1, which is a
𝑃 by 𝑃matrix, is the inverse of the 𝑆matrix.Therefore, the 𝑇2
statistic is the result of a 1 by 1matrix (i.e., it is a scalar value).
Each normal multivariate mean vector must result in a value
of 𝑇2 that is less than or equal to a UCL given by 𝑇2

𝛼,𝑝
, where

𝛼 is the upper tail of the 𝑇2 distribution that acts as the type I
error, when the confidence limit equals [100×(1−𝛼)] percent
and with 𝑃 degrees of freedom. Any vector that results in 𝑇2
plotting above 𝑇2

𝛼,𝑝
limit is discarded from the simulated data

set. The sample size, 𝑛, is kept to 1, so that the vector value of
each simulatedmultivariate point is used directly to represent
one sample observation.

2.2. A Brief Introduction to Support Vector Machine Algo-
rithms. The support vector machine method is a new and
promising classification and regression technology [27–31].
The basic idea of an SVM can be stated briefly as follows. An
SVM initiallymaps the input vectors into a high-dimensional
feature space, either linearly or nonlinearly, which is relevant
to the selection of the kernel function. The input or feature
vectors in the feature space are then classified linearly by a
numerically optimized hyperplane, separating the two classes
(this can be extended tomulticlass).The SVM training always
seeks a global optimized solution and the hyperplane depends
only on a subset of training examples [32–35].

Let {𝑥
𝑖
, 𝑦
𝑖
}
𝑛

𝑖=1
,𝑥 ∈ 𝑅𝑚,𝑦

𝑖
∈ [−1, 1], be the training set with

input vectors 𝑥 and output𝑦
𝑖
. Here, 𝑛 is the number of sample

observations,𝑚 is the dimension of each observation, and 𝑦
𝑖

is the known target. The algorithm is to seek the hyperplane
𝑤𝑥
𝑖
+ 𝑏 = 0, where 𝑤 is the vector of hyperplane and 𝑏

is a bias term, to separate the data from two classes with
maximal margin width 2/‖𝑤‖2, and all the points under the
boundary are named the support vector. In order to optimize
the hyperplane, the SVM solves the following optimization
problem:

Min Φ (𝑥) =
1

2
‖𝑤‖
2
,

S.t. 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1, 1 = 1, 2, . . . , 𝑛.

(2)

It is difficult to solve (2). Thus, SVM transforms the
optimization problem to be dual problem by the Lagrange
method. The value of 𝛼 in the Lagrange method must be
nonnegative real coefficients. Equation (2) is transformed
into the following constrained form:

Max Φ(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) =
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𝑦
𝑗
= 0 0 ≤ 𝛼

𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑁.

(3)

In (3), 𝐶 is the penalty factor and determines the degree
of penalty assigned to an error. It can be viewed as a tuning
parameter, which can be used to control the trade-off between
maximizing the margin and the classification error. In order
to separate two classes exactly, add as lack variable 𝜉 in the
Lagrange equation to make 𝑦

𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝑖 =

1, 2, . . . , 𝑁, 𝜉
𝑖
≥ 0. An objective of slack variable is to increase

the flexible buffer of boundary.
In general, it could not find the linear separate hyperplane

for all application data. For problems that cannot be linearly
separated in the input space, the SVM uses the kernel
method to transform the original input space into a high-
dimensional feature space,where an optimal linear separating
hyperplane can be found. The common kernel functions are
linear, polynomial, radial basis function (RBF), and sigmoid.
Although several choices for the kernel function are available,
the most widely used kernel function is the RBF, which is
defined as [36]

K (𝑥
𝑖
, 𝑥) = exp(

−
𝑥 − 𝑥𝑖



2

2𝜎2
) , (4)

where 𝜎 is the parameter of the kernel function. Conse-
quently, the RBF is employed in this study. Also, in this
study, we usedmulticlass SVMmethod to build the diagnosis
model.

3. Diagnosis Model Based on Optimized
Support Vector Machine in the Process

The parameters that must be determined are the kernel
parameter 𝛾, the regularization parameter 𝐶, and 𝜀. Kernel
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Figure 1: Detection and classification by optimized SVMmodel.

parameter defines the structure of the high-dimensional fea-
ture space. The kernel parameter is selected through genetic
algorithm (GA). The regularization parameter 𝐶 should be
chosen with caution to avoid overfitting.

In this paper, in order to achieve the goal of diagnosis
on the mean vector, as well as identification and location of
the abnormal variables in multivariate process, firstly, we are
assuming that the abnormal factors in the process only make
the changeable of the mean vector, instead of the changeable
of the covariance matrix. Under this premise, a diagnosis of
the out-of-control signals in themultivariate process based on
hotelling 𝑇2 chart and optimized support vector machines is
proposed in this paper. The structure of the diagnosis model
is briefly illustrated in Figure 1.

The scheme can be briefly introduced as follows: the
detection part and the diagnostic process. When an out-of-
control signal is detected by 𝑇2 statistic, more observations
from the process are collected and they are regarded as a
chromosome which was then performed with binary code.
A multiclass support vector machine classifier will be used to
recognize a random chromosome and recognition accuracy
is considered as the fitness function to evaluate the fitness of
individual feature. By the operations of selection, crossover,
and mutation, with GA self-adaptive optimizing for penalty
parameter and kernel parameter, we obtain the optimal
model, which is finally used for identifying the source(s) of
the out-of-control signal, as well as identification and location
of the abnormal variables.

In Figure 1, we identify and locate the abnormal variables
via translating them into a pattern recognition problem. For
a 𝑝-dimensional manufacturing process, there are cases: the
mean of each variable is either normal or abnormal. Under
these circumstances, the mean vector of 𝑝-dimensional
totally has 2𝑝 normal (abnormal) states. In other words, only
one normal state and (2𝑝 − 1) abnormal state exist. Once
the 𝑇2 control chart is out-of-control, it must be one of the
(2
𝑝
−1) abnormal states. In order to distinguish between these

2
𝑝 states, we define this abnormal state as (2𝑝 − 1) patterns
which should be identified; we use optimized SVMmodel to
identify the abnormal signal, which is obtained via genetic
algorithm.

Taken the bivariate process as an example, the reference
mean vector is 𝜇 = (𝜇

1
, 𝜇
2
)
𝑇 and covariance matrix ∑; the

abnormal state of the mean vector only has three circum-
stances that should be identified: (1) the first variable is out
of control and the second variable is in control (𝜇

1
+ 𝛿
1
, 𝜇
2
);

(2) the first variable is in control, the second variable is out
of control (𝜇

1
, 𝜇
2
+ 𝛿
2
); (3) both the two variables are out

of control (𝜇
1
+ 𝛿
1
, 𝜇
2
+ 𝛿
2
). If denoting the out-of-control

variable as 1 and in-control variable as 0, then the target
vectors for these caseswere values (0,0,0,0), (0,1,0,0), (0,0,1,0),
and (0,0,0,1), which are used for identifying that the normal,
the first and the second, or the both quality characteristics are
in out of control state, where themark (0,0,0,0) represents the
normal patterns and (0,1,0,0), (0,0,1,0), and (0,0,0,1) represent
the three abnormal patterns.When an out-of-control signal is
detected by𝑇2 statistic, and if the optimal SVMmodel detects
the signal (0,1,0,0) pattern, it indicates that in this process, the
first variable is in control while the second variable is out-
of-control; once the optimal SVM model detect the signal
(0,0,0,1) pattern, it indicates that in this process, both the two
variables are out of control, and so on. In the idea mentioned
above, the optimal SVM model is not only a substitute for
hotelling𝑇2 control chart, but also identification and location
of the abnormal variables when an out-of-control signal is
detected by the 𝑇2 control chart.

4. Simulation and Analysis

In this section, an example derived from a bivariate instance
of the chemistry process of Montgomery is given to illustrate
the use of the proposed approach. The parameters of this
process represent process target values of 𝑋

1
and 𝑋

2
; the

reference mean vector X and the reference variance matrix
S are obtained by the first fifteenth observation data. Thus,
the X is

X = [10
10
] , (5)

and the S is

S = [0.7986 0.6973
0.6973 0.7343

] . (6)

In the following part, we would compare the estimation
capabilities of different statistical approaches, such as BPNN,
SVM, and optimized SVM.

4.1. Examples Development and Parameter Setting. Training
data is very critical in applications of SVM, which determines
the recognition efficiency of the classifier work. In this study,
the Monte Carlo simulation method was applied to generate
the required data sets of normal and abnormal examples
for training and testing. Multivariate simulation can provide
only a simplified picture of the reality. The best alternative
is, where possible, to collect various data from real-world
manufacturing systems.
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In a bivariate SPC application, an input to the neural
system should consist of a time-series window of bivariate
vectors. In this study, five distinct types of shift (i.e., 𝛿 =

1.0𝜎, 1.5𝜎, 2.0𝜎, 2.5𝜎, and 3.0𝜎) associatedwith the 𝑙th quality
characteristic are considered, which cover evenly the range
of whole process shifts. For generating training data sets, we
shift the mean vector as (𝜇

1
+ 1.0𝜎

11
, 𝜇
2
), (𝜇
1
, 𝜇
2
+ 1.0𝜎

22
),

and (𝜇
1
+ 1.0𝜎

11
, 𝜇
2
+ 1.0𝜎

22
) in this bivariate process, in

order to verify the good ability of SVM in small sample; five
hundred input vectors shifted 1.0 for each abnormal model
were generated by using statistic, which were used as the
training data set of the optimized SVM.

The number of SVM in the output layer is determined
by the dimension of quality characteristics.The output vector
consists of four elements and uses the largest value to identify
the source(s) of the whole signals; in this study, the number
of the output nodes is 4.

In order to evaluate the performance of optimized SVM,
different sample vectors that shifted 1.0𝜎, 1.5𝜎, 2.0𝜎, 2.5𝜎,
and 3.0𝜎 were generated. Similar to generated training data
sets, we applied𝑇2 statistic to detect the overall out-of-control
signal for each sample vector with the type I error being equal
to 0.5. We did so until we obtained 500 examples for each
abnormal case, which were used as the testing data sets of
optimized SVM.

4.2. Optimization Using Genetic Algorithm (GA). SVM is a
powerful machine learning and data mining tool that has
already been shown to possess classification power. However,
the performance of SVM is greatly affected by the penalty
(cost) parameter 𝐶 and the variance of the RBF kernel
function parameter 𝜎.

Global optimization attempts to locate the absolutely best
set of optimum conditions that results in the highest obje-
ctive value. It is usually a very difficult problem. Traditional

optimizationmethods such as gradient ascent/descent search
in the direction of the local gradient vector and thus easily
get stuck in a problem with a multimodal objective function.
The optimization method used in our study is the genetic
algorithm (GA), which is one of the most popular and widely
used techniques for global optimization. Figure 2 presents
the structure of the parameter optimization using genetic
algorithm (GA).

4.3. Performance Analysis for the Bivariate Process. In this
section, the influences of the key factors of optimized SVM
model upon their generalization performance are analyzed
by implementing the following experiments.The analysis can
help us to obtain the suitable parameter setting to improve
the generalization performance of the proposed model.

4.3.1. Test 1: The Selection Process of the Optimal Parameters.
In this study the free parameters of SVM were selected
following a genetic algorithm optimization experiment. The
whole process was implemented in Matlab 2009b. In order
to seek the optimal parameters, we chose 𝛿 = 1.5𝜎 as types of
shift for the three different volatilities; each type generates 100
samples.The relevant parameters of the genetic operations are
set as follows: population size is 20, the maximum number
of iterations is 200, the genetic generation gap and mutation
probability are taken as 0.9 and 0.01, respectively, the single
𝜀 is 0.01, the chosen kernel was based on RBF with 𝜎 being
1.0834 and the regularization parameter 𝐶 was set to 1.5136.
Figures 3(a) and 3(b) show an example of the grid search
result, where the 𝑥-axis and the 𝑦-axis are log 2𝐶 and log 2𝜎,
respectively. The 𝑧-axis is the accuracy performance. The
findings of this experiment were that SVM is quite robust
against parameter selections.

4.3.2. Test 2: Sensitivity Analysis to Different Model. Table 1
presents comparison of the performance among the raw
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Table 1: Correct classification percentages (%) of the optimization SVM, the SVM, and the BPNN.

Model Shift Correct classification percentage (%)
magnitude (0 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1) Percentage

BPNN (0.0 0.0) 470 14 13 3 94.00
(1.0 0.0) 0 450 12 38 90.00
(0.0 1.0) 0 3 452 45 90.38
(1.0 1.0) 0 30 25 445 89.00
(1.5 0.0) 0 460 1 39 92.00
(0.0 1.5) 0 2 458 40 91.60
(1.5 1.5) 0 27 23 450 90.00
(2.0 0.0) 0 468 0 32 93.6
(0.0 2.0) 0 5 465 30 93.0
(2.0 2.0) 0 22 28 450 90.0
(2.5 0.0) 0 470 0 25 94.0
(0.0 2.5) 0 3 472 25 94.4
(2.5 2.5) 0 20 22 458 91.6
(3.0 0.0) 0 475 2 10 94.0
(0.0 3.0) 0 3 471 12 94.2
(3.0 3.0) 0 25 15 460 92.0

Aggregate 92.11
SVM (0.0,0.0) 480 8 6 6 96.0

(1.0 0.0) 0 468 12 20 93.6
(0.0 1.0) 0 9 468 23 93.6
(1.0 1.0) 0 16 22 462 92.4
(1.5 0.0) 0 461 6 33 92.2
(0.0 1.5) 0 3 472 25 94.2
(1.5 1.5) 0 12 13 475 95.0
(2.0 0.0) 0 474 8 18 94.8
(0.0 2.0) 0 3 470 27 94.0
(2.0 2.0) 0 10 22 468 93.6
(2.5 0.0) 0 480 2 18 96.0
(0.0 2.5) 0 9 472 19 94.4
(2.5 2.5) 0 22 18 460 92.0
(3.0 0.0) 0 480 2 18 96.0
(0.0 3.0) 0 2 478 20 95.6
(3.0 3.0) 0 15 13 472 94.4

Aggregate 94.23
optimized (0.0,0.0) 500 0 0 0 100
SVM (1.0 0.0) 0 480 1 19 96.0

(0.0 1.0) 0 3 484 13 96.8
(1.0 1.0) 0 8 10 482 96.4
(1.5 0.0) 0 491 0 9 98.2
(0.0 1.5) 0 0 488 12 97.6
(1.5 1.5) 0 5 5 490 98.0
(2.0 0.0) 0 490 1 9 98.0
(0.0 2.0) 0 1 488 11 97.6
(2.0 2.0) 0 7 8 485 97.0
(2.5 0.0) 0 490 0 10 98.0
(0.0 2.5) 0 0 492 8 99.4
(2.5 2.5) 0 5 4 491 99.2
(3.0 0.0) 0 494 0 6 98.8
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Table 1: Continued.

Model Shift Correct classification percentage (%)
magnitude (0 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1) Percentage
(0.0 3.0) 0 0 495 5 99.0
(3.0 3.0) 0 7 6 487 97.4

Aggregate 97.96
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Figure 3: The selection result of the optimal parameter using genetic algorithm.

data-based BPNNmodel, the SVMmodel, and the optimized
SVM model trained and tested using raw data. The overall
total percentages of correct recognition of the three models
are 92.11, 94.23, and 97.96, respectively. The optimized SVM
shows the better identification performance in major cases
in comparison with those of the BP model and SVM. This
indicates that the type of classifier and the choice of nuclear
parameter and penalty (cost) parameter can help to affect the
recognition performance of classification. Thus, the genetic
algorithm can strengthen the pattern feature of the out-of-
control signals.

From Table 1, it can be observed that the SVM shows
similar performance to that of the BPNN model. Thus, the
optimized SVM can be applied in some multivariate pro-
cesses that have many quality characteristics (e.g., more than
three characteristics), which can decrease the complexity of
the structure of NNs and which helps to construct SVM
with more simple structure. Moreover, the optimized SVM
shows good performance in identifying the source(s) of out-
of-control signals.

4.3.3. Test 2: Sensitivity Analysis to the Number of the Training
Examples. Training sets of different sizes were generated to
train optimized. Table 2 presents the test results of optimized
SVM trained by different examples. From these results, some
conclusions are drawn as follows.

(1) Increasing the training examples can improve the per-
formance of GASVM up to a certain level of accuracy
at any given value of shift magnitudes. This could be
explained by the fact that with enough large training
sets there is a better chance of true representation

of a problem space. However, any further increase
of the training size after reaching such limits will
not improve the performance of GASVM. Moreover,
the larger training set results in higher time cost of
training.

(2) Abnormal patterns with small shift magnitudes
require more representation of the density distribu-
tion by larger training sets.

(3) Abnormal patterns with large shift magnitudes
require smaller training data sets as they are easier to
identify.This is due to the fact that abnormal patterns
with large shift magnitudes have stronger features
that separate easier themselves from other abnormal
patterns.

5. Conclusion and Further Work

In this paper, we have proposed optimized SVM as an
approach to estimate process shift size. Genetic algorithm
is used to self-adaptively optimize penalty parameter and
kernel parameter; then this optimized SVM modeling was
introduced to identify the responsible variable(s) on the
occurrence of abnormal pattern. The performances of the
proposed approach were evaluated by estimating the vari-
ous patterns of recognition accuracy using simulation. The
proposed optimized SVM approach has been compared to
ANN and SVM. Extensive comparisons show that the pro-
posed approach presented in this paper offers a competitive
alternative to existing control procedures. Our study reveals
that SVM achieves the best performance.The results indicate
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Table 2: Accuracy (%) of optimized for different number of the training examples.

Training examples Shift magnitude Aggregate
1.0 1.5 2.0 2.5 3.0

300 95.78 96.02 96.65 97.13 97.18 96.55
600 95.80 96.67 97.33 97.45 97.86 97.02
900 96.15 97.24 97.84 98.25 98.64 97.62
1200 96.64 97.82 98.06 98.50 98.87 97.98

that SVM is a promising tool in estimating the magnitude of
mean shift. Future research can be performed in a number of
areas. A further improvement would be to combine several
other optimization algorithms in SVM, which could further
improve the generalization performance of SVM. A second
area would be the construction of input vector based on
features extracted from original input observations.
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