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Abstract. 
We propose a computationally simple and efficient method for sparse recovery termed as the semi-iterative hard thresholding (SIHT). Unlike the existing iterative-shrinkage algorithms, which rely crucially on using negative gradient as the search direction, the proposed algorithm uses the linear combination of the current gradient and directions of few previous steps as the search direction. Compared to other iterative shrinkage algorithms, the performances of the proposed method show a clear improvement in iterations and error in noiseless, whilst the computational complexity does not increase.


1. Introduction
Compressed sensing (CS) [1–3] is a new framework for acquiring sparse signals based on the revelation that a small number of linear measurements of the signal contain enough information for its reconstruction. CS relies on the fact that many natural signals are sparse or compressible when expressed in the proper basis and frame. The model of CS can be written as a linear sampling operator by a matrix 
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 is not bijection and therefore has infinitely many solutions. Efficient algorithms to find sparse solutions are becoming very important. This leads to solving the 
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Unfortunately, this minimization problem is NP-hard [2]. As alternatives, approximation algorithms are often considered. Approximation algorithms to find sparse solutions may be classified into greedy pursuits algorithms, convex relaxation algorithms, Bayesian framework, and nonconvex optimization. In this paper, we will focus on greedy pursuits algorithms and convex relaxation algorithms; thus more details of Bayesian framework and nonconvex optimization methods can be found in [4, 5]. Greedy pursuits algorithms include orthogonal matching pursuit (OMP) [6], stagewise OMP (StOMP) [7], regularized OMP (ROMP) [8], compressive sampling matching pursuit (CoSaMP) [9], iterative hard thresholding (IHT) [10], and gradient descent with sparsification (GraDeS) [11]. Convex relaxation algorithms include gradient projection for sparse reconstruction (GPSR) [12] and sparse reconstruction by separable approximation (SpaRSA) [13]. For more details about convex relaxation algorithms, see, for example [14]. Convex relaxation algorithms succeed with a very small number of measurements, but they tend to be computationally burdensome [15]. An alternative family of numerical algorithms has gradually built, addressing the optimization problems very effectively [15]. This family is the iterative-shrinkage algorithms. Iterative-shrinkage algorithms include iterative hard thresholding (IHT) [10] and gradient descent with sparsification (GraDeS) [11], parallel coordinate descent (PCD) [16], and fast iterative-shrinkage thresholding algorithm (FISTA) [17]. In these methods, each iteration consists of a multiplication by 
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 and its transpose, along with a scalar shrinkage step on the obtained 
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. For iterative-shrinkage algorithms, IHT and GraDeS  use a negative gradient as the search direction, that is, Landweber iteration [18], but the main drawback of Landweber iteration is its slow performance, that is, a large number of iterations need to obtain the optimal convergence rates [18]. Inspired by the semi-iterative method [18] and hard thresholding, we present an algorithm for solving sparse recovery, which requires less time and fewer iterations.
2. Background on Compressed Sensing
2.1. Sensing Matrix
Without further information, it is impossible to recover 
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 is  some  constant depending  on each instance.   It is difficult to verify the RIP conditions for a given matrix. A widely used technique for avoiding checking the RIP directly is to generate the matrix randomly, such as Gaussian matrix, symmetric Bernoulli matrix, and partial Fourier matrix [1–3], and to show that the resulting random matrix satisfies the RIP with high probability. In this paper, we will use Gaussian matrix as the measurement matrix.
2.2. Sparse Recovery
      An alternative approach to sparse signal recovery is based on the idea of iterative greedy pursuit and tries to approximate the solution to (2) directly. In this case, the problem (2) is closely related to the following optimization problem:
								
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				1
				m
				i
				n
			

			
				
			
			
				2
				‖
				𝐲
				−
				Φ
				𝐱
				‖
			

			
				2
				2
			

			
				s
				.
				t
				.
				‖
				𝐱
				‖
			

			

				0
			

			
				≤
				𝑠
				,
			

		
	

							where 
	
		
			

				𝑆
			

		
	
 denotes the sparse  level of the vector 
	
		
			
				𝐱
				.
			

		
	

The second one is convex relaxation. In this case, the problem (2) is closely related to the following optimization problem:
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							However, these methods are often inefficient, requiring many iterations and excessive central processing unit time to reach their solutions [15]. 
   An alternative family of numerical algorithms has gradually built, addressing the above optimization problems very effectively [15]. This family is the iterative-shrinkage algorithms.  We will discuss  iterative-shrinkage algorithms in the next section.

3. Semi-Iterative Hard Thresholding 
The main drawback of Landweber iteration is its comparatively slow rate of convergence while for Landweber iteration only information about the last iterate 
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. In order to overcome the drawback, more sophisticated iteration methods have been developed on the basis of the so-called  semi-iterative methods. A basic step of a semi-iterative method (polynomial acceleration methods) consists of one step of iteration, followed by an averaging process over all or some of the previously obtained approximations. A basic step of a semi-iterative method has the form 
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, thus the iteration zigzag toward the solution.  As a result, a large number of iterations need to obtain the optimal solution. 
In order to avoid zigzagging toward solution and find the sparse solution for (4), inspired by the 
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	Algorithm 1: Semi-iterative hard  thresholding  algorithm.


As mentioned above, the semi-iterative hard thresholding algorithm is easy to implement. It involves the application of the matrix 
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4. Experimental Results
This section describes some experiments testifying to the performances of the proposed algorithm. All the experiments were carried out on HP z600 workstation with eight Intel Xeon 2.13 GHz processors and 16 GB of memory, using a MATLAB implementation under Windows XP.
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Figure 1: Influence of different parameter gamma on running time. 


4.2. Comparison in Recovery Rate
In this experiment, we compared the empirical performance of GraDes, IHT, SpaRSA, FISTA, and SIHT  solutions to the sparse recovery. We generated a Gaussian 
	
		
			
				𝐍
				(
				0
				,
				1
				)
			

		
	
 random matrix 
	
		
			
				Φ
				∈
				𝑅
			

			
				2
				5
				6
				×
				5
				1
				2
			

		
	
 and generated 
	
		
			

				𝑆
			

		
	
 sparse 
	
		
			
				±
				1
			

		
	
 spikes vector.  The reconstruction is considered to be exact when the 2 norm of the difference between the reconstruction and original vector is below 
	
		
			
				1
				0
			

			
				−
				2
			

		
	
. We repeated the experiment 100 times for each value of 
	
		
			

				𝑆
			

		
	
 from 2 to 128 (in steps of 2). Figure 2 shows that SIHT algorithm provides higher probability of perfect recovery than GraDes, IHT, SpaRSA, and FISTA, when the sparse vectors are drawn 
	
		
			
				±
				1
			

		
	
 spikes. Furthermore, in the perfect recovery case, we observe that the GraDes and SpaRSA algorithms perform similarly. While it reveals that measurements of SIHT require less than those of IHT, GraDes, SpaRSA, and FISTA  to recover the sparse vector for a given 
	
		
			

				𝑁
			

		
	
 and 
	
		
			
				𝑆
				.
			

		
	






































































	
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
	


































































































































































































































































	
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	


	
		
	
	
		
			
		
	


	
		
	
	
		
		
		
		
	


	
		
	
	
		
			
		
	


	
		
	
	
		
			
		
	


	
		
	
	
		
			
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
		
		
		
		
		
	
	
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
	


	
		
		
		
		
	

Figure 2: Simulation of the exact recovery rate. 


4.3. Comparison in Running Time
In order to evaluate running time of the proposed algorithm, these experiments include comparisons with OMP, StOMP, ROMP, IHT, and GraDeS. Now, the sampling matrix 
	
		
			

				Φ
			

		
	
, the measurement vector 
	
		
			

				𝐲
			

		
	
, and the sparsity level 
	
		
			

				𝑆
			

		
	
 are given to each of the algorithms as inputs. For the proposed algorithm, we set 
	
		
			
				𝛾
				=
				7
			

		
	
;  the performance is insensitive to the choices. Table 1 compares the running time of the MATLAB implementation of SIHT and the five existing methods. The symbol “
	
		
			

				∞
			

		
	
” indicates the algorithm fails.
Table 1: The running time of different algorithm.
	

	Rows 	Colum 	Sparsity 	Running time (seconds)
	
	
		
			

				𝑀
			

		
	
	
	
		
			

				𝑁
			

		
	
	
	
		
			

				𝑆
			

		
	
	OMP	StOMP	ROMP	IHT	GraDes	SIHT 
	
		
			
				(
				7
				)
			

		
	

	

	3000	8000	500	17.14	34.47	7.93	2.81	5.22	2.06
	3000	10000	300	8.83	
	
		
			

				∞
			

		
	
	2.77	3.52	5.69	2.72
	3000	10000	600	19.39	
	
		
			

				∞
			

		
	
	
	
		
			

				∞
			

		
	
	9.33	
	
		
			

				∞
			

		
	
	2.86
	3000	10000	1050	
	
		
			

				∞
			

		
	
	
	
		
			

				∞
			

		
	
	
	
		
			

				∞
			

		
	
	
	
		
			

				∞
			

		
	
	
	
		
			

				∞
			

		
	
	
	
		
			

				∞
			

		
	

	4000	10000	500	25.33	
	
		
			

				∞
			

		
	
	9.35	3.11	4.94	2.93
	



Table 1 shows that the iterative-shrinkage algorithms are significantly faster than match pursuit algorithms. For simplicity, we will compare the performance of SIHT with IHT and GraDes in the next experiments.
4.4. Comparison in Sparsity
In this experiment, we show the dependence of the 2-norm errors of different algorithms in different sparsity level 
	
		
			

				𝑆
			

		
	
. In Figure 3, we show the 2-norm errors  of SIHT comparison with  IHT, GraDes, SpaRSA, and FISTA in different   sparsity levels. We generated a Gaussian 
	
		
			
				𝐍
				(
				0
				,
				1
				)
			

		
	
 random matrix 
	
		
			
				Φ
				∈
				𝑅
			

			
				5
				1
				2
				×
				1
				0
				2
				4
			

		
	
 and generated  
	
		
			

				𝑆
			

		
	
 sparse 
	
		
			
				±
				1
			

		
	
 spikes vector or Gaussian vector. We repeated the experiment 100 times for each value of 
	
		
			

				𝑆
			

		
	
 from 2 to 120 (in steps of 10). Both GraDes and SpaRSA begin to fail when sparsity level is above 120; thus  the failed results are omitted from the figure. 
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(b)
Figure 3:  Recover error versus sparsity with fixed 
	
		
			
				𝑀
				=
				5
				1
				2
				a
				n
				d
				𝑁
				=
				1
				0
				2
				4
			

		
	
: (a) Gaussian sparse vectors and (b) sparse 
	
		
			
				±
				1
			

		
	
 spikes  vectors. 


Figure 3 shows that  GraDes, IHT, and SIHT algorithms perform similarly for  Gaussian sparse vectors, and  GraDes algorithm is to fail in recovery for  sparse 
	
		
			
				±
				1
			

		
	
 spikes  vectors when  sparsity level  
	
		
			

				𝑆
			

		
	
 is above 70, that is, GraDes algorithm requires more measurements  to recover the sparse vectors. It reveals that  FISTA, IHT, and SIHT algorithms are insensitive to the sparsity level  
	
		
			

				𝑆
			

		
	
, whilst GraDes and SpaRSA algorithms are sensitive to the sparsity level  
	
		
			

				𝑆
			

		
	
. In addition, SIHT algorithm outperforms other algorithms in 2-norm errors for sparse 
	
		
			
				±
				1
			

		
	
 spikes or Gaussian vector. 
4.5. Comparison in Number of Iterations
In the experiment, we show the number of iterations required by  SIHT algorithm in comparison with four algorithms, namely, IHT, GraDes, SpaRSA, and FISTA for sparse 
	
		
			
				±
				1
			

		
	
 spikes vector or Gaussian vector. We generated a Gaussian 
	
		
			
				𝐍
				(
				0
				,
				1
				)
			

		
	
 random matrix 
	
		
			
				Φ
				∈
				𝑅
			

			
				5
				1
				2
				×
				1
				0
				2
				4
			

		
	
 and generated 
	
		
			

				𝑆
			

		
	
 sparse 
	
		
			
				±
				1
			

		
	
 spikes or Gaussian vector. Figures 4 and 5 show the number of iterations needed by  the algorithms as mentioned above for 
	
		
			
				𝑀
				=
				5
				1
				2
			

		
	
, 
	
		
			
				𝑁
				=
				1
				0
				2
				4
			

		
	
, and 
	
		
			
				𝑆
				=
				2
				0
			

		
	
.
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(b)
Figure 4: Recover error versus number of iteration with fixed 
	
		
			
				𝑀
				=
				5
				1
				2
			

		
	
, 
	
		
			
				𝑁
				=
				1
				0
				2
				4
			

		
	
, and 
	
		
			
				𝑆
				=
				2
				0
			

		
	
 for Gaussian sparse vectors: (a) iteration between 2 and 120 and (b) iteration between 2 and 20.
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(b)
Figure 5: Recover error versus number of iteration with fixed 
	
		
			
				𝑀
				=
				5
				1
				2
			

		
	
, 
	
		
			
				𝑁
				=
				1
				0
				2
				4
			

		
	
, and 
	
		
			
				𝑆
				=
				2
				0
			

		
	
 for sparse 
	
		
			
				±
				1
			

		
	
 spikes vectors: (a) iteration between 1 and 120 and  (b) iteration between 1 and 20.


Figures 4 and 5 depict that  IHT and GraDes algorithms show a faster rate of convergence, when the number of iteration is less than 4. However, when the number of iteration is above 6, owing to polynomial acceleration,  FISTA and SIHT algorithms show a faster rate of convergence than the others. In addition, from Figures 4 and 5, for each 
	
		
			
				𝑆
				≥
				7
			

		
	
, FISTA and IHT algorithms  are roughly  similar in terms of number of iterations. In that   SIHT algorithm uses  the linear combination of the current gradient and directions of a few previous steps as the new search direction, SIHT algorithm shows a faster rate of convergence than the others. While  GraDes algorithm exhibits poorer performance than the others in rate of convergence.
From Figures 4 and 5, the 2-norm errors  of  those algorithms except SpaRSA algorithm are  insensitive to the number of iterations, that is, 2-norm errors  are  strictly monotone reduced as iteration is increased.
       As expected, these results suggest that SIHT outperforms other iterative-shrinkage algorithms in iterations and 2-norm errors.
5. Conclusions
In this paper, semi-iterative hard thresholding recovery algorithm for sparse recovery was proposed in this work. The proposed algorithm uses the linear combination of the current gradient and directions of a few previous steps as the new search direction and avoids zigzagging toward solution. Owing to using the new search direction, the performance  of SIHT is improved  compared with  iterative-shrinkage algorithms. 
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